Himálayan districts

NORTH-WESTERN PROVINCES OF INDIA.

BY
EDWIN T. ATKINSON, B.A., F.R.G.S.

V OL. I.

gorming volume x. of the cazetteer, n.-w. p.)

ALLAHABAD:

GAZETT

$79^{\circ} 30^{\prime}$

ER MAP OF KUMAUN AND HUNDES.

80 30

MISSIONARY RESEARGH LIBRARY Union Collection
3041 Broadway, New Yorlc City

PREFACE.

The system of transliteration used in the present volume is that which has been adopted in the Gazettecr of the North-Western Provinces. For the vowels it is briefly as follows :-

a	as in	'woman.'
e	"	'father.'
e	$"$	'grey.'
i	$"$	'bit.'
i	$"$	'machine."

u	as in 'pull.'
й	, 'rule.'
$a i$	'aisle.'
0	" 'hole.'
	as 'ou'in ' h

The original plan of this Memoir provided for a thorough examination of the country between the Tons and the Kali somewhat on the plan of Tennent's Ceylon, and in addition a less detailed summary of our knowledge of the Himálaya-Tibetan region. It was believed that only thus could the physical unity and with it the historical comnections of the entire region be correctly understood. From or through the Himálaya came the pre-Aryan and Aryan races now inhabiting India, as well as the successive waves of Baktriun, Skythian, and Musalmán invaders who have conquered India in historical times. As we shall see hereafter, forms of belief having their origin in or beyond the Himalaya have influenced the religious systems of India from the earliest ages to the present day, so that for the political and religious history of the plains an adequate conccption of the physiography, ethnography, and history of the Himálaya-Tibetan tract is a necessary preparation. It is to be regretted that this extended programme cannot be carried out, but the pressure of official duties prevents its completion, and all that can now be attempted is to work up the materials that have been collected for the Himálayan districts of the North-Western Provinces. At the end of Chapter I. will be found a series of 'References' to materials illustrating the history and resources of the Himálaya from Asán to Afghánistán. These were collected in contimuation of a plan suggested by Mr. R. N. Cust in 1866 for the preparation of a 'Catalogue raisonne of every kind of printed information connected with the North-Western Provincos; and I certainly know of no better aid to good administration than an index to the special and local reports of those engaged in it. The necessity for such a catalogue has coased in great part wtih
the publication of the District Memoirs, but there are subjects of general importance which the publication of the local accounts does not subserve. One of these is the history, using this word in its widest sense, of the Fimálaya-Tibetan region, and I offer the references as the nucleus of a complete index to our knowledge of its physiography, products, peoples, and institutions.

As observed in the foot-note to Chaptor I., much remains to be done, but at the same time very much more has been accomplished than is generally known. Scientific and economic botany have been carefully explored; the chapter on cconomic mineralogy leaves little to be desired : those on meteorology and geology have been brought up to the level of our present scientific knowledge; and the introduction to physical geography gives a popular and suggestive summary of the information that we possess, whilst the references afford a guide to materials for the study of details. All this is new, or embodies information buried in correspondence and reports, and practically as inaccessible to the public as if it had never been committed to writing. To General Richard Strachey I am indelted for the use of an unpublished work of his own on the physical geography of the Himalaya, which has been specially made use of in the chapters on 'Geology' and 'Meteorology.' Mr. H. B. Medlicott, Saperintendent of the Geological Surrey of India, propared the chapter on 'Geology,' and Mr. S. A. Hill, Meteorological Reporter to the Government of the North-Western Provinces, contributed the valuable chapter on 'Meteorology.' Dr. King, Superintendent of the Royal Botanical Gardens, Calcutta, furnished the list of the flora of Western Garhwál, Dehra Dún, and JaunsírBáwar, and Dr. Watson, the list for Eastern Garhwál, Kumaon, and the Bhábar. To General Strachey I am further indebted for the list of plants collected by himself and Mr. Winterbottom in Kumaon, Garhwál, and the neighbouring parts of Tibet, and which has never before been published. This list has been admirably edited by Mr. F. Duthie, Superintendent of the Botanical Gardens at Saháranpur, to whom also I am indebted for the sketch of the history of the Tea industry in the Fimalay districts. The shects of the portions relating to economic botany have had the criticism of Dr. Watson and Mr. Duthie; and for the forest history Mr. Greig and Major Garstin have advised me in many matters of detail.

Of the maps, the map of Kumaon was prepared under the instructions of Colonel Walker, R.E., Superintendent of the Great Trigonometrical Survey, and is the result of great labour and care for detail : indeed, a less accurate map might possibly be more useful. The great 'one-inch to one-mile' sheets were photographed down to a smaller scale and sent to me. I then obtained the correct names in Hindi of all the villages, rivers, \&c., in Kumaon and Garhwál (about 8,000) and entered against cach the correct transliteration for use in a new edition of the large maps, and then drew up a draft list of names for the district map. I desired to enter the names of all halting-places on every ordinary route ; villages in which the patwari usually resides; places of note; trade-centres; and all villages containing over one hundred inhabitants. After much trouble, correspondence, and inquiry, this was fairly accomplished. The villages retained were marked off on the photographic copies of the maps, and these were returned to the Surveyor-Gencral with lists showing the actual and revised spelling for the further compilation. In aldition, the principal lines of road have been laid down, and for the first time the pattis or subdivisions adopted at the recent settlement by Mr. J. Beckett have been shown. In the trans-Himálayan portion to which the survey had not extended I have added places from the village maps prepared by the patwaris, and in their selection was aided by Mr. Beekett. The map of the Himálaya-Tibetan region is taken from one prepared by Mr. Trelawny Saunders, omitting the eastern portion. The geological map is a revised copy of that which accompanied General Strachey's paper 'On part of the Himálaya Mountains and Tibet' read before the Geological Society in 1851. It may be necessary to explain that these volumes are not intended to be solely a popular account of the districts which they describe, but to contain, first of all, a record of all facts of permanent scientific or conomic value that have been gathered by me during my visits to Kumaon and the Dehra Dín "or which have beon contributed by others. Jhis work has occupied my leisure time for several years, and I can only hope that the labour and care bestowed on it will be of some use to my successors, and enable them to produce a more worthy record for those who are truly interested in the moral and material progress of the North-Western Provinces.

[^0]
CONTENTS.

CHAPTER I.

Introdoctont.
Limitation of this work-Systematic geography-Herbert; Vigne, Jacquemont, \&c. ; Hodgson; R. Strachey ; Thowpson ; Cunningham; H. Strachey; Rawlinson; Saunders; Markham; Calcutta Review; Blanford-Nomenclature-Ethnical sketch: Plains of Asám and Bengal ; Plains of Upper India; Clothing; Food; Customs; Eastern Limálaya-Eastern tribes; Tribes of the Southern watershed; Bhután, Sikkim; Nepál; Tribes of the Lower Himálaya-Karnáli to Tons; Bisahr; the Satlaj to the Indus-Afghánistán; Galchha States; Kára-Tangutans; TibetGeneral distribulion .
Reference
$\cdots \quad \cdots \quad \cdots \quad . \quad . \quad$.
Peysical Geography of time Himrlara.
The Iliwalayan river basins- The Indus basin-Subordinate systems of the Indus basin-The Ganges busin-Subordinate systems of the Ganges basin; The Brahmaputra basin-Subordinate aystems of the Brahmaputra basin; Systems of Tibet-Lob-Nor basin; Oxus basin. Plains of Ilindustán-Indus plain; Indian descrt; Gangetic plain; Asám valley ; Blábar; Tarái ; Siwálike; Dúns. Extent of Bhábar-Cause of the deposit-Dlodgson's oceanic theory; Fluviatile theory; Tarái; Siwaliks; Dúns; Ganges to Brahmaputra; Lower Himálaya. Materials of the mountains-Eocene period; Mode of mountain formation; Moun-tain-sculpture ; Ice-wedges ; Avalanches ; Glaciers ; Rain ; Rivers ..

CHAPTER III.

Geology.

Position of the ground. Early observers: Herbert, Cautlcy, Falconer. The wountain system. The sub-Himálayan zonc formed of tertiary rocke. Siwáliks. Yost-tertiary deposits. Supposed glacial deposits. Lower Limálayan region. Simla region. Sirmúr formation. Relation of Sirmúr and Siwálik aeries. The Satlaj valley. East of Simla. The Kumaon section. The Nepál section. Sikkim section. Slight correspondence between the rocks of the Himálaya aud of the Peninsula. Frequent occurrence of carhonaccous deposits throughout the Lower Himálaya. Conjectural attiliation of the Lower Himálayan sections. The Central Hiwálaya. Strachey. Stolickza. Western Tibet. The principal crystalline arens. Nummulitic deposits. Post-eocenc eruptive rocks. Central gneiss. Kashmír-Kishtwár region. Central Libet. Its granites, schists, slates, conglomerates und iossiliferous rocks. D'alwozoic stratu,

Page.
 Silurian, Trias, Jurassic. Fossils Tertiary deposits. So-called Níti

 fossils. General Strachey's conclusions. Stolickza's viewsCHAP'LER IV.
Tife Himalaya.
The outer Himálaya. Mountain systems; Jumna; Gauges; Káli. Subordinate boundaries The Nayár. Western Rámganga; Káli. The enowy range. Axis of highest elevation. The Tibetan plateau. Glaciers. Glacier of the Pindar ; feeder of the glacicr ; moraince; crevasses and ice tables. Glacier of the Kuphiní. Motion of the Pindur glacier. Snow-line. Observalious in the eastern Himálaya. Observations in Kumaon: Bisahr Across the snowy runge. Kumacn; Garhwál; Kunaor ; Western Tibet. Lakes

CHAPTER V.

Meteorologt.

Preliminary sketch of climate. Contrast between the eastern and western parts of the plain and the Himálaya. Radiation, solar and nocturnal. Temperature:-Diurnal and annual ranges,-Vertical decrement, Height of snow-line. l'ressure and winds:-Barometric tides,-Mountain winds,-Amnual variation of pressure,-Monsoons. Fiumidity:Vertical distribution of vapour,-Relative humidity,-Cloud. Rain-fall:-Distribution on plains anl on the Himálayan slope,-Annual variation,-'The winter rains,-The mousoon rains

CHAPTER VI.
Economic Minerdiogy.
Min'ng history : experiments in Garhwál. The Kumaon Iron Works Counpany. Causes of present poor returns-Mode of mining : excavation : removing the ore : crushing the orc: cleaning the ore: drainage. Smelting operations: refining the ore. Division of profits. Improvenent needed in appliances : Chili furnace : English system. Outturn. F'inuncial results of the settlement of the revenue derived from mincrals. Gold : 'ribetan gold-fields: Thok Jalung mines. Silvor. Copper ınincs: Rái mine aud its ores: Síra mines: Gaul and Sor Gurang. Bournonite. Copper mines of Garhwál: Dhanpur: Dhobri : Pokhri : Chaumattiya mines : Rájáa’s mine : Nơa mine: '「hála mine: Danda mine: Tálapungla mine: Kharna mine : Agar Scra mine. Iron mines: Kumuon Iron mines : Giwar mines: Garlıwál mincs: Nágpur: Dasauli: Iriyakot. Lead Arsenic. Lignite. Graphite. Sulphur. Borax. Gypsum. Soap. Stune. Asbestos. Silajít. Limestone. Buiiding stone. Koofing slate. Alum... 259 Iicje، ences 297 CHAPTER VII.

Scifetific Botany.

A list of the flora of Garhwál, Jaunsír-Báwar and the Dehra Dún, by Dr. King. Tract_to_which the list refers: The Siwálike. Sub Siwálik Tract.

Dehra Dún. Himálayan tract. Characteristic vegetation from the plains to Mussooree. From Mussource northwarde. A list of the fora of Kumaon and the Kuniaon Bhábar by Dr. Watsou

CHAPTER VIII.
Scientiric Butany-(continued).
Plants found in Kmanon, Garhwál and the adjoinirig parts of T'ibet by Captain (now General) Richard Strachey and Mr. Winterbotton ... 403

CHAPTER IX.
Economic Butany.
Arrangement of the subject. Food of the people. Analysis of the foodgrains. Watson's formula. Cultivated food-grains. Cereals. I'ulses. Amaranths. Polygonaceæ. Cultivated vegetables. Gourds. Vegetables. Condiments and spices, greens. Fruits, cultivated and wild. Uncultivated products used as food. Drugs. Narcotics and epirits. Oil-sceds. Dyes and tans. Guws and gum-resins. Fibres. Woods ...

CHAPTER X.

Eonyomic Botany-(continued).
Forest history. Grazing tax. Boundary dieputes. Gavernment forcsts. Kismaon forest-livision. Naiai Tál forest-divisiou. Iánikhet forestdivision. Garhwál furest-division. Dehra Dán forest-rivision. Ganges (Bhágirathi) division. Forest at the head of he'fous and like Jumua. Jounsár forest-division. Rheea culivation. Cinchona. Thlow-trec. Ipeca-

cuanha. Cork-onk. Sweet clestuut. Carob. Mezguit and others.							
Tea	845
References""'	909
Appendix A. Fores	St		...	" ${ }^{\prime}$..'	..'	915
General Index	..'	."	...	\cdots	-*	...	925
Botanical Index"	"•	-•	...	930
Verdacular Index		'.'	..	**	936

MAPS AND ILLUSTRATIONS.

1. Map of Knmeon and the adjoining part of Tibet (in cover).
2. Map of the Himálaya-Tibetan region (in cover).
3. Geological map of the country between the Satlaj and the Sárda (page 115).
4. Front view of the Pindar glacicr (page 182).
5. The Pindar and Kuphini glaciers (page 184).

HIMÁLAYAN DISTRICTS

OF THE

NORTH-WESTERN PROVINCES.

$P A R T I$.

CHAPTRRI.
Introductory.
Limitation of this work-Systematic geography-Herbert; Vigne, Jucquemoni, Ece. ; Holgson ; R. Strachey ; Thompson ; Cuuwingham ; H. Strachcy ; Rawlinsou; Sinunlers; Markhan ; Culcutta Revicuo Blautord-Nomenclalure-Dthmical sketch : Plaius of Asúm and Bengal; Plains of Upper India; Clothing; Food; Customs; Eastern Himilaya-Enstern tribes; Tuibes of the Southern Watershed ; Bhután ; Sikkim ; Nepal ; Tribes of the Lower Himálaya-Karnilli to Tons; Bisahr; the Satlaj to the Indus-Afghánistan, Galcha States; Kitra-Tangutaus; Tibet-General distribution-Appendix : list of authorities for this Chapter.

Under the name Himálayan districts of the North-Western
Limitation of work. ${ }^{1}$
Provinces of India we include the British districts of Kumian, Giarhwíl, Tarai, Dehra Dún and Jaunsár-Báwar, and the indopendent State of Tihri or foreign Garhwál, comprising the tract within the Himalaya bounded by the

[^1]Tons on the west, and the Kali or Sarda on the east. The adjoining portion of Tibet, to which British subjects resort for the purposes of trade, or in order to visit the sacred lakes, also comes within the scope of our investigations. A glance at the accompanying map will show that both the Himalayan and Tibetan portions of the tract with which we are concerned form but a small slice or segment of a greater system, which must be studied as a whole before an adequate conception of the structure and relation of its parts can be arrived at. The Himalaya itself is but the southem Jelt of that great girdle of mountains which encloses within them the country of which the southern half is commonly called Eastern Turkistán. From or through the southern slope of the Himnalaya flow the great rivers known as the Indus, Ganges, and Brahmaputra. To the east, the continuation of the Himálaya is traced in the mountain ranges through which flow the Yang-tse-kiang and the Hoang-ho, and which are prolonged to the north in the Ala-shán, Inshán, and Khing-han mountains. The last of these ranges joins the Yablonnoi Khrebet branch of the Altai system at right angles in about 55° north latitude. Thre Yablonnoi mountains are the north-easterir continuation of the Altai range and form the water-parting between the Lena and the Amour. The Altai rises, on the right bank of the Trtish river, at the north-western angle of the central plateau, and separates the Upper Gobi from the Siberian steppes. It consists of a belt of mountains varying in breadth from 400 to 1,000 miles, though in one place contracting to 150 miles, of no great elevation, and descending in a succession of broad terraces to the Siberian plains. It is pierced by the rivers draining into Lake Baikal, and, east of the 88th meridian, consists of three almost parallel rangesthe Saiansk, Tangnou, and Ulangomula. From the sources of the Kára-Irtish the Barluk Orochuk and Zungarian Ala-tau connect with the Tian-shán, the Celestial mountains of the maps, in which are the sources of the Syr-Darya or Jaxartes. The Tian-shán to the north and north-ast of Káshgar consists of a series of parallel ranges having a direction from the east to west and an increased elevation as they proceed northwards. They abut on the elevated mountainous region known as the Alai and Pámír plateau, the latter of which contains the source of the Oxus in the little kul or lake of the lesser Pamir. The eastern margin of the Pamir is
described by M. Severtsof, who visited it in 1878, as neither a mountain chain nor the precipitous extremity of a table-land, but an extensive mountainous region filled with numerous ranges. The peak measured by Hayward (21,000 feet), and the Tágharma or Muztigh-Ata peak measured by Trotter (25,350 feet), and supposed to form a part of the Kizil-Art range connecting the Tian-shan with the Timálayan system, are now reported to be only the culminating points of groups of snowy paks separated from each other by a distance of over thirty miles. The intervening country contains the basin of the little Katra-kul lake surrounded by a complicated system of short and comparatively low mountain ranges having an altitude of from 14,000 to 15,000 feet. These ranges, however, conncet witl the Hindı Kush, Kárakoram, and Western Himálaya, and thus complete the girdle of mountains from one or another side of which flow all the great rivers of Asia.

The country thus defined forms a part of the great Empire
Eastern Turkistán. of China. To the south lies the rugged, clevated plateau of Tibet, regarding which we shall have more to say herafter. To the north of this comes the depression known as the Lob-nor basin, which receives the drainage of the northern slope of the Tibetan plateau called, in the 39th clegree of north latitude, the Altyn-Taigh range, but more generally known as the Kuen-lun, a name given probably from some wellknown pass. The drainage from the castern slope of the Tian-shán flows in the same direction, as well as that from the south-eastern slopes of the Altai range ; but all is swallowed up in the great sandy descrt of Gobi, which at one time apparently formed the bed of an ancient sea some 300,000 square miles in extent. According to Prejevalsky this plateau varies in height from 6,000 feet on the margin to about 2,000 feet in the middle. It is intersected from west to east by a depressed valley called Shamo, or 'sea of sand,' containing salt. West of this lies the Han-hai, or 'dry sca.' Prejevalsky has crossed the desert between Kuldja and what may turn out to be Lob-nor, lying in east latitude 90° and north latitude $39^{\circ} 30$,' and found himsclf at only 2,500 feet above the level of the sea on the banks of the Tarim. To the west, the desert presented a thin loam impregnated with salt, and to the east a plain of drift-sand. Towards the Kurugh-tagh hills, from which he descended on the
desert, lay a belt of pebble and gravel some 15 to 18 miles wide, He also crossed the descrt to the north between the Ala-shán range and Urga, where he found it to vary in height between 3,000 and 5,500 fect, whilst it still preserved its sandy character. On the route between Urga and Kalgan explored by the same traveller, there is a great depression towards the middle, where the elevation is as low as 2,400 feet. Here the soil of the Gobi proper is composed of coarse reddish gravel and small pebbles interspersed with drifts of yellow shining saud. Leaving these regions, we shall in finture restrict oursclves to the southern plateau, of which the Kuenlun mountains are the northern boundary, and which is so intimately connected in its physical relations with the Himálaya.

Before proceeding with our examination of the structure of the

Tarly attempts at generalisatiou. Himálaya-Tibetan region, it will be convenient to pasis in review the different theorios ${ }^{1}$ that have been advanced in regard to its systematic geography, since a complete understanding as to what has been done in this direction will enable us to arrive at some conelusion as to what remains to be done. Captain Herbert, who conducted the mineralogical survey of the Himálayan country between the Kili and the Satlaj in 1818, was the first who attempted to give a general account of its physical characteristics. His description ${ }^{2}$ was intended to serve as an introduction to his geological account of the Himálaya, as well as to be a distinct contribution to general geography; the existing works on the subject "being singularly deficient in details, ns well as erroncous in the few that are given." His idea of the country north of India was apparently derived only from maps. He describes it as a large central space strongly marked by the feature that it was littlo intersected by rivers, whilst from its sides flowed the streams which united to form the greatest rivers in the world. As the source of every river must be higher than any other part of its course, he inferred that the zone in which those rivers originated must be higher than the plains through which they flowed to scek the ocean, and that the entire contral tract itself was completely surrounded by lofty mountains. He considered the upper beds of the Brahmaputra

[^2]and the Satlaj as forming part of the barrier zone which surrounds the central tract, and not as a part of the plateau itself. He further showed that the true " line of boundary is undoubtedly the chain of water-hetds, and that this is by no means synonymous with the line of greatest clevation." At first view the arrangement of the mountain masses in the tract between the Kali and the Satlaj appeared to be irregular and confused, but by tracing the courses of the rivers and their tributary streams, a clue was found to lead the observer out of this labyrinth. "By connecting their sources and by following out the devious windings of the several feeders, an idea is obtained of the extent, the direction, and the connection of the several ranges. * * * Instcad of a succession of parallel and continuous ranges running south-east to north-west, and rising ono behind the other in regular array and increasing elevation till the series is closed in the farthest distance by the line of snow-clad peaks, we seo only one continuous range of any cetent forming an irregularly curved line which bends round the tract, commencing on the northcast angle, and with a north-westerly direction, which it gradually alters to a south-easterly one on the south-west angle, and latterly due south just before it is lost in the plain country. This range forms one of the boundaries of the basin of the Satlaj which bends around the convex side, while within its concavity are contained the numerons sources of the Ganges." This he cilled the Indo-Gangetic chain, "a ramification of that more extensive line of waterheads which would cxclude from the central platean all the mountain tract watered by the Sampu and the Indus as well as by the Ganges. Next in extent are the two principal ramifications seprating the basin of the Jumna from that of the Ganges, and the basin of the latter from that of the Káli. From these two principal ramifications proceed a number of minor ones which, but for the assistance derived from a study of the course of the rivers, would almost bid defiance to any analysis. Transverse ridges, several thousand fect ligher in elevation, ramify from the Indo-Gangetic chain towards the Ganges basin, and a line or plane connecting their summits would be that of the greatest clevation, which, however, has no connection with the disposition of the water-heads. It is a fact that in a line of 500 miles two summits are found excceding five miles in perpendicular height, not isolated, but connected to appeanance by a
regular series of peaks of very little inferior elevation. If we confined ourselves to heights of 21,000 feet, we should find a connected line of peaks extending over 1,000 miles; that is, one aprarently without breaks, but in reality connected only through the line of water-heads from which they ramify. Whether the word 'line' or 'plane' is used, the iden of considerable breadth must be conceded, and in that case its surface would be very irregularly studded with peaks, and in this way it may be said to be parallel to the common boundary of mountain and plain land, and to intersect instead of bounding the river districts." The alove summary gives a restmé of Herbert's speculations on the physical structure of the Himataya. His errors were those of his time, when the knowledgo even of descriptive geography was in its infancy. He was unable to recognise the unity of the great central mass and its bulwarks, and was wrong in saying that the groups of snowy peaks intersected the river basins, when, in fact, they boumd the drainage area, and are the determining causes of its existence. Still Herbert is to be remembered as the first who attempted to give a systematic account of the Himallyya as a whole, ${ }^{1}$ and is therefore worthy of a prominent place in this bricf notice of its geography.

Next to Herbert comes Hodgson, who in an admirable article in the Asiatic Society's Journal ${ }^{2}$ also alludes to the difficulty experienced by a traveller in the TImálaya in getting " rid of that tyrame of the senses which so strongly impresses almost all beholders of this stupendous scenery with the conviction that it is a mighty maze without a plam." His first step towards freedom was his grasping the fact " that the vast volume of the Himéliayan waters flows more or less at right angles to the general direction of the Himalaya, but so that the numberless streams of the mountains are directed into a few grand rivers of the plains either at or near the confines of the two regions." Secondly, a study of the river systems like the "Sapt Gandaki" and the "Sapt Kausiki" urged him "to discover, if possible, what cause operated this marked convergence of innumerable transverse parallel streams, so as to bring them into a scries of distinct main rivers." Thirdly, he found that "the transcendant
${ }^{1}$ Neither Moorcroft, Vigne, Jacquemont, Hooker, Shaw, Heuderson, nor Bellew attempt any description of the Himálaya as a whole.
${ }^{2}$ J. As. Suc. Ben., XVIII., Pt. II., p. 761.
elevation and forward position, at right angles to the line of ghats of the great snowy peaks, presented that casual agency: the remotest radiating points of the feeders of each great river being coincilent with the successive loftiest masses belonging to the entire extent of the Himallaya." The great peaks bound and do not intersect the principal Alpine river basins, as Herbert had thought, and, by so bounding, create the basins, whereas their intersection would destroy them. Hodgson's Himálaya proper is the ghat line or watershed between 'Tibet and India, and the watershed between the valleys of the Indus and Sanpu and the great platean is called by him the Nyenchhen Thangla chain. The cause of the convergence of the various streams which form the great rivers upon or near the verge of the plains is shown by him to be "the superior elevation of the lateral barriers of these river basins, between which there are synclinal slopes of such decided preponderance that they overrule the effect of all other inequalities of surface, how vast soever the latter may sometimes be." These lateral barriers are crowned by the great peaks which stand forth from the watershed and send forth southward ridges proportionally immense. Equally effective with the divergent power of these peaked ridges is the convergent power of two ridges upon the single contained river basin. "The synclinal lines from the inner faces of the two adjacent ridges draw the waters together, and because these ridged peaks are the loftiest masses of the entire mountains, the effect of all other masses, even that of the spine of Himáchal or the ghat line of the snows, is overruled or modified, so that in the most rugged region on earth a very limited series of distinct main rivers appear in the plains from innumerable independent Alpine feeders." We may assume that where the loftiest peaks occur, there is a proportionate intumescence of the general mass, and therefore that these grand peak-crowned ridges determine the essential character of the aqueous distribution along the entire line. Λ further proof is adduced from the fact that the lower rivers, which take their rise in the middle region, do not show this unitizing principle, such as the Bágmati and Rámganga. With regard to the mountain systems, Hodgson divides them into the lower, central, and upper; sub-dividing the first into the sandstone range with its contained Dúns or Máris, the Bhábar or sál forest, and the Tarai. The lower region extends from the level of tho
phans to 4,000 feet above the level of the sat ; the central region from 4,000 to 10,000 feet; and the upper region to the watershed or ghat line: divisions which fairly correspond with the distribution of both organic life and inorganic matter. Though unable to follow Mr. Hodgson in all his theories and the deductions that he draws from them, credit mast be given for his recognition of the position of the great monntain masses in regard to the alpine river basins and for his appreciation of the intluence of climatic conditions on the animal and vegetable world.

Captain (now General) R. Strachey, in his paper on the Physical Geomraphy of the Provinces of Kumaon and Garhwal, read before the Royal Geographical
Society ${ }^{1}$ in 1851, pointed out distinctly for the first time that the Himálaya was in truth the broad mountainous slope of the great Tibetan table-land descending to the plains of Northern India, while a slope of corresponding character descending to the north is known as the Kuen-lun. He remarks that the great peaks in Kumaon and Garhwál "are not found on a continuous ridge, but are grouped together in masses that are separated one from the other by deep depressions, through which flow the streams that drain those parts of the mountains that are immediately contiguous to tho north." To the east the same sort of arrangement obtains, but to the west it is much less distinct. The river-beds to within a distance of ten miles in a dircet line from the snowy peaks seldom exhibit a rise of more than four or five thousand feet; but when we cross "the line on which the great peaks are situated, the ascent very rapidly increases, and a very few miles carries the river-bed up to an altitude of nine or ten thousand feet; thus showing that the sudden increase of height of the mountains along this line is not confined to the peaks alone, but is a general elevation of the whole surface." Dr. Thomson ${ }^{2}$

> Dr. T. Thomson. sulstitutes the name cis-Satlaj Himálaya for Herbert's Indo-Gangetic chain, and gives the name trans-Satlaj Himálaya to the chain which, commencing in Kailás, scparates the waters of the Satlaj from those of the Indus. He refers to these two great chains the whole of the mountains between the Indus and the plains, and says: "The northern boundary

[^3]of Tibet is formed by the great chain north of the Indus, to which Humboldt gave the name Kouen-lun": and again, that every part of Tibet is traversed by mountains having their origin either in the trans-Satlaj Himálaya or the Kouen-lun. So far the unity of the

Major A. Cunningham. Himálaya-Tibetan region is acknowledged by this distinguished traveller. Major A. Cunningham ${ }^{1}$ makes the Bara-lacha range, which forms the watershed between the Indus and its five affluents, the continuation of the main Himálaya or watershed between the Sanpu and the Ganges. To the south of this lies two distinct and independent ranges stretching in the same general direction from south-east to north-west, which he calls the mid-Himálaya, or Pir Panjál, and the outer or sub-Himálaya, leaving the name Siwálik unchanged for the lowermost sandstone ranges. Beyond the Himálaya the same system of parallel chainsis observed, comprising at least three distinct ranges of mountains, which Cumningham proposes to call the trans-Himálayan, or that which divides the head waters of the Satlaj from those of the Indus and extends to the western limits of Rongdo and Astor; second, the Kailás or Gangri range which runs through the midst of Western Tibet along the right bank of the Indus to its confluence with the Shayok; and third, the trans-Tibetan range, also called

> Captain H. Strachey.

Bolor and Kárakoram. These distinctions are however, purely local and geographical and are so far convenient and to be accepted. Captain H. Strachey, is his paper ${ }^{2}$ on the Physical Geography of Western Tibct, shows us that the Indian watershed is not the Great Himálaya as seen by the Indian observer, but is found in a succession of valley heads much depressed and penctrating that mass to such a depth that the passes from India to Tibet are never visible from any station fairly south of the perpetual snow. The Turkish watershed divides the waters of Tibet from those of Turkistán, including Khoten and Káshgar. "The general plan of the mountain system of Western Tibet appears to consist of a series of parallel ranges running right across the breadth of the tableland in a direction so extremely oblique to the general extension of the whole as often to confound the one with the other, or to convert the transverse direction to a longitudinal one. Short transverse necks comecting the main ranges in some parts, and cross fissures cutting ${ }^{2}$ Ladikk, p. 41. ${ }^{2}$ London, 185゙,
through them in others, together with projecting spurs of a secondary order, will suffice to convert the supposed primary arrangement into all the existing variety of valley and drainage.**The great snowy peaks lying mostly on the terminal butt-cnds of the primary ranges, sometimes widened by lateral spurs ; and the Tibetan passes crossing the low connecting links, whose alignment forms the main watcrshed, but not the main mountain-crest." Sir H. Rawlinson ${ }^{1}$ recognises the unity of the entise mass, and writes that the " whole country between India and Tartary may be considered as a broad mountain range, the Himalaya forming the southern crest, and the Kuen-lun the northern. The direction of this range is from east to west, trending to the northward, while the parallel chain which bounds Siberia to the south, and the outer crest of which is the Tian-shán, trends somewhat to the south; so that at a short distance to the west of Yarkand and Káshgar the great interior depression of Chinese Tartary terminates, and the bounding ranges coalesce in the elevated table-land of Pamir."

We have now come to the theory set forth by Mr. Trelawny Saunders, ${ }^{2}$ Geographer to the India Office, according to whom the summit of the Himalaya consists of a double range of peaks enclosing a series of valleys running parallel to the axis of the mass, and which he would call the northern and southern Himálaya respectively. The first of the two forms the water-parting between the Ganges basin and that of the Sanpu. To the latter must be assigned nearly all the great snowy peaks which are seen from the plains of India, and which are separated from the former by the valleys already montioned. These valleys are comparatively elevated, and at length burst through the southern range by intersecting gorges. Both Herbert and Hodgson are set aside, and the great peaks are described as forming a chain, broken at intervals by intersecting gorges. "The upper valleys of the Sanpu, the Satlaj, and the Indus appear to form a huge elevated trough separating the Himálaya from the northern part of the table-land of Tibet and from the snowy range into which the table-land contracts at its western end." This range is crossed by the Muztágh, Kárakoram, and

[^4]and Changchenmo passes, and is remarkable for the great length of its glaciers and the great height of its peaks. The Indus forms its southern base as well as the northern base of the Himalaya. The Indus, Satlaj, and Sanpu, "are the only rivers which, washing the northern base of the Himálaya in channels parallel to the range, broak through the entire breadth of the range and water the plains at its southern base." The eastern base of the mountainous highland of Tibet is marked by the Min river, and on the north-east the slope is defined by the basin of the Hoang-ho. From the latter river westward to the Muztágh the Kuen-lun mountains descend to the plains of Gobi from the northern edge. These unite with the Himálaya, Pámír, and Hindu Kush in the lofty peak or knot called Pusht-khar or Tághdambash. The accompanying map, prepared by Mr. Saunders for Mr. C. R. Markham's Memoir on the Indian Surveys, will illustrate better than any further quotations his views on the subject of the relations of the great mountain systems, as well as serve our own purpose. Mr. Markham ${ }^{1}$ divides the Himálayan system into

[^5] three great culminating chains, which he calls the inner, central, and outer, running more or less parallel to each other from the gorge of the Indus to that of the Dihong. "The lofty region of Great Tibet lies mainly between the inner and outer range, with the central chain, whence most of the rivers of Northern India take their rise, running through its length." The western extremity of his inner and most northern range is the Kárakoram, which separates the Indus valley from the affluents of the Lob-nor systom, and the castern section is the Gangri mountains of the map, the Nyenchhen Thangla of Hodgson and Ninjinthangla or Nyenchhen-tang-la of Markham, which commences in peak or knot called Kailás. Parallel to the northern range runs the central range, the eastern section of which commences at the Mariam-la pass near the Kailás peak. "Hore a comparatively low saddle connects the northern and central ranges and separates the valley of the Satlaj from that of the Brahmaputra. To the eastward the northern side of the central chain forms the southern watershed of the Bralmaputra, whilst on its southern slopes are the sources of many important rivers, which, forcing their way through the southern chain of the Himalaya, eventually join the Ganges or

[^6]the Brahmaputra." The southern chain is made up of the scrics of snowy peaks which, to the east, overhang Nepál, Sikkim, and Bhután. Thus, Mr. Markham is at one with Mr. Saunders in his theory as to the Himalayan system, only substituting the terms "inner or northern, central and outer or southern," for the terms "Gangri, northern and southern Himálaya," used by Mr. Saunders.

A writer in the Calcutta Review ${ }^{1}$ has taken objection to the

> Caleutta Revien. creation of the southern chain, which, "being occasionally intersected by sivexs of more remote origin, is not a chain at all, but a scries of spurs running southwards from an extended line of clevation more to the north, in the neighbourhood of which the said rivers rise." He also suggests for the whole system the name Indo-Tibetan, correctly urging that it is undesirable to give to the whole a name which belongs only to a part. He prefers simply to lay down two lines of watersheds, the northern corresponding for the most part. with Mr. Markham's inner range, and the southern extonding from Chilás by the Zoji-la, Baralacha, Niti, and No passes to the Laghalangla above Shikatse. He then examines the river basins and shows that Hodgson's theory regarding them is in accordance with facts; that these basins derive much of their water from certain prominent peaks which, standing in advance-that is, southwards of the watershed-are connected with it, and from which ridges witl: dependent spurs project, that serve as lateral barriers to the basins. "The preponderating synclinal slopes of the ridges and spurs which overrule the effect of all other intcrvening inequalities of smrface, however vast, cause the several groups of mountain streams between them to converge till they unite and constitute a main river near the edge of the plains." This is practically Hodgson's law re-affirmed in the full light of all that modern research has shown us regarding the geography of Tibet, the Kárakoram and Káshgar, a terra incognita to our early writers.

Both Mr. Markham and Mr. Saunders have issaed rejoinders Rejoinders of Mr. Mark. to the criticisms in the Calcutta Review in ham and Mr. Saunders. two articles in the Geographical Magazine. ${ }^{2}$

[^7]Mr. Markham chiefly confines himself to a defence of his use of the word 'chain' as applied to a series of culminating ridges, whether rivers force their way through its gorges or not ; but Mr. Saunders goes more fully into the entire question at issuc between him and the reviewer, and supports his arguments by a re-statement of his views on the physical geography of the entire Himálaya-Tibetan system. For this purpose he draws largely on his "Slectch of the Mountains and River Basins of India," already noticed, in which the theory of the southern chain of snowy peaks was first developed; and whether we agree with his deductions or not, we must consider his summary as a valuable contribution to our knowledge of the subject. He recapitulates the arguments in favour of considering the line of snowy peaks a southern chain, and concludes that they are cntitled to that name, "(1) as the culminating summit of the southern or Indian slope ; (2) as the common origin of a succession of rivers; (3) as cut off from the northern range by a succession of remarkable valleys, sometimes very long, sometimes very deep, and sometimes very broad and flat, and all containing considerable rivers running parallel to the chains which they divide." He objects to the inclusion of the mountain ranges on both sides of the troughs of the Indus and Sanpu under the term Himálaya, the northern watershed of those rivers composing the contreforts, buttresses and slopes or escarpments of the great central plateau which they uphold and from which they cannot be separatod. The tableland is Tibetan ; therefore its southern slope cannot be called Himálayan. The remaining portion of Mr. Saunders' article will be noticed as we proceed.

The latest contribution to the physical geography of the Himálaya is to be found in Mr. H. Blanford's Manual ${ }^{1}$ and Mr. W. Blanford's introduction ${ }^{2}$ to the "Manual of the Geology of India." In the latter work, which may presumably be taken as giving Mr. W. Blanford's conclusions on the subject, he considers the Himálaya to form a curved belt of mountains with their convexity to the southward which mark the southern scarp of the Tibetan plateau as the
${ }^{1}$ Physical Geography for the use of Indian Schools, Calcutta. ${ }^{2}$ Calcutta, 1879. I., ix. It should be remembered that the term. 'rauge', is used here for geological purposes which are not always the same as those intended by geographers. Its precise meaning depends on the context.

Kuen-lun define the northern. The western terminal portion of the Himálayan chain comprises a number of great ranges variously named. It is doubtful whether any of these "should be considered the prolongation of the main Himálayan axis, although, if any be really a continuation of the Himálaya proper, it is either the Pir Panjal or the Zanskar range." Geological considerations would lead him to suppose that "the main range commences on the westward in the Dhauradhar near Dalhousie, and extends to the east-south-east till it rises into the main snowy range of the northwest Himálaya. Many geographers distinguish two parallel ranges from the neighbourhood of Simla to the castward; the snowy range proper, formed of the highest peaks (Saunders' theory), and a more northern ridge, forming the watershed between the Tibetan plain and the rivers running to the plains of India. Others consider the latter to be the true Himálayan range, and look on the higher peaks as belonging to the spurs between the rivers flowing from that range. It is certain that the great peaks, such as Nandadevi, \&c., are separated from each other by deep valleys, through which flow streams coming from the northern range, and that, although the peaks of the latter are inferior in elevation, the passes by which it is traversed are much higher; but it has not yet been ascertained whether the great peaks are on the strike of any continuous band of rock, or whether they merely consist of hard nuclei left undenuded." There is little doubt that, until the geologist is able to assist us, the question whether the line of snowy peaks should be considered a truc chain or merely spurs from the main water-parting must be left undecided. Though year by year fresh materials are added to our stock of knowledge regarding the Himálaya, they are yet too imperfect for us to offer little more than a suggestion as to the viows that should be adopted regarding its structure. A glance at Mr. Saunders' map will show us the vastness of the subject, and that the Himálaya of Kumaon and Garlıwál, with which we are more immediately concerned, is but a very small portion of the great girdle of snowy peaks that uphold between them the elevated plateau of Tibet. Herbert showed us that this girdle, as seen from the plains of India, is not a continuous line of parallel ranges rising one behind the other, and increasing in clevation until the series is closed in the farthest distance by the line of
snow-clad peaks; but that these peaks or groups of peaks are ramifications from the line of water-parting which itself is lower than the line of greatest elevation. Hodgson subsequently explained the influence of these groups of peaks on the river-systems, and Captain Strachey showed us that the Himálaya was the southern slope of the Tibetan plateau as the Kuen-lun formed its northern slope. These are, broadly, the more important additions to our knowledge of the physical geography of the Himálaya that have been made of late years. To our mind the recognition of the unity of the entire Himálaya-Tibetan system is the most important of them all, and that alone which will lead to practical results. The division of the Himálaya into ranges may be allowed as a matter of convenience, but should not be permitted to cloud the great fact that all are but variations in the southern slope of the great table-land due to the influence of the elements on the materials of which they are composed, and to the disturbing action of subterranean forces. We can lay down the line of water-parting and the line of greatest clevation with some precision, but must call in the aid of the geologist and mineralogist to distinguish which amongst the ranges is entitled to be called the real main axis of the Himálaya; and, until their labours are communicated to the world, must rest content with the somewhat arbitrary distinctions afforded by the prominence or otherwise of existing physical features.

Seeing the misunderstandings that have arisen from a too loose use of words and phrases, it will be as well to state here that we adopt the word 'waterparting' to represent the ridge which separates the flow of water on either side of a range of hills. ${ }^{1}$ The word 'range' will include a series of mountains or hills continuing in one direction along a common axis, whether broken by chasms or not; and the word 'spur' will be used of a ramification from a range, whether connecting it with another range or sinking gradually into a plain.

The great mountain chain lying between Tibet and the plains of India is generally known to the natives of India by the term pahár (mountain), to which they prefix the local name where such exists.

[^8]The more educated give the name Himúchal ${ }^{1}$ (snowy-range) or Himalaya (abode of snow) to the snow-covered ranges ; whilst Europeans popularly include under the name Himálaya the entire mountainous region lying between the gorge of the Brahmaputra on the east and that of the Indus on the west, and between the upper valleys of the same rivers on the north and the plains of India on the south. A first glance at any good map will convince us of the general unity of the physical relations of the range within the limits commonly assigned to the Himálaya, whilst a closer examination will induce us to include much more. For our part we accept the popular definition of the Himúlaya as extending from the gorge of the Indus on the west to that of the Brahmaputra on the east, and from the upper courses of the main branches of those rivers on the north to the plains of India on the south, speaking of its convections beyond those limits as the western and eastern cxtensions respectively.

It will materially aid the reader if we further preface our remarks with a short description of the ethnical and political divisions of its surface, and of the regions in immediate contact with it. We have arrived at some idea of the physical relations of the tract itself, and shall now, at the risk of being thought diffuse, endeavour to trace the ethnical affinities of its inhabitants. Commencing, then, with the plain on the south, we find the provinces of British India flanking the foot of the Himálaya along its entire length from the 96 th to the 72 nd meridian of east longitude. Following the direction of the Himálaya from east to west, we find in Upper Asám a number of tribes speaking different languages and dialects, and so intermixed and blending the one into
${ }^{1}$ The word Himáchal (Fहमाचन) is derived from two Sanskrit words, 'Kima' (snow) and 'achala' (mountain), meaning 'snowy-mountain' or 'snowy-range. Similarly the word Himalaya (Еहमालय) is derived from 'lima' and 'alaya' (abode), meaning the 'home' or 'abode of snow.' The proper pronunciation is therefore Him- d -lay-a, not Him-a-láy-a as commonly obtains. The plains-men speak of the Simla-pahar, the Mansuri-pahár, and sometimes of the snowy-range as the barf (ice)-pahar. "The people south of the Himalaya in Nepal call all snowy mountains langar, by which they mean the highest points. They call the peaks that have no snow banjang, and the low ground under the said banjang they call phedi. The term Himálaya is not used by uneducated people, who only talk of the snowy mountains as 'bafómi langar: '-G. T, S. Hepl, 1872, p. 46.
the other that, beyond a mere cursory description, their classification cannot be attempted here. In the extreme north-east they are

Tlains of Asám and Bengal. allied with or are members of the tribes inhabiting the neighbouring hills, of whom more will be said hereafter. They speak a language having an affinity with the great Barma-Tibetan group, and are mere pagan savages. Along either side of the Brahmaputia in its courso through the valley we find the settled tribes of Asám speaking a language akin to Dengáli. Though diffcrences exist they so closely resemble in habits and character the people of the conterminous parts of Bengal that it is difficult to draw a strict line of severance between them without entering into long historical and cthnical discussions quite out of place here : many that are now Hindu or Musalmán Bengélis in all outward appearance can be shown to be converts in recent times from the pagan tribes in their neighbourhood of uumistakably aboriginal origin. The people of Bengal, the flat alluvial plains of which lie along the lower courses of the Ganges and Brahmaputra, exhibit all the features characteristic of a race inhabiting a region of tropical heat and moisture. They are small in stature, of dark complexion, and effeminate in character, living chiefly on rice grown in the lowlands subject to annual inundation. Their dress is of the scantiest proportions, consisting chiefly of one or two pieces of cotton cloth simply wrapped around their waist and shoulders, and not wrought into any form of garment. Their heads and feet are usually left bare. Their houses, constructed of mats, lie scattered amongst the thick groves of bambus and palms that spring up in wild luxariance on the uncultivated ground.

As we ascend the Ganges, ${ }^{1}$ we find a dricr climate with greater
Plains of Upper India. contrasts between the summer and winter temperature, and a taller, more manly, and moro robust race, of whose food the millets and unleavened bread of wheat, barley, and other grains form the principal element. Their clothing is more elaborate and warmer than that of the Bengali. All wear turbans, and those who can afford it have short jackets fastening on the riglt breast in the case of Hindus, and on the left breast in the case of Musalmáns. Their houses are built of mud and are either
${ }^{1}$ This account of the Findu's in the plains is partly based on Elphinstone and Notes by General R, Strachey.
tiled or thatelecd in the villages, but in many of the towns very smatl bricks are used in the construction of the better class of dwellings. The country is open and unenclosed, and almost the only trees are groves planted near towns and villages, with occasional patches of dhak (Butea frondosa) and balud (Acacia arabica) jungle. The people are mostly Hindu in religion and speak dialects of Hindi. On approaching the Satlaj the language passes into Panjáli, also Sanskritic in its character, and we find the religion of the Sikhs the seal of the double dispensation of Brahma and Muhammad. ${ }^{1}$ To the west of the Panjabl, or country of the five rivers, the roligion of Islím predominates amongst a motlcy group of tribes of very varied origin. The name Hindustín, which is more correctly applied to the nortllern Gangetic districts alone, may without impropriety be used so as to include the entire tract below the Himálaya. Intersected by the innumerable streams that flow from the mountains above it, watered by the copious falls of periodical rains, and enjoying a semi-tropical climate, the great unbroken plain is thus supplied with the two great requisites, heat and moisture, that are the necessary and certain agents for the development of vegetable life. Wc naturally, thereforc, find an agricultural population often in the older settled parts extremely dense, and attaining to no small degree of civilisation. Cities and large towns are common, many with a population of over 50,000 soals; and the inhabitants, without coming up to a European standard, enjoy considerable wealth. Literatare, both indigenous and of European origin, is caltivated ; schools are numerous, and the useful arts are highly advanced and eagerly followed. The hot climate which induces a love of repose and fertility of soil which renders severe labour unnecessary has, in some measure, modified the habits of patient industry which are usually characteristic of an agricultural population ; but the dislike to change which marks those communities in all parts of the civilised world is nowhere more strikingly exhibited than in Hindustin. The great wealth of the country and its open and easily accessible character, together with the insuperable obstacles to union presented by differences in race and caste, have, for many centuries, subjected it to the reiterated attacks of foreigners. With very few exceptions all truly national government has ceased to exist; and from what little ${ }^{1}$ Conningham, History of the Sikhs, p. 13.
wo know regarding it, the people have small cause to regret the successive changes of masters. India has never had in the whole course of its history so strong, universal, and just a government as it has enjoyed under the British since the memorable mutiny of 1857. Englishmen may woll point with just pride to the lengthy catalogue of measures attesting true moral and material progress that have been introduced during the last quarter of a century, and have been assimilated by the people to such a degree that the advance -political, moral, and social-made has eclipsed all that had been previously effected under British rule.

Taking the people of the plains as a whole, their clothing is
Clotling, food, customs. cotton and their food is vegetable, though Musalmíns and some Hindús eat meat and a fow eat fish. The dress of the men, as a rule, is white, though they often wear coloured jackets; the women, who have no other covering for their heads than a corner of the cloth that they wrap round their bodies, frequently wear bright colours, usually indigo blue, Turkey red, or safflower yellow. The Hindús preserve their moustache, but shave their beards, and frequently their heads, except a small scalp-lock, whilst the Musalmáns allow their beards to grow. The seclusion of women secms to be a custom introduced by the Muhammadans, but amongst all religions and races in Hindustán the position of females is essentially inferior to that of the other sex, with whom they do not mix in socicty. Marriages are almost always contracted in childhood, and the betrothed bride is always under the age of puberty. Amongst Hindus, a dowry is given with the daughter, though the practice of accepting a sum of money for a daughter is in many parts of the country gaining ground. Female infanticide has been rife in the Gangetic districts of Upper India, due to the disgrace supposed to be attached to the expression 'fither-in-law,' as woll as to the great expenses ordinarily consequent on the marriage of a claughter. The education of women is absolutely neglected, and the efforts of Government in this direction have proved a total fililure. The men, however, for the most part, amongst the classes above those actually engaged in the cultivation of the soil, can read and write, and even the men who have not accuuirel those attaimments possess the power of mental calculation to a remarkable degree. The Brahmanical faith is with few exeeptions
dominant throughout Hindustán. The Musalmáns are, however, numcrous everywhere, and in some districts are in the majority. They belong chiefly to the Suni sect, but Shiahs are also found in certain tracts where the influence of powerful families of their persuasion has been felt. The peculiar modification of Hinduism adopted by the Sikhs is chiefly confined to that portion of the Panjíb which lies cast of the Chínáb. To the west of that river, the great mass of the population is Muhammadan. Taking the people of the Panjáb proper, excluding Peshawar and the trans-Indus districts attached to the Leia and Multan divisions, we have a population of ten millions, of whom scven-twelfths are Musalmáns, four-twelfths are Hindús, and onc-twelfth are Sikhs. Distributing them according to race, General Cumningham ${ }^{1}$ makes 3 per cent. of so-called early Turanian origin, 27 per cent. Aryans, and 70 per cent. later Turanians.

We shall now consider the ethuical and political divisions of

> Eastcrn Himálaya, the Himálaya itsclf, procceding in the same direction from east to west. At the extreme enst we have the same races speaking a Barma-Tibetan language that wo found in the plains, but a line drawn north and south across the Brahmaputra, in the gencral direction of the Dhansiri river, and continued southwards so as to leave Kacharr to the west of it, would, according to Hodgson, divide them from the Alpine races of more pronounced Tibetan stock, as well as from the so-called aboriginal tribes of the central IImálaya. These Barma-Tibetan tribes are known as Abors, Bor-Abors, Daphlas, Akas, Mishmis, Miris, \&c., and their communities are reported to have a sort of rough republican constitution. This conjecture of Hodgson appears to be supported by the result of the most recent investigations.

The country lying on the Táwang route by the Dhansiri river from Astim to Chetang in the valley of the Sanpu, in the 92nd meridian of east longitude, has been traversed by one of the Pandits of tho Great Trigonometrical Survey, from whom we learn that to the east of that line the Himálaya is inhabited by Lhoba Daphla tribes. ${ }^{2}$ These men are remarkable for the abnormal development of the muscles of the arms and calves of the legs. They wear cylindrical-shaped bats made of
${ }^{1}$ Cunningham's Arch. Rep., IL., 2, th ${ }^{2}$ Sce section A. of references attached to this chapter.
bambus, and their only garment is a long blanket folded somewhat after the fashion of a plaid and fastened round the waist by a cloth girdle, which is used as a quiver for their arrows, which all carry, as well as a bow slung over their left shoulder. The greater part of their legs and arms is bare. They wear no boots, but ornamental rings made of rope, fastened very tightly both on the wrists and legs below the knec. They have a decided Tibetan caste of feature, high cheek-bones, and Chinesc-looking eyes. They wear no hair on the face, but the hair of the head is allowed to grow to a great length, and is drawn together behind the head and then allowed to hang down. ${ }^{1}$ 'They appear to bo distributable into two groups-those living in the great rice country to the north on the banks of the Sanpu, called Lho-kháls, and who are independent of the Lhisa authorities; and the Shiyar Lhobas, a wild race who inhabit the country through which the great river flows to Gaya, Asam, and who may be ilentified with the wilder tribes of Mishmis. The Mishmis are distributed into three great divisions comprising numerous clans-the Chúlikata or crop haired, the Midhu, and the Digáru, each of whom have a separate dialect, and the last reside within British territory along the hills as far west as the Digaru river. The Abors or Padams inhalit the country to the west of the Dibong river. They are described by their noighbours as exceedingly fierce and blood-thirsty : "like tigers, two cannot dwoll in tho same den. Their houses are scattered singly or in groups of two and three over the immense extent of mountains inhabited by them." They manufacture the weapon called dao, and weave coarse cloth, which with manjit, beads, bell-metal cooking vessels, female slaves or rather wives, and the breed of cattle called mithans, are exchanged for salt and coarse cloth imported by the Miris from the plains. The Miris are more civilised than the Abors, and dwell in villages both in the hills and plains. The Akas or Hrussos live between the Miris and the Daphlas on the upper waters of the Sundari, and call themselves lenae. The women of the Akas wear bluc or black petticoats and jackets of white cotton of their own manufacture. Their faces are tattooed, whence the name "Aka" given them by the people of Asim. The males wear a girclle of canework painted red, which hangs down behind in a long lusishy tail. Their staple food is rice, but everything edible is made use of. Tho

$$
{ }^{1} \mathrm{G}, \mathrm{~T}, \mathrm{~S}, 1873, \mathrm{p}, 70
$$

Daphlas belong to the same stock, and all are mere pagan savages, debased, cruel, and treacherous, though in the last respect the Akas have a somewhat favourable report.

To complete our review, we shall diverge to the south of the

Tribes of the southorn water-shed.

Brahmaputra and briefly notice the tribes
inhabiting its southern water-shed. ${ }^{1}$ In the extreme east we find the Khamtis or Shans, a tribe linguistically allied to the Siamese and Buddhists in religion ; next we have the Singphos, or Kaklhyens, and the Jilis, on the northern slopes of tho Patkoi range, both of whom are pagans and speat a language intermediate between Barmese and Tibetan. Further west come the Nágas, who are distributed into three great classes-the Namsang, Khari, and Angami. They are the most numerous of all the pagan tribes to the south of the Brahmaputra, extending from the Kopili river in the meridian of Nowgong on the west to the meridian of Sadiya on the east. They bury their dead and appear to manage their affairs in a sort of republican assembly. The Kopili river separates the Nágas from the Khasiyas of the Jaintiya and Khasiya hills around Shillong. The Khasiyas appear to be an isolated group, spoaking a monosyllabic language which cannot be classed witl any other of the same family. The form of government is republican and the religion is mere paganism. To the west are the Gáros, who also are pagans, though their language has affinities with the Aryan dialects spoken on the north, south, and west. The language, however, has a Tibetan basis, and Hodgson would include it in the Bodo group, of which more hereafter. South-west of the Naigas come the tribes of the Manipur, Lushái, Tipura (Tipperah), and Chittitgong liils. From McCulloch and Damant we learn that there are numcrous dialects in Manipur, and that the principal has a character of its own derived from the Nágari. The inhabitants have adopted the Brahmanical faith. The people further west are known as Kúhis, and appear to speak four dialects of a common stem-language :the Lushái spoken by the Dzos of the Lushái highland, the Thadu in northern Kachár, the Kúki in the same district, and the Hallami in the Tipura hills. The Kákis are pagans, but are gradually yielding to the influence of their Brahmanical neighbours, as indeed are all the pagan tribes similarly situated in the Asám valley. We shall

[^9]now return again to the tribes inhabiting the Himitaya to the west of the Dhansiri river.

The whole country along the Táwáng route from Asám to the head of the valley leading down to Chetang. on the Sanpu is under the rule of the Lhitsan Jongpen of the Chona Jang. The Limas of the grent lamasery of Thwing, howcyer, own the country to the south of the range of hills which form the water-parting betweon the Tarwáng and Dhirang valleys, and are entirely independent of Lhása. They manage all public business in an assembly of the principal Lamas, called the Kato, which is also the supreme court of justice. To the north, near the Chetang valley, the elevated highlands are occupied by nomad tribes; but to the south, in the Mon-yul or Sub-Himálaya, the country within which Tirwing is situated, the people are called Monpas or Hill Indians, and differ materially in language, dress, and manners from the Bodpas, or people of Bod-yul to the north of Chona. The Monpas resemble the inhabitants of Bhatin on the west. They wear their hair closely cut round the head, not in plaited tails as in Tibet, and as a covering liave a small skull-cap of woollon cloth or felt. Instead of the long gown of Tibet a short coat is worn which reaches to the knee, and is fastened by a woollen girdle that invariably holds a long, straight knife. The people keep cattle, sheep, and pigs. Thus, the line drawn nortl and south by the Dhansiri river passes through this wedge of Tibetan territory, separating the Barma-Tibetan tribes on the cast from those who have a more pronounced Tibetan origin in the central Himálaya and the so-called aboriginal tribes of the lower Himalaya on the west. Hodgson assigns to the latter the name Tamulian, but it cannot stand, involving as it does linguistic and ethnical associations which modern research has failed to establish.

To the west of the Dhansiri river we have the comntries of Bhu-

> Bhutún, Sikkim. tín, Sikkim, and Nepál, all of which possess a more or less established form of government. ${ }^{1}$ Much has been written regarding the people inhabiting those countrics which we can but very lightly touch upon here. The entire tract may be divided into three great belts,--the elevated region beyond the snowy range that is visible from the plains, varying

[^10]from 10,000 to 16,000 feet above the level of the sea; the central region, varying from 4,000 to 10,000 feet ; and the lower region, extending from the plains to 4,000 fect. ${ }^{1}$ To the central region are confined the Lhopás, Lepchás, Limbus, Kiríntis, Murmis, Newars, Sunwars, Chepángs, Gurungs, Magars, and Khasiyas. To the lower regions belong the Koch, Bodo, Dhimál, Kíchak, Tháru, Denwar, and Pallah tribes. The inhabitants of the central region belong to a comparatively recent Tibetan immigration, whilst those of the lower region, the so-called Tamulian aborigines, are apparently to be ascribed partly to an early Tibetan immigration and partly to an Aryan source. To the north, along the entire line of gháts from the $92 n d$ meridian to the Jumna, we find the Bhotiyas or Bod-pas of pure Tibetan origin and Buddhists in religion. Bhután, the Lho-pato, Lho-duk, or Lho-mon of the Tibetans, is also a Buddhist country, as well as Sikkim, the Demojong of the Tibetans. Nepál, called Palbo by the Tibetans, is partly Buddhist and partly Brahmanical in religion. In the central IImálnya of Bhután and Sikkim we find the Lhopas, Lepchás, and Limbus. The name 'Lhopa' seems to be a generic term signifying the people of Lho or Bhután, as 'Bod-pa' means a person of Bod or central Tibot, and 'Kham-pa,' a person of Kham or eastern Tibet. So also the term 'Dok-pa' is the religious equivalent of the territorial term 'Lho-pa.' The Lepchas extend from Panákha in mid-Bhután on the cast into castern Nepál on the west. They are divided into the Rong and Khamba tribes. The women of both divisions wear a loose coat of the fibre of the silk-worm that feeds on the castor plant, or of unbleached cotton with a wrapper of the same material around the waist to form a petticoat. The men wear a robe of striped red and white cotton cloth crossed over the breast and shoulders and descending to the calf of the leg, leaving the arms bare; a loose jacket of red cotton cloth is worn over the robe by those who can afford it, and both are bound round the waist by a red girdle. Some strings of coloured beads round the nock, silver and coral carrings, a bambu bow with a quiver of iron-pointed arrows, and a long knife complete their costume. This knife, called 'báa' by the Lepchás and 'chipsa' by the Bhotiyas, is worn on the right side, suspended from the left shoulder, and serves as

[^11]an axe, hoc, spade, sword, and knife. The Lepchás eat any flesh of bird or beast, all cultivated and many wild grains, and drink beer and tea. They are Buddhists in religion. Their language, though allied to Tibetan, is not Tibetan, and has a character of its own. They bury their dead; though the Murmis, a tribe of the same country, first burn their dead and then bury the ashes. The Lepchis are short in stature, averaging about five fect, bulky for their height, and rather fleshy than sinewy. They have a fair complexion, pleasantly marked Tibetan features, and part their hair along the crown of the head. Buth sexes allow it to grow long; the younger males allow it to hang loose over the shoulders, whilst the elder males and women plait it into tails, and the latter tie the ends with braid and silken cords and tassels. Like all Buddhist hill-tribes they are very filthy in their habits, ablution being unknown.

The Limbus are an important tribe of the central Mimílaya,
Limbus. found between the Tista on the east and the Dúdh-Kosi on the west. The word 'Limbu,' according to Dr. Campbell, is a corruption of the term 'Ekthumba,' the correct name of this people, and used generally to designate the whole population of this portion of the Mimélaya not incladed amongst the well-known divisions, such as Lepchás, Murmis, Bhotiyas, and P'arbatiyas. Under the name Limbu are incladed the Kiríntis or Kirítis, Ekas, and Rais, and their country is divided into Kirati-des from Dúdh-Kosi to the Arun and Limbua from the Arun to the Konki river, which leaves the Nepál hills about twenty miles to the west of the Mechi river. Further east and west they occur only in small colonies. Hodgson records the vocabulary of seventeen dialects of the Kiriti language, none of which are referable to the written Tibetan or Hindi. They are pagans in religion, though willing to pass themselves off as followers of Hinduism or Buddhists where those religions prevail. Their features, the absence of a board, and the colour of their skin, all show thom to be of Tibetan origin. The Limbu wears his hair long, but does not plait it; he carries a kukhri or curved knife instead of the ban, and has a wide trousers and jacket instead of the robe and long jacket of the Lepcha. Both tribes are found at elevations of from 2,000 to 4,000 fect above the level of the sea.

The Hayus or Vahus profer the lowest elevations in the valleys, and occupy the central and lower ranges of the mountains of eastern Nepál between the Arun river and the Konki. They are found mixed with the Eka division of tho Limbus, but possess clearances and villages of their own. They differ from all around in language, religion, and habits, and are estecmed an outcast race by the Gurkhális. They do not intermarry or hold intercourse with other tribes. The Bramhus, similarly placed in the Noakot valley to the west, speak a Barma-Tibetan dialect and are also pagans. The great bulk of the Murmis are found between the Nepál valley and the Dudh-Kosi, whence in smaller numbers they extend to the Tista on the east and as far as twenty miles west of Kathmaudu on the west. They are divided into two classes: one from the Ni district in Tibet, and the other from the Tsang district; hence the gencric name Nitsang or Nishang applied to the whole tribc. They prefer clevations of from 4,000 to 6,000 feet and engage in pastoral and agricultural operations, living in cottages built of stone and thatched with grass. They are Buddhists in religion and their language is akin to Tibetan. In their physical traits they resemble the Lepchís, though somewhat taller. The Newars compose the majority of the inhabitants of the Nepril valley, but are not numerous beyond its limits. They are a shorter race than the Gurkhílis, and their appearance betrays their transmontane origin. The greater number are Buddhists, and the remainder profess the Brahmanical faith. They possess a written character of their own and speak a distinct dialect, though the Buddhist portion also use Tibetan, in which their religious books are chiefly written. In the forests to the west of Nepál, close to the plains, wo have the wild tribes known as Chepángs and Kusundas, the former clearly akin to the Raijis of Kumaon. They speak a language allied to that of the Lhopís of Bhutinn. In the same direction are the Hinduised tribes of Khasiya, Magars and Gurungs, generically known as Parbatiyas. They speak a language having a Tibetan basis, and inta which many Hindi and Urdu vocables have lacen introduced. The Gurungs, like the Murmis, prefer elevations of 6,000 feet, and are partly pagan and partly Hindu in religion. The Magars aro entirely Hindu in religion, and to them
belong the Thípa clan so famous in later Nepálese history. Both these tribes supply numerons recruits to the regiments in the British service, and to this is probably due the Indianised form of their specech. North of them we find the Sunwars, and on the west the Thaksyas (Thakuris?), and on the east the Pahris. Vocabularies of the languages of these tribes have been preserved by Hodgson.

The Gurkhális speak the Hindi dialect called Nepálcse Khas or Parbatiya. In summer they wear a sort of pantaloons called páejamas and a jacket or coat of white or bluc cotton, and in the winter the same padded with cotton or lined with fur and fastened by a cotton girdle, which invariably holds the heavy, crooked knife, called kukhri. Turbans of dark cloth or loosely-folded cotion aro used as a head-clress, or small tinsel, embroidered skull-caps. The Newárs wear a waist-cloth of cotton and a jacket of the same, or some woollen matcrials. Some adopt the Tibetan costume of full short trousers, a long tunic, and a fur-edged cap. The head-dress is a small skull-cap of black or white cloth thinly wadded with cotton and generally turned $u p$ an inch or so at the border. The dress of the other inhabitants of Nepál differ little from that already described. The women of the Newars wear their hair gathered into a short thick club at the crown of the head, whilst others have it plaited into a long tail. Flesh is much more commonly used by all classes than in the plains. The lower classes drink a coarse fermented stimulant called rakshi, and the higher classes, when they can afford it, consume large quantities of tea.

Taking now the tribes inhabiting the lower Himilaya to the Tribes of the lower north of the Brahmaputra, we find on the Himálaya. extreme east the Deoriya Chutiya, the remnants of a powerful tribe, who though Hinduised in religion preserve their old language, which is affined to the BarmaTlibetan group. Next come the Dhimál, Kachári or Bodo, and the Koch. Hodgson tells us that in travelling between Gwailpára in Asúm and Aliganj in the Morang Tariai of Nepál one has to pass through the country of the following tribes:- the Koch, Bodo, Dhimál, Rábha, Hájong, Kúdi, Batar or Bor, Kclırat, Pallah, Gangai, Maráhi, and Dhanuk. The Rábha, Kúdi, Híijong, Mech, Gáro, and Páni-koch, are all affined to the Kachári or Bodo type. The last six of Hodgson's list are doultful and undefined
and require further investigation. The Dhimáls are found in the sal forest between the Konki and the Tarsa, mixed with the Bodos, but without intermarriage and living in separate villages. The Bodos extend from the Surma to the Dhansiri, and thence by Bijni and the Bhution and Silkim Tarii to the Konki; besides occupying outside the forest limits a large proportion of central and lower Asím. ${ }^{1}$ The Rabhás and Hájongs are found in the Gwailpára district and are Hindn's, whilst the Pani-koch oceupy the tract along the foot of the Giro liills and are still pagans. The Dhimáls and some of the Bodos, Kochs, and Mechis are still pagans. The lastmentioned tribe is found all along the Tarai with the Kochs and Dhimáls. Their dialect and religion differ from those of the neighbouring tribes of the hills and plains. They are fairer than the Kochs and have strongly marked Mongolian features, but softer than those of the Lepcha or Limbu, resembling more the Newars than the other hill-tribes of Tibetan origin. They live at elevations between 800 and 1,000 feet, and almost always keep to the forest, where they make temporary clearances. Their religion is connected with the Bhairava form of Sivaism. The Koch tribe is now nearly completely converted to Islám or Bralmanism, and with their conversion have dropped their old name and language, speaking a corrupted form of Bengáli, in which, however, many of the ancient vocables are retained. The Páni-koch, according to Hodgson, represents the unimproved primitive Koch stock; but Dalton considers them a plains tribe driven upwards by the Aryan invader. Hodgson cstimates the number of all religions at over a million souls. The settled Koch assimilate in their food and clothing with the Bengális, and show no marked differences. The Bodo women wear garments of coarse silk, the produce of the worm that feeds on the castor-plant. The Bodo men and Dhimaly of both sexes wear cotton clothes. The men wear one cloth thrown over the shoulders and another wrapped round the waist and drawn up between the legs. The female garment consists of a cloth wrapped around the body and enveloping it from the arm-pits to the centre of the calves. Wooden sandals are worn, but ornaments are rare, though the women sometimes wear small silver rings in their noses and ears and heavy bracelets of mixed metal. Meat, fish, and

[^12]vegetallles are eaten by all, and beer made of rice or millet is a favourite beverage. Thárus and Denwars aro found westwards in Nepal mixed with the Mechis, and especially the former in the malarious tract in the Gorakhpur and Tirhút Tarais along the foot of the mountains where no other human being can live. I'hey, however, seem to be healthy, robust races.

The mass of the people of the Doti district of Nepall and the
Karnali to the Tons. British district of Kumaon belong to the race generically known as Khasas or Khasiyas. In Garhwil they are more mixed, though the difference is scarcely discoverable. The northern inter-Alpine valleys are, however, inhabited by Bhotiyas, who are decidedly of Tibctan origin. Amongst the Khasiyas there is a great admisture of immigrants from the plains, and most of the better classes look down with contempt on the purer members of the Khasiya class, who appear to represent the oldest inhabitants of these hills, though now much modified by centuries of close connection and intermarriage with the more civilized tribes of the plains. Throughout Kumaon, the Kyumam of the Tibetans, the inhabitants dress and eat like those of the plains, the only difference being that to the north woollen materials find more favour, and there is greater license in matters of food and drink. In Garhwál, which is known as Galdiya to the Tlibetans and to the north as Chongsa, garments made of hempen fibre are common amongst the poorer classes. The language spoken throughout is pure Hindi, though for purposes of trade the Bhotiyas also use Tibetan, and amongst themselves speak a dialect of Tibetan origin. In the land of marsh and forests which borders the plains we find the Thárus in the castern Taraii and the Bhuksas, a tribe of similar character, occupying the tract between Puranpur-Sabna in the Bareilly district and Chandpur in the Bijnor district. The Rájis in eastern Kumaon are akin to the Chepangs of Nepall, and the Lúls and Rawats of the same tract are now absorbed in the Hinduised population.

To the west of the Tons we have a number of petty independent states known as the "protected hill-states," followed by British territory. Amongst the former the most important is Bisahr,' of which the northern part, ${ }^{1}$ See section D. of references attached to this chapter.
called Kunawar, or more correctly Knaor, the Kunu of the Tibetans, marches with Tibet. The people of upper Knaor are of libetan origin and Buddhists in religion, and correspond to the Bhotiyas further east. Buddhism extends down the valley of the Satlaj as far as Sarahan, between which and Pangi is a sort of debateable ground common to Hindús and Buddhists; but north of Pangi Buddhism prevails, and south of Sarahan, Hinduism. With our approach to these Buddhist countries the curious custom of polyandry appears. Commencing in north-western Tihri, we trace it through Bisahr and Luhhul, but find it confined to the inhabitants of the valleys of the central and higher ranges professing both the Buddlist and Hindu religions. The contral tract is inhabited by a fair, slight, and muscular race of mixed origin known as Kunets, and akin to the Khasiyas on the cast. To the south, in the portion adjoining the plains, the people resemble the inhabitants of the lower country, and appear of every shade of colour from dark-brown to a tawny yellow or yellowish-whitc. The hair is black and worn long at the sides and back of the head down about the ears, where it is cut short. The crown of the head is shaved bare, but moustache and beards are worn. The dress is a short coat of coarse cotton reaching to the knee, pleated in folds to give it fulness, and fastened round the waist by a girdle of the same material. A pair of cotton páejámas and a shect of the same material complete the hot-weather costume. In winter these are exchanged for a pair of woollen drawers and a blanket, but the poorer classes remain content with a coarse waist-cloth and a blanket all the year round. The food of the people from the Káli to the Indus differs very little in each tract, or, indeed, from that of the people in the adjoining plains. Wheat, barley, rice, and various millets and pulses are grown in the lower hills, and to the north hardier varieties suited to a sub-arctic climate are cultivated. When the produce is insufficient for the wants of the inhabitants, a supply is imported from the lower districts. To the north, woollen home-spun replaces the cotton worn in the lower hills, and the girdle supports an axe. The women wear a similar dress, the coat reaching down to the ancles, and the hair, done up in long plaits, is twisted into rolls and covered with a piece of cloth wound like a turban round the head.

To the west of the Satlaj we find the British territory of Kulu
Satlaj to the Indus. and Mandi, the independent state of Chamba, and the territorics of Kashmír and Jamu. ${ }^{1}$
Kulu, called in Tibetan Nyungti and Mandi, lies along the upper course of the Byás; Chamba, known to Tibetans as Panga, along the Rávi ; and Láhul, the Tibetan Garzha, on the Upper Chináb. To the north in Láhul and Ladák the people are Bhotiyas or Bodpas of Tibetan origin, professing tho Buddhist religion, and anongst them is a scrvile race known as Bem or 'low.' Further east in Baltistan are Tibetan Musalmáns who have adopted with their religion the Arabic alphabet. All these have decided Mongolian features, and are noted for their strength of body and power of enduring fatiguc. In this respect the Baltis are somewhat inferior to their Buddhist bretluren in race. The men wear a coat of woollen material reaching to the knces, fastened by a girdle, in which a knife is usually carried. Round their legs, from knee to ancle, they have coarse woollen leggings secured by a tape of the same material wound spirally round the leg from the ancle upwards. The head-dress is either a quilted skull-cap or a fur cap with the hair or wool inside, and with a large flap behind which covers the neek and ears. They wear boots of felt with soles of sheep or goat-skin. The women wear a black woollen jacket with a striped parti-coloured petticoat and baggy trousers, and over all a skin coat with the fur tumed insile. The hair is arranged in a number of small plaits, and is ornamented by a band of cloth, on which is sown a number of turquoises and beads. The food of the common people consists of thick barley cakes, though those who can afford it eat wheaten bread and drink tea and a fermented liquor called chang. The name Kunet seems properly to designate only the mixed race in southern Knaor, but it is used for the population of the central tract in Bisahr, Kulu, Chamba, and Kashtwár, which korders on Ladák. In Chamba we find the Gaddis, who cross over into the neighbouring territory of Kashmír and meet the Thakars or Takkas, the chief cultivating class in those hills, and apparently in the same position with reference to other Hindús as the Játs of the plains. In the valley of Kashmír we have the Kashmírís, and amongst them the servile class called Batal. To the south-west, along the left bank of the

[^13]Jhelam, we have the Musamín Dogras, called Chibhailis, and the Musalmán Sadans of Punch. On the right bank of the same river we have Musalmán Gakkars, Satis, and Dunds. To the cast of the Chibhális come the Hindu Dogras, and amongst them the scrvile tribes of the Meghs and Dúms, who are scattered about everywhere and form a considerable part of the population. The Dogras have a light-brown complexion, clearly-cut features, and black hair, which is cut to form a fringe below the turban. The hair is worn on the face. The Thakars are a well-made race, somewhat more powerful in body than the Dogra Rajpáts, whilst the Meghs and Dúms are darker in colour, smaller in limb, shorter in stature, and less bearded. The food and clothing differ in no marked respect from that of the hill-tribes at a similar eleration to the enst. Passing to the nortl-west of the Kashmír valley we come upon the Dárds, an Aryan tribe called Brokpa by the 'Libetans, and most of whom are Musalmáns, though the Dah section have adopted the Buddhist religion, language, and customs. They occupy Astor and the trans-Indus Kashmíri district of Gilgit, as well as the neighbouring Kanjúd states of Nagar and Hamza, and the Kashkára states of Chitrál, Yassan, and Mastúj. They are a strongly-built race, with decidedly Aryan features, wearing woollen garments, except among the higher classes, who wear cotton in summer. The ordinary costume consists of trousers, a coat reaching to the knees and confined by a girdle, and a cap of woollen cloth about half a yard long and turned up at the cdges until it fits the head, the outward roll thus forming a protection against heat and cold. On their feet they have scraps of leather put under, over, and around the foot, and kept in their place by straps of the same material wound around them. A servile race is also found amongst them, known as Dúms, and performing the same duties as the Dúms of Kumaon. To the south-west of Kashmír, in the salt range, we find the Awáns and Janjúhas, tribes of Aryan origin and of considerable antiquity. From the Káli to the Indus, dialects of libetan are spoken to the north. Mr. Drew tells ${ }^{1}$ us that from near the Nunkun group of peaks which form the waterparting between the Maru-wadwan and Suru rivers, "and from no other spot in Λ sia, one may go westward through countries entirely

[^14]Mulhammadan as far as Constantinople; enstward among none but Buddhists, to China; and southward over lands where the Findu religion prevails, to the extremity of the Indian peninsula."

Amongst the great mountain groups comprising the western or Afghinistán, \&c. trans-Indus extension of the Ifimalaya, and including the ranges known as the Hindu Kush, Kára-koram, and those connecting them with the Tian-shán, are several petty states, regarding which much has been learned of late. ${ }^{1}$ 'To the south lies the country called Afghánistan, the northeastern portion of which is included in the western prolongation of the Himálaya, while the south-western part is a mountainous country confluent with the IImálaya on the one hand and extending far in the opposite direction to the table-land of Persia. To the north the boundaries are ill-clefined and vary almost from decade to decade. The authority of the ruler of Kabul, in many places, depends on the forces at his disposal to coerce his unwilling subjects; but in 1879, the Afghán province of Turkistán included the whole of the countries between the Hindu Kush and the Oxus, comprising Balkh, Kunduz, and Badakshan, with their dependent states. The seat of the government is Balkh, with cantonments at Faizabad. Karátigin, on the upper valley of the Surkháb, pays tribute to Bukhirra; also Darwáz, on the Pamja branch of the same river, and Shignán-cum-Roshán, on the Ghund and Murgháb rivers. Wakhán is tributary to Badakshán, and south of it lies Kashkiura, also called Chitrál. Northern Kashkára, including Yassan and Mastúj, is subordinate to the ruler of southern Kashkára, who resides at Chitral. North of Gilgit we have the robber states of Hanza and Nagar or Kanjúd. South of Gilgit, in the valley of the Indus below Banji or Bawanji, are a number of small republics, who manage their affairs in assemblies called sigás, with which we may compare the similar institutions at the opposite extremity of the Himálaya. Some of these, such as Dúrel and Hodar, owe a nominal subjection to Kashmir. Further south we come to the independent tribes of Buner and Swát. West of the Indus, in the Kunar valley, are the Bajaur and Dír states, and between them and the Hindu Kush range the country of Káfiristan. ${ }^{2}$ It may well

[^15]be supposed that this rugged tract, the mecting-place of the Turanian, Iranian, and Aryan races, presents many points of interest to the ethnographer as well as to the geographer; but here we can but very briefly refer to them, however important they may be.

We have already noticed an Aryan race, the Dárds, occupying Gilgit and forming a part of the population of the neighbouring states. Here they meet the great Iranian race, which, under the name Tajjik or Galcha, form the bulk of the cultivating popolation of the Musalmán states between the Indus and Jaxartes. History tells us that from the third century before Christ to the sixth contury after Christ this tract was subject to the continucd incursions of a Skythian race, traces of whom may be seen in the Brahúis of Biluchistán, the Hazárahs of the Hindu Kush, the Gujars there and in India, the Gakkars and Kohistánis of the Indus, and the Jats of India, and who have continued to influence the entire history of this tract to the present day. In the eleventh century the Afghans were a small tribe in the Sulaimán mountains, of no importance and but little known. Since then they have increased so much as to have been able to annex a considerable extent of country, and to impose their language, Pukltu or Pushtu, on the populations which they have absorbed. Along the Indus, Afghans occupy the villages as far as Batera in $34^{\circ} 53^{\prime}$ north latitude, where the Kohistín commences. The Afghins themselves are tolerably fair, robust, and of moderate stature. They have long faces, high cheek-bones, and dark hair, which they wear unshaved. Their underclothing is of cotton, over which they throw a loose coat of woollen cloth, felt, or, more commonly, of shecpskin. They wear low caps on their heads, around which a cloth is twisted to form a turban. Boots are generally worn, and they carry a matchlock, scymitar, and shield. Leavened bread and noeat are eaten by all classes. The women are rigorously secluded in the towns, but in the country, beyond the influence of the local maulvi or mullah, much more liberty is allowed. The use of wine is forbidden, but in the hills it is taken in secret, and that made in the Dárel valley has more than a local reputation. Pushtu approaches the Pehlavi or Zendic form of old Persian on the one hand, and the Sindhi form of Prakrit on the other. It is spoken throughout Afghánistín, and, with clialectal variations, in

Bajaur, Panjkora, Dír, and Swát. Afgháns are Sumni Muhammadans.

The Kohistánis of the Indus claim an Arab descent and speak

> Kohistán, Kaslakara. a language different from Pushtu and akin to Kashkári and Dárdui. They are fair and have sandy hair, and are of a robust make. They wear a tight-fitting coat and trousers resembling somewhat those of the European, with a cap of brown woollen material in the form of a bag rolled up at the edges. Around the legs and the feet a goatskin is wound, kept in its place by a strap of leather, the great-toe and the heel being left bare. A matchlock ind sword are always carried, and they are expert shots. The women wear a loose jacket and trousers, and a cap of cotton or wool, over which they throw a woollen or cotton shect when proceeding far from their villages. Unlcavened bread of wheat, barley or millet (IIolcus sorghum) is eaten with vegetables, milk, butter, or stewed meat. Further north the people are less prosperous and more regardless of cleanliness. In some of the villages there are colonies of pastoral Gújars, and in the Yassan villages settlements of Dúms, who supply the musicians and dancers of the country. Following next the Kunar valley, we have dialects of Pushtu spoken in Bajaur and Dír as far as the Lahori pass leading into Chitrál. Here it meets the Kashkára, which is akin to the Dardui and is of Prakritic origin, though many Persion vocables have been added. The pagan inhabitants of Káfiristan are of the same race as the Kashkíras and the Dárds, and spoak a language having an archivic Príkritic origin.

Moving further westward into Badakshán, we come amongst a Galcha states. large Iramian population speaking Pushtu in the soath and Persian in the north, and from Narín an Uzbeg population speaking Túrki, and the nomad Hazirrahs having a dialect of their own. On the invasion of the Turks the old inhabitants retreated into the more inaccessible valleys of the great ranges, and there foundod the Galcha states of Darwize, Karatigin, Shighnam, and Wakhín. In Darwaz and the adjoining parts of Badakshín pure Persian is spoken or understood. The vocables and grammar of the Galcha proper show a strong aflinity to Diurdui, and many conjecture that, in its pure state, it must have been the intermediate link between the Iranian and Indian branches
of the great Aryan family; that the dispersion took place from the 'bám-i-dunya,' 'the roof of the world,' the Indian branch proceeding southwards and along the Kábul river to India, whilst the Iranian branch crossed the Pámir to the plains of Turkistín. Towards the plains the Galchas are Sumnis, but in all the hill districts, except Darwáz, they are Shichs. The Shiáh is held in the same contempt as the infidel, and the Sunni esteems it a holy and righteous act to capture and sell his less orthodox fellow-believer into slavery. Amongst the tribute paid by the hill states to the Afghán governors of Badakshán and to the Wali of Bukhára, not the least important parts are the troops of faircomplexioned girls from the upper valleys of the Galcha states, and, when procurable, pagan boys from Káfiristán. Uzbegs are chiefly found in the country, and Tajiks in the towns along the plains below Badakshán and in Turkistán; the former invariably speak Túrki and the latter Persian, or dialects with a number of Persien words in them. In Wakhín the men wear brown woollen coats and trousers, Ladáki boots, and a scanty cotton turban, either blue or white. The women here also dress much like the men, and, as in Chitril, wear their hair in long plaits. They have Jewish noses and are not very fair-looking. Kirghiz are found along the eastern slopes of the Tian-shín and the northern slopes of the Pámír and Kuen-lun ranges in Chincse Turkistán. The Alai Kirghiz of the Pámír have a bad reputation as robbers. East of them lie the great uninhabited steppes until we come to the country near Kanjúd, which is rendered unsafe by the raids of the people of Hanza and Nagar. Further east we have the Chang-thang highlands, occupied by the robber Bhotiya tribes of Changpás, speaking a Tibetan dialect akin to Zanskári. The dress of the male Kirghiz inlabiting the pastoral slopes of the highlands south of Yárkand and Káshgar is not different in any material degree from that of the other inliabitants. ${ }^{1}$ Their women wear as a head-dress a white cloth rolled evenly and regularly round a skull-cap of red or other bright material, with lappets over the ears. The end of the turban is drawn down and passed over the lappets and under the chin, and the coat worn is a dressing-grown of wadded and quilted cotton. In the plains the winter dress of the females comprises a fur cap of black lamb's

[^16]wool with a trimming of the fur, and a crown of coloured silk or cloth worn over a square of muslin which forms a veil. The coat worn is full and long, and the boots are of embroidered leather with high heels. The hair is worn either in two long plaits or in ringlets. The men wear a close-fitting cap lined with fur and turned up at the bottom. The coat resembles that worn by the women, only it is fastened by a cotton girdle, and the boots are worn long and plain, with felt stockings. In winter, sheepskin with the wool attached is the universal matcrial for clothing.

To Prejevalsky we are indebted for an account of the people
Kára-kurchins. around the lake country of the Tarim near Lob-nor, to the north of the Altyn-Tagh, and of those inhabiting the eastern extremity of the Kuen-lun near the sources of the Hoang-ho. The former" present " a strange mixture of facial types, some of which call to mind a Mongolian racc. The prevailing characteristics are, however, Aryan, though far from pure. * * In height they are rather below the average ; frame weak and hollow-chested; cheek-bones prominent and chin pointed; beard scanty and à l'Espagnole; whisker even smaller ; hair on the face generally of feeble growth; lips often thick and protruding; teeth white and regular and skin dark, whence their name Kára-kurchin may be derived." Their language is said to resemble closely the dialect of Khoten. The clothing of the lake-dwollers is made from the fibres of a species of asclepias, and consists of a loose coat and trousers with, in winter, a sheepskin cap, and in summer one made of felt. In summer the feet are uncovered, and in winter shoes of untanned hide are worn. The coats in winter are lined with duckskins dressed in salt. Fish, wild-fowl, and the tender shoots of reeds are their principal food. All profess the Muhammadan religion. The inhabitants of the country along the Tarim towards Korla appear to be also of the same race, though comparatively more civilised.

To the north-east, towards the Yellow river, we have the Kára-

[^17] Tangutans, a race apparently connected with the Tibetans proper. They are more robust in form, greater in stature, and darker in complexion, than

[^18]the Tangutans of Kan-su. Their hair is black, but the head is shaved clean and no pig-tails are worn. The eyes are dark and large, never narrow like the Mongols; the nose straight and sometimes aquiline and also sometimes retroussée; the lips thick and protruding; the cheek-bones not so prominent as in the Mongol; the face long and never flat, and the skin tawny coloured. The language is akin to Tibetan. The dress in summer comprises a long, grcy, woollen coat reaching to the knees, boots, and a lowcrowned, broad-brimmed, felt hat. In winter a sheepskin coat is put next the skin, and the upper part of the legs is usually left bare and also the right arm and part of the right breast, the right sleeve being allowed to hang down empty. The women dress like the men, and all live in tents made of black, coarse, woollen cloth, whence the name Kára (or black)-Tangutans. They are met as far as the Murui-ussu, the extreme point reached by Prejevalsky. ${ }^{1}$ Of the people between the Hoang-ho and Brahmaputra very little is known beyond the fact that they are of Tibetan origin and chiefly Buddhists in religion. Pamutan near Bathang, which lies in about 99° east longitude and $28^{\circ} 50^{\prime}$ north latitude, is the most westerly point attained by Mr. Cooper ${ }^{2}$ in his memorable journey from Hankow towards the frontier of India in 1868 ; and Prun, in the Mishmi country, the most easterly point reached in his attempt to penctrate the intervening ranges to China in 1870, leaving a space of about 120 miles as the crow flics unexplored and unknown.

We have now briefly sketched the character of the countries Tibct. and peoples encircling the great elevated area which from Ladák on the west to the Chinese frontier is known as Tibet, and is entirely under Chinese influence. The true name of this tract is Bod-yul or Bod-land, and the people Bod-pas, corrupted by the Indians into Bhotiyas, a name now applied to the Tibetans living on the borders between India and Tibet, whilst the people of Tibet proper are called IIuniyas and the country Hundes. The castern division of Tibet is known as Khám or Khám-yul, sometimes called Bod-chen; it extends from the frontiers of China to about 95° east longitude. Central Tibet or Tibet proper is called Bod at its eastern end, and

[^19]y-Néri or Nári at its north-western end ; the former division being the shorter of the two, but perhaps broader and more civilised and populous. A line drawn from Darjiling northwards would apparently separate Bocl from Nári. The central part is also called U-Tsang from the two provinces of U and Tsang in which Lhása is situated. Níri is divided into the three great districts of Mang-yul, Khorsum, and Mar-yul. ${ }^{1}$ The first marches with Nepál alnost to its western boundary; the second extends along the British frontier of Kumaun and Garhwal and that of the independent state of Bisahr ; and the last included western Tibet and the Kashmíri states of Balti and Ladák. The physical characteristics of this tract have had the effect of isolating its inhabitants, who are distinct in race and language, from all the nations we have described, and find their affinities in the Tangutans of the north-eastern Kuen-lun already noticed. They are broadly built; have dark hair, scanty beards, ligh cheek-bones, oblique eyes, complexion fair amongst the better classes, dark amongst the lower, who are more exposed to the weather. To the east in the warmer valleys they are agriculturists, and to the west and north follow a pastoral life. The costume varies in the different provinces and with the means of the person, but as a rule the men in the wilder parts shave the head clean like the Kára-Tangutans, whilst the more settled allow it to grow long and plait it into a queue or tail like the Tangutans proper. To the east Chinese fashions are in voguc, and to the west the common dress is a coat and trousers of undyed woollen material with boots to the knee. The Lamas wear distinctive dresses, red or yollow according to the sect to which they bolong, and the wealthier indulge in coloured broad-cloth garments of English or Russian manufacture. Barley porridge, tea and meat form the staple food of the people, and chang or beer, a simple infusion of malted barley, is of universal use all over Tibet.

Having completed our review of the nations inhabiting the Himálaya and the surrounding country, we may now briefly notice the natural distribution of the several great races that have come under our consideration in

[^20]the special tracts that each now occupies. The extraordinary rigour of the climate and the physical barrier that exists between Tibet and India sufficiently explains the absence of ethnical or political relations between the two countries. Accident has given the Indian state of Kashmir political preponderance in western Tibet, but the ethnical distinction still remains, and will probably ever continue. The climatic condition of eastern and northern Tibet allows of a free migration of the inhabitants from one part to the other, which is shewn in the common origin of the people of those countrics to the present day. Turks and Tartars occupy the country called Turkistán, similar in character to their original homes; but in proportion as the climatal conditions become Indian, so does the population become Aryan. The Tartar is the child of the rugged bleak steppes; and when we approach the cold and wooded mountains we come on the Hindu element at its maximum in the tract around the sacred sources of the Jumna and the Ganges, gradually diminishing as we move eastward towards the excessively moist though warmer valleys of the Nepál and Asám Himálaya, where they are replaced by races akin to the people of eastern Tibct and Siam, and on the west meeting the Iranian and the Tartar in the trans-Indus ranges. To the north of the Kuen-lun the Mongol and Chinese converts to Muhammadiuism, called Tunganis, and in western Tibet the Muhammadan Baltis, divide the Buddhists from the followers of Islam. In the valleys of the affluents of the Oxus and the Kábul river we have an Iranian race of Galchas or Taijiks driven upwards by political disturbances and mixing with an indigenous mountain race of Aryan extraction. The rigorous climate and scanty cultivation which prevents the intrusion in any numbers of a southern race also debars the tribes inhabiting the higher hills from making any permanent occupation of the lowlands. Like their favourite domestic animal the yak, the Himálayan mountaineers do not thrive at low altitudes, nor can plains-bred men or animals withstand for any time the arctic cold and rareficd air of the more elevated regions. Thus, there is a clear connection between the distribution of the nations that are found in the Himálaya and the physical characteristics of the regions that they occupy ; and if we had time to pursue the subject further, it might be shown that the orographical conditions of a tract have materially influenced its history, political
and religious, and the social and moral character of its inhabitants. The disposition of a peoplo towards peace or war ; their migrations; the diffusion of their lainguage ; their habits, pastoral, agricultural, or commercial ; the extent of their influence-all depend more or less on the physical peculiarities of the country that they inhabit. And not only is man so affected, but the entire fauna and flora obey the same laws, so that the skilful naturalist can from a plant or even a butterfly describe the general character of the country of which it is a native, and with it the customs and manners of the inhabitants. For the nature of a country, whether mountainous or level, the direction of the great ranges, the length and line of coast, the position with regard to the equator, the relations of land and water, and the drainage systems, are all primary agents in the distribution of organic life and of the influences which govern all atmospheric and climatic phenomena.

REFERENCES.

The following list of references to bookb bearing on the gcographical and ellmological notlees in the preceding elapter is not intended to be exhanstive, but simpls to formish a guide to the bibliography of the countrics within and adjoining the Himalaya, aud only includes sueb works as are ordinarily procurable.

Section A.-Eastern Asam and Tibet.

(a)-Indo-Chinesif Frontier.

1. La Mission du Thíbet, by Fr. C. H. DesGodins. Verdun, 1872.
2. Pays frontières du Thibet, de la Burmanie et te Yumnan, by the same. Bull, de la Soc. de Gcogr. de Paris, Oct., 1876.
3. Territoire de Bathang, by the same. Ibid, Dec., 1876, and Dec., 1877.
4. Le cours supérieur dos denves de l'Indo-Chine, by the same. Ibid, Aug., 1876.
5. Notes sur le Tlibet, by the same. Ibid, Oct.: 1877.
6. Mandalay to Momein, by J. Anderson. Loudon, 1876.
7. Overland route to China viâ Asám, the Tenga Paui river, Khamti and Singpho country, across the Irrawaddy river into Yunnan, by H. Cottam. P. R. G. S., XXI., 6.
8. Travels in Western China and on the Eastern borders of Tibet, by Capt. W. J. Gill. $16 i d$, XXII., 255, and see H ., $\because 6$.
9. Across China from Chin-Kaing to Bhamo in 1877, by J. McCarthy. Tuid, I. N. S., 489.
10. Official narrative of the expedition to explore the tracle routes to China via Bhamo under Major Sladen. Calcutta, 1870.
11. Travels of a Pioncer of Commerce in Pigtail and Petticoats : an overland journey from China towards India, by T. 'I. Cooper. London, 1871.
12. Journal of an attempted ascent of the river Min to visit the tea-plantations of the Fukhien Province of Clina, by G. J. Gordon. J. A. S., Len., IV., 553.
13. Short survey of the country between Bengal and China, by Baron Otto dcs Granges. Ibid, XVII., i., 132.
14. Memorandum on the comntries between Thibet, Yunnan, and Burmah, by Rev. T. D'Mazurc. Lbid, XXX., 367.
(Sec also the writings of Blakiston, Margary, Fytche, Pollok, Playre, \&c.)
(b)-UPPER ASíM.
15. Memoir of a survey of Asám and the neighbouring countries executed in 1825-28, by Lieut. R. Wilcox. As. Res., XVII., 43 ;, and Scl. Rec., Bengal, XXIII., 1855, and Sel. papers, Hill tracts, 1S73, p. 1.
16. Aecount of Asam, the local geography, tea-plant, manners of the neighbouring tribes, by W. Robinson. Calcutta, 1841.
17. Report on the Eastern fronticr of Britisl India, by Capt. R. B. Pembertou. Calcutta, 1835.
18. Journals of travels in $\Lambda \sin m$, Burmah, Bootan, and Afghanistan, by W. Griffiths, Calcutta, 1847.
19. Memoir on Sylhet, Kachár, and the adjacent districts, by F. H. Fisher, J. A. S., Ben., IX., 808.
20. Notes on northern Cachír, by Lient. R. Stewart. Ibit, XXIV., $582_{\text {s }}$
21. Travels and adventures in the Province of Asam, by Major J. Butler. London, 18 ̄5.
22. Koch Bihár, Koch Hájo, and Asám in the 16 th and 17 th centuries, by H. Blochmann. J. A. S., Ben., XLI., i., 49.
23. History of Asám, by Anundorum Boruah. Calcutta.
24. Mcinorandum on various phenomena in Asám, by the Rev. N. Brown, J. A. S., Ben., XIL, 909.
25. Notes on the Asim temple ruins, by Capt. E. T. Daltor. Ibid, XXIV., i.
26. Description of ancient temples and ruins at Chárdwár in Δ sám, by G. E. Westmacott. 1Vid, IV., 185.
27. Note on ancient temples and other remains in the vicinity of Suddyah in Upper Asém, by Major S. F. Hannay. Ibid, XVII., i., 459.
28. Ruins at Dimápur on the Dunsiri river, Asím, by Major Godwin-Austen. IUid, XLIII., 1.
29. Temple at Jayságar in Upper Asám, by J. M. Foster. Ibid, 311.
30. Contributions to the geography and history of Bengal, by H. Bloclmann. Ibid, XLII., 209 : XLIIII., 280.
31. Report of a visit to the hills in the neighbourhood of the Soobansiri river, by Lieut. S. F. Hanuay. Ibid, XIV., 250.
32. Account of a visit to the Jugloo and Scesoc rivers in Upper Asám, by the same. Ibid, XXII., 611.
33. Report of an expedition into the Mishmee hill to the north-enst of Sudyah, by Licut. E. A. Rowlatt. Ibid, XIV., 477.
34. Journal of a visit to the Mishmee hills in Asám, by W. Griffith. Ibid, VI, 325, and Scl. papers, Hill tracts, 110.
35. Notes on the lauguage spoken by the Mi-Shmis, by W. Roljineon. IVid, XXIV., 307.
36. Note on the Dophlas and the peculiarities of their language, by W. Robinson. Ibid, XX., 126.
37. Correspondence and journal of Capt. Dalton in a visit to a clan of Abors on the Dihing river. Sel. Res., Ben., XXIII., 139.
38. On the Meris and Abors of Asám, by the same. J. A. S., Ben., XIV., 426.
39. Account of the mountain tribes on the extreme north-castern fronticr of Bengal, by Capt. Jenkins, edited by J. McCosh : containing notices of the Miris, Abors, Mishmis, Kangtis, Singhphos, Muamarias, and Nâgas, Lhid, V., 193.
40. Notes on the tribes of the eastern frantier, by J. H. O'Danel. Ibid, XXXII., 400-40t, and by H. J. Reynolds. 1bid, 407.
41. Memorandum on the north-eastern tribes, by A. Mackonzic. Calcutta, 1869.

> (c)--Ethnography.
42. Descriplive Ethnology of Bengal, loy E. T. Dalton : Calcutta, 1872. [Gives an account (with figures) of the Khamtis: Singhphos, Mishmis, Chúlikáta Mishmis ; Abor group, including Pádlams, Miris, Dophins, and Akas ; Nágas of Upper Asám; lower Nágas, including Kukis, Mainpuris, and Koupouis; Mikirs; Jaintiyas and Khasiyas; Gáros, Kachárics; Mcehs: Kochs; Bhotiyas; Jepehas; Murmis; Limbus and Kirántis; Hayas, and the Tipura (Tipperalı) aud Chittagong tribes].
(d)-Garo Hills.
43. Observations on the inhabitants of the Garrow hills, by J. Eliot. As. Res., III., 17.
44. A narrative of our connection with the Dushani and Chianni Garrows, with a short account of their country, by C. S. Reynolds. J. A. S., Ben., XVIIf., 1, 45.
45. Some account of the Cásiah hills. Gl. in sec. I., 252.
46. Notes on the Cásiah hills, by H. Yule. J. A. S., Ben., XIII., 612.
47. A vocabulary of the Garo and Konch languages, by Lieut. W. J. Williamson. 1bid, XXXVIII., 14.
48. Khasia grammar, selections and vocabulary, by W. Pryce. Calcutta, 1855.
49. English-Khasia vocabulary, by Kelsall. Calcutta, 1864. See also Fodgson's papers.
50. Some account of the Pális of Dinajpur, by G. H, Damant, Ind. Ant., I., 336, 371.
51. On the dialect of the Pâlis, by the same. Ibid, II., 101.
52. The Garos, by the Rev. I. J. Stoddard. 1bid, II., 336.
53. On the Khasia hill-tribes of north-eastern Bengal, by A. Morgan. P. Lit. and Phil. Soc., Liverpool, 30, 1875-76.

Section B.-Southern Asam.

1. Report on the wild tribes of the Chittagong frontiep, by C. Ricketts. Cal cutta, 1847.
2. Some account of the hill-tribes in the interior of the district of Chittagong, by the Rev. M. Barbe, J. A. S., Ben., XIV., 380.
3. Selection of papers regarding the hill tracts between Asém and Burmah and on the Upper Brahmaputra. Calcutta, 1873.
4. The wild tribes of the south-east frontier, by Capt. T. H. Lewin.
5. The Chittagong hill tracts and the dwellers therein, with comparative vocabularies of the hill dialeces, by the same. Calcutta, 1869.
6. History of Arakan, by Col. J. P. Phayrc. J. A, S., Ben., XV., 232.
7. Account of Arakan, by the same. Trid, X., 679 .
8. History of Pegu, by Sir A, Phayre. Ibid, XLII., 23, 120 : XLIII., 6.
9. Notes on the Heuma or Shendoos, a tribe inhabiting the hills north of Arracan, by Capt. Tickell. Ibid, XXI., 207.
10. History of the Burmah race, by Sir A. Phayre. Ibid, XXXVII., i. : XXXVIII., 29.
11. The hill tribes of the north-east frontier. Ind. Ant, I., 62 ,
12. The Lushais, by Capt. Balgley. Ibid, II., 363.
13. Abstract of the journal of a route travelled by Capt. S. F. IIannay from the capital of Ava to the amber mines of the Hukong valley on the southeastern frontier of Asám, by Capt. R. B. Pemberton. J. A. S., Ben., VI., 245, and No. 3 above, p. 83.
14. Journcy from Upper Asám towards Hookhoom, Ava, and Rangoon, by W. Griffiths. No. 3 above, p. 125.
15. Narrative of a journey from Ava to the frontice of Asám and back in 1836-37, by G. T. Bayficld. Ilid, 134.
16. Notes on a trip across the Patkoi range from Asám to the Hukoong valley, by II. L. Jenkins in 1869-70. Ilid, 245.
17. Notes on the Burmese route from Asám to the Hukoong valley, by the same. Ibid, 250.
18. The Nágas of Asám, by Capt. Jenkins. J. A. S., Ben., V., 207.
19. Extract from the narrative of an expedition into the Nága territory of Asám in 1840, by Lieut. Grange. Ibid, VIII., 445 : IX., 947.
20. Extracts from a report on a journey into the Nága hills in 1844, by B. Wood. 1bid, IX., 947 : X., 126 : XIII., 771.
21. Extract from a memoir on some of the natural products of the Angámi Nága Hills, by J. W. Masters. Ibid, XIII., 707 : XVII., i., 57.
22. Narrative of a tour over that part of the Nága hills lying between the Diko and Dyang rivers, by Capt. Brodic. Ilvid, XIV., 828.
23. Report of Lieut. Brodje's dealing with the Nágas on the Sibsagar frontier in 1841-46. Sel. papers, Hill tracts, p. 284.
24. Note on a visit to the tribes inhaloiting the Hills to the south of Sibságar in Asám, by S. E. Peal. J. A. S., Ben., XLI., i., 9 : and Scl. papers, Hill 'Tracts, p. 316.

(f)-Languages.

25. A rough comparative vocabulary of some of the dialects spoken in the Nága IIills, by Capt. J. Butler. J. A. S., Ben., XLII., i., App. i. Vocabulary of the Banpará Nágas, by S. E. Peal. Ibid, xxx.
26. Account of the valley of Munipur and of the Hill tribes, by Major McCulloch. (To which is added a comparative vocabulary of the Munniporee, Undro Sengmai, Chairel, Meeyang, Koupooee Poveeron, Koupooce Songboo, Qoireng, Khoonggoee, Phudang, Koopome, Tukaimee, Muram, Murring Anal Namfau, Kookic, Burmese and Shan languages). Scl. Rcs., Government of India, For. Dept., XXVII., 1859.
27. Analysis of the Bengali poem 'Rájmála,' or chronicles of Tripura, by the Rev. J. Long. J. A. S., Bcu., XIX., 533.
28. Progressive colloquial exercises in the Lushai dialect of the Dzo or Kúki language, by Capt. T. H. Lewin. Calcutta, 1874.
29. Hill Proverbs : a collection of wit and wisdom from the people of the Chittagong Hills, by the same. Calcutta, 1875.
30. Notes on the languages spoken by the various tribes inhabiting the valley of $\Lambda_{\text {sám and its mountain confines, by W. Robinson. J. A. S., Ben., XVIII., }}$ i., 183,310 .
31. A dictionary in Asámese and English, by M. Brouson, American Baptist Missionary. London, 1876.
32. Note on the Shans, by Col. S. T. Hannay. Calcuita, 1846.
33. A visit to Xiengmai, the principal city of the Shan State, by Sir R. H. Sclomburgh. J. A. S., Ben., XXXII., 387 (1863).
34. Introductory sketch of the history of the Shans in Cpper Burmah and Yuman, by N. Elias. Calcutta, 1876.
3:. A grammar of the Shan languages, by J. Cushing. London, 1877.
35. Alphàbets of the Tai languages, by Rev. Nathan Brown, with plates of those of the Ahom, Khamti, Shyin, Laos, and Burmese. J. A. S., Ben., VI., 17.
36. Interpretation of an Ahom inscription, by Capt. Jenkins. Ilid, 980.
37. Comparison of Indo-Chinese languages with comparative vocabularies of Bangíli, Asúmese, Khanti, Sianese, Aka, Abor, Mislimi, Barmese, Karen, Singpho, Jili, Gáro, Manipuri, Songpu, Kapwi, Koreng, Marám, Champhung, Lahuppa, N. Tángkhul, C. Tángkhul, S. Tángkhul, Khoibu, Maring, Anamese, Japanese and Corcan, by Rev. W. Brown. Lbid, 1,023.
38. Description of the tomb of an Ahom noble, by C. Clayton. Ibid, XVII, i., 473 .
39. Note on Ghargaon in Asám, by J. M. Forster. Ibid, XLI., i., 32.
40. Note on the Singphos, by Col. S. F. Hannay. Calcutta, 1846.
41. Report of a visit by Capt. Vetch to the Singpho and Naga frontier of Lakimpur in 1842. Sel. papers, Hill tracts, p. 255.
42. Remarks on the Indo-Chinese alphabets, by Dr. Bastian. J.R.A. S., III., ii.

Section C.-Bhutan, Sikkim, Nepal.

> (a) -Bieutín.

1. Narratives of the Mission of Gcorge Bogle to Tibet (1774), and of the journey of Thomas Manning to Lhása (1811-12), ly C. R. Markham. London, 1876.
2. Notes on Dr. Hamilton's Missions to Panákha in 1775 and 1777.
3. Account of an embassy to the court of the Teshoo Lama in Tibet and a journey through Boatan, by Capt. S. Turucr. London, 1806.
4. Poorungeer Gosseyn's residence at Lhása in 1780̆. As. Res., I., 207.
5. Account of Bhutan, by Kishan Kant Bose. As. Res., XII., 128.
6. Report on Bootan, by Capt. R. B. Pemberton. Calcutta, 1839. Journal of the Mission to Bhutan, 1837-38, unter Capt. R. B. Pemberton, ly W. Griffiths, M.D. Calcutta, 1847, and J. A. S., Ben., VIII., 208, 251.
7. Report on the state of Bootan and on the progress of the Mission of 1863-64, by the Hon'ble Ashley Eden. Calcuttia, 1864.
8. The last four are reprinted in 'Political Missions to Bootan.' Calcutta, 1865.
9. Bootan, or the story of the Dooar war, by Surgeon Rennic, M.D. London, 1866.
10. Papers relating to Bootan presented to Parliament. No. 13 of 8 th February, 1865.
11. Further papers relating to Bootan presented to Parliament. No. 47 of 1oth February, 1865.
12. Visit to Dewangiri, by E. T. Daiton. J. A. S., Ben., XVIII., 66.
13. A Military report on the country of Bhatan, containing all the information of Military importance which has been collected up to 12th July, 1866, by Lieut. C. M. Macgregor. Calcutta, 1873.
(b) -Sіккім.
14. Himálayan Journals: notes of a naturalist in Bengal, the Sikkim and Nepal Himúlayas, \&c., by J. D. Hooker. London, 1855.
15. Notes, chiefly botanical, made on a journcy from Darjecling to Tonglo, by the same. J. A. S., Ben., XVIII., i., 419.
16. Notes on a tour in the Sikkim Himálayan mountains undertaken for the purpose of ascertaining the geological formation of Kiuchinjanga, by W.S. Sherwill. Ibid, XXIT., 510, 611.
17. Journal of a trip undertaken to explore the glaciers of the Kanchinjinga group, by Major J. L. Sherwill. 1bid, XXXI., 457.
18. Diary of a journey through Sikkim to the frontiers of Thibet, by A. Campleell. Ibid, X XI., 407, 477, 563.
19. A journal of a trip to the Sikkim, by the samc. Ilid, XVIII., i , 482.
20. Routes from Darjiling to Tibet, by the same. Ilid, XVII., ii., 488.
21. Itinerary from Phari in Tibet to Lassa, with appended routes from Darjiling to Phari, by the same. Ibid, XVII., i., 257.
22. Notes on eastern Thibet, by the same. Juid, XXIV., 252.
23. Report on a visit to Sikkim and the Tibetan frontier in 1873 , by J. WareEdgar, C.S.I. Calcutta, 1874.
24. Sikkim, with hints on mountain and jungle warfare, exhibiting also the facilities for opening commercial relations through the hills of Sikkim with Central Asia, Tibet, and Western China, by Col. J. C. Gawler. London, 1873.
25. A short account of the Cooch Behar State, by Capt. T. H. Lewin.
26. The Indian Alps and how we crossed them. Londou, 1876.
27. Note on the Mechis, together with a small vocabulary of the languarge, by Dr. A. Campbell. J. A. S., Ben., VIII., 623.
28. Note on the Lepchas of Sikkim, with a vocabulary of their language, by the same. Ibid, IX., 379.
29. A note on the Limboos and other hill tribes hitherto undescribed, by the same. lbid, IX., 595.
30. On the literature and origin of certain hill tribes, by the same. Ibid, XI., 4.
31. Note on the Limboo alphabet of Sikkim, by the same. Ibial, XXIV., 202.
32. Etlmology of India, by Mr. Justice Campbell. Ibid, XXXV., I.
33. Specimens of the languages of India, including tribes of Bengal, the Central Provinces, and the eastern frontier, by Sir G. Campbell. London, 1874.
34. A sketch of the modern languages of the East Indies, accompanied by two language maps, by R. N. Cust. London, 1878.
35. A comparative dictionary of the languages of India and High Asia, by W. W. Hunter. Londou, 1868.
36. A grammar of the Rong (Lepcha) language as it exists in the Dorjeling and Sikkim hills, ly G. B. Mainwaring. Calcutta, 1876.
(c)-NEPÁL.
37. An account of the kingdom of Nepál, by Father Guiseppe. As. Res., II., 307.
38. $\Delta \mathrm{n}$ account of the kingdom of Nepal, being observations made during a missiou to that country in the year 1793, by Coloncl Kirkpatrick. London, 1811.
39. An account of the kingdom of Nepal and of the house of Gorkha, by Francis Hamilton (formerly Buchanan). Edinburgh, 1819.
40. Narrative of a five jears' residence al Nepál, from 1841 to 1845 , by T. Smith. London, 1852.
41. A journal to Katlmandu with the camp of Jang Bahadoor, by Lawrence Oliphant. London, 1852.
42. History of Nepál, translated from the Parbatiga by Munshi Shew Shunker Singh and Panclit Shri Gunánaud and edited by D. Wright, M.D. Cambridge, 1877.
43. Nepál : its people, religion, customs, zoology, botany, by Dr. Oldfield. Londou, 1879.
44. Memorandum relative to the seven Kosis of Nepál, by B. H. Hodgson. J, A. S., Ben., XVII., ii., 646.
45. Route from Kalhmandu to Darjiling, by the same. Ibid, 634.
46. A cursory notice of Nayakot, by the same. Ibid, IX., 1114.
47. Selections from the records of the Government of Bengal, No. XXVII.
48. Quality of the Kosis of Nepál. J. A. S., Ben., V., 369.
49. Papers on the colonisation, commerce, geography, \&e., of the Himalaya mountains and Nepál, by B. H. Hodgson. London, 1857.
(d)-Ethnology.
50. Notices of the languages, literature, and rcligion of Nepál and Thibet, by B. H. Hodgson. As. Res., XVI., 409.
51. On the aborigines of the Himálaya, by the saire. J. A. S., Ben., XVVI., 1235, and XVII., i., 73.
52. Origin and classification of the military tribes of Nepúl, with a tabular view of the tribes, by the same. IU咞, II., 217 .
53. On the Chepáng and Kúsúnda tribes of Nepál, with a Chepáng vocabulary, by the same. Ibid, XVII., ii, 650.
54. Cursory notice of Náyakot and the remarkable tribes inhabiting it, by the same. Ibid, IX., 1114.
55. On the tribes of northern Tibet, Horsok and Sifán, by the same. IVid, XXII., 121.
56. On the colonisation of the Himalaya by Europeans. Sel. Rec.Ben.: XXVII., p. 1.
57. On the commerce of Ncpál. Ibid, p. 11.
58. The preceding seven papers have been reprinted in 'Essays on the languages, literature, and religion of Nepál and T'ibet.' London, 1874.
59. Classification of the Newurs or aborigines of Nepál Proper, preceded by the most authoritative legend relative to the origin and carly history of the race, by the same. J. A. S., Ben., L1I., 215.
60. Comparative vocabulary of the several languages and dialects of the eastern Sub-Himalaya from the Káli or Ghagra to the Dhansri, by the same. Ibid, XVI., 1244.
61. Ethnography and geography of the Sub-Himálayas, by the same, with a Khes vocabulary. lbid, XVII., i., 544.
62. On the Tibetan type of mankind, by the same. Ilid, XVII., ii., 222, 580 .
63. A brief note on Indian Ethnology, by the same. Ibid, XVIII., 238.
64. On the aborigines of north-eastern India, by the same, with a comparative vocabulary of Tibetan written and spoken, Dlimál, Bodo and Gáro, Ibld, 451.
65. On the origin, location, creed, customs, character and condition of the Kooch Bodo and Dhimál people, with a general description of the climate they dwell in, by the same. Ibid, 702. Reprinted with the preceding in the Aborigines of India. Calcutta, 1847.
C6. On the aborigincs of the castern fronticr with vocabularies of Burman written and spoken, Singpho, Naga, Abor-miri and Miri, by the same. J. A. S., Ben., XVLII., 967.
66. On the aborigines of southern India, by the same. Ibid, 350 .
67. On the aborigines of Central India, by the same. Lbid, XVII., ii., 550.
68. On the aborigires of the north-eastern frontier, by the same. 1bid, XIX., 309.
69. Indo-Chinese borderers and their connection with the Himálayans and Tibetans, by the same. 1bid, XXII., 1.
70. Caucasian and Mongolian affinities, by the same. Ibid, XXII., 26.
71. Compayative vocabulary of the languages of the broken tribes of Nepal: [(1) Dahi or Darhai ; (2) Denwar; (3) Pahi or Pahari ; (4) Chepáng ; (5) Bhrímu ; (6) Váyu or Háyu ; (7) Kuswar ; (8) Kusunda ; (9) Pakhya (unbroken) ; (10) Thaksya (do.); (11) Tháru], and comparative vocabulary of the (seventeen) dialects of the Kiránti language, also a Vayu and a vocabulary and grammar, by the same. Ibid, XXVI, 317 : XXVII., 393.
72. On the Váyu tribe, by the same. Ibid, XXVII., 443.
73. On the Kirúnti tribe, by the same. Mid, 446.
74. The Magar language of Nepal, by J. Beames, J. R. A. S., IV,, 1869.

Note.-Articles Nos. 44, 45, 62, 64—66, 68, 69, 70—74 above have been reprinted in Miscellaneous Essays relating to Indian subjects, by B. H. Hodgson, London, 1880.

Section D.-Kali to the Satlaj.

1. Ilustrations of the botany and other branches of the Natural History of the Himálayan mountains, by J. Forbes Royle. London, 1839.
2. Notes of an excursion to the Pindaree Glacier in 1846, by E. Madden. J. A. S., Ben., XVI., 226, 596 (chiefly botanical).
3. The Turaee and outer mountains of Kumaon, by the same. Ibid, XVII., i., 349 : XVIII., i., 603 (chiefly botanical).
4. Description of the (so-called) meuntain trout of Kumaun, by J. McClelland. Ibid, ГV., 39.
5. Notes of observations on the Boksas, by Dr. J. L. Stewart. 1bid, XXXIV., ii., 147.
6. Ancient remains in the Garhwál Bhábar, by H. Pullan. Ibid, XXXVI., 155.
7. Narrative of a survey for the purpose of discovering the source of the Ganges, by Capt. F. V. Kapier. As. Res., XI., 446.
8. Pilgrim's wanderings in the Himmala, by Barron. Agra, 1844.
9. Report on the Bhotia mahals of Kamaon, by G. Traill. J. A. S., Ben., II., 551. Reprinted in Kumaon Reports.
10. A. few notes on the subject of the Kumaon and Rohilkhand Tarái, by J. H. Batten. Ibrid, XIII., 887.
11. Extract from the joumal of J. Weller on a trip to the Bulcha and Oonta Dhoora passes, edited by the same. Ibid., XII., 78.
12. Journal of a visit to Melum and the Oonta Dhoora pass in Jawáhir, by E. Masson, edited by the same. Ibid, XI., 1157.
13. Note of a visit to the Niti pass of the grand Himálayan chain, by the same. Ibid, VII., 310.
14. Notice of a trip to the Niti pass. Ibid, XIX., 79.
1.5. Account of a visit to the Biáns pass. Gl, in Sci., I., 97.
15. Notes on a trip to the Kedamath and other parts of the snowy range of the Himálayas in 1853 (by J. M.) Edinbargh, 1856.
16. The Himálaya in Kumaon and Garhwál. Col. Rev., XVIII., 72.
17. Kumaon and its Hill stations. lbid, XXVI., 373.
18. On the Physical geography of the Fimálaya, by B. H. Hodgson. J. A. S., Ben., XVIII., ii., 76.
19. On the Physical geography of the provinces of Kurman and Garhwál in the Himálaya mountains and of the adjoining parts of Tibet, by Capt. (now General) R. Strachey. J. R. G. S., XXI., 57 (1851).
20. Explanation of the elevation of places between Almora and Gangri, by Lieut. H. Strachey. J. A. S., Ben., XVII., ii., 527.
21. Narrative of a joumey to Cho Lagan (Rakas Tal), Cho Mapan (Manasarowar), and the valley of Pruang in Gnari Hundes, by the same. J. A. S., Ben., XVII., ii., 98, 127, 327.
22. A description of the glaciers of the Pindur and Kuphinee rivers in the Kumaon Himálaya, by the same. Ibid, XVI., 794, 1002.
23. Notice of Lieut. H. Strachey's scientific inquirjes in Kumaon and Garhwal. Ibid, XLX, 239.
24. Note on the motion of the glacier of the Pindur in Kumaon, by Lieut. $\mathrm{H}_{\text {F }}$ Strachey. 1bid, XVII., ii., 203.
25. A Sketch of the mountains and river-basins of India, by Trelawny Saunders. India Office, London, 1870.
26. Trans-Himálayan missions and their results. Cal. Rev., Jan. 1877, 115.
27. Geographical Magazine (London), IV., 113 (May, 1877), by C. R. Markham, on "the Himalayan system," and p. 173, by T. Saunders, on the same subject, being a reply to the preceding article in the Calcutta Rexiew.
28. A memoir on the Indian Surveys, by C. R. Markham. London, 1878.
29. On the snow-line in the Himálaya, by Lieut. H. Strachey. J. A. S., Ben., XVIII., i., 287.
30. On the limits of perpetual snow, by Capt. J. D. Cunningham. IVid, XVIח., ii., 694.
31. Remarks on the snow-line, by Capt. T. Hutton. Ibid, 954.
32. Reports on the trans-Himálayan explorations in connection with the Great Trigonometrical Survey of India, 1866-67, 1867, 1868, 1869, 1870, 1871, 1872, 1873-75, 1876, 1877, zix.—
(1.) Route-survey from Nepál to Lhása, and thence to the sources of the Brahmaputra, made in 1865̈-66, As well as a route survey through western Nepál and from Niti to Gartokh and back.
(2.) Route-survey from Mána to Totling, thence to Demehok and along the northern branch of the Indus to Thok Jalung and back to Milam, in 1867.
(3.) Surveys from Rudok by the gold fields to King-lo, and thence to the Mánasarowar lake; from Mánasarowar to Shigatze and from the Tadam Monastery to Muktináth in Nepál; also along the Tingri maidan in the eastern Himálaya, 1868.
(4.) Survey from Kabul to Badakshán and through the upper valley of the Oxus to Kashgar and back by the Karakoram, 1867-68.
(5.) Survey from Peshawar to Fyzabad in Budakshná, 1870.
(6.) Exploration of the Namcho or Tengri Nur lake in Tibet, 1872, and Havildar's journey from Kabul to Bukhara, 1872.
(7.) Account of the survey operations in eastern Turkistan, 1873-74, in connection with the Yarkand Mission, by Capt. H. Trotter, R.E.
(8.) Survey from Badakshán to Koláb, Darwaz, and Kubadian to Balakh in 1873.
(9.) Journey from Jalálabad to Sarhadd-i-Wakhan by the Baroghil pass in 1873.
(10.) Journey from Leh in Ladákh to Lhása, and thence by Chetang to Odalguri near Tezpur in Asám, July 1873 to March, 187 ó.
(11.) Indus river from Amb to Bunji ; Yassin to Mastuj and thence to Barkulti ; Sar Laspur to Dodbáh near Dir; Miankalai to Pachat near New Kunar by Nawagi and Nawagi to Abazai in 1876.
(12.) Mr. E. C. Ryall's exploration of Hundes to the north of Kuniaon and Garhwal, 1877.

Account of the operations of the G. T.S., India, Vol. I. (1870), II. to IV. (1879). Dehia Dún, 1879.

Section E.-Satlaj to the Indus.

1. Journal of a tour through part of the snowy range of the Himálaya mountains and to the sources of the rivers Jumna and Ganges, by J. B. Fraser. London, 1820.
2. Travels in the Himólayan provinces of Hindustan and the Panjáb ; in Ladákh and Kashmir ; in Peshawar, Kábul Kunduz and Bokhára, by W. Moorcroft and G. Trebeck, from 1819 to 1825, edited by H. H. Wilson. London, 1841.
3. Account of Koonawar in the Himélayas, by Capt. A. Gerard. London. 1841.
4. Notes on Moorcroft's travels in Ladákh and on Gerard's account of Koonawnr, by Capt. J. D. Cunningham. J. A. S., Ben., XIII., 172, 223.
5. Journal of a trip through Kulu and Lahul to the Chumureri lake in Ladákh in 1846, by Capt. A. Cunningham. Ibid, XVII., i., 201.
6. Kashmir and das Reich der Siek, by C, Von Hugel, tranglated into English by Major Jervis. London, 1845.
7. Notes of a visit to the valley of Kashmir in 1836, by Baron Hugel. J. A. S., Ben., V., 184, 303.
8. Travels in Kashmir, Ladákh, Iskardo, the countries adjoining the mountain course of the Indus, \&cc., by G. J. Vigne. London, 1842,
9. Notice by Vigne of his travels in Kashmir. J. A. S., Ben., V., 56.

Description of the valley of Kashmir, Ghazni and Kábul, by G.J. Vigne. Ibid, VI, 766.
10. Ladakh, physical, statistical, and historical, with notices of the surrounding countries, by Major A. Cumningham. London, 1854,
11. Abstract journal of the routes to the sources of the Panjáb rivers, by the same and A. Broome. J. A. S. Ben., X., 105.
12. Correspondence of the Commissioners deputed to the Tibetan frontier, by Captain A. Cunningham. Ibid, XVII., i., 89.
13. Memorandum on the boundary between the territories of Mahárája Gúlab Singh and British India as determined by the Commissioners, by J, D, Cunningham. Ibid, XVII, ${ }_{\text {i., }} 295$.
14. Memorandum on the district of Bussahir and the pacification of the disaffected portion of the inhabitants, by G. C. Barnes. Lahore, 1859.
15. Journal of a tour through Hungrung, Kunawar and Spiti in 1838, by T. Hutton. 1bid, VIII., 901 : IX., 489, 555.
16. Journal of a trip to the Burenda pass, by the same. Ibid, VI., 901.
17. Diary of an excursion to the Boorun and Shatool passes over the Himálaya, by E. Madden. Ibid, XV., 79.
18. Journey from Soobathoo to Shipke in Chinese Tartary, by J. G. Gerard. Ibid, XI., 363.
19. Report on the valley of Spiti, by the same. Ibid, X., 198; and by W. C. Hay. Ibid, XIX., 429 ; see also As. Res., XVIII., 239.
20. Notes of a trip from Simla to the Spiti valley and Chomoriri lake in 1861, by W. Theobald. Ibid, XXXL, 480.
21. Illustrations of ancient buildings in Kashmir, by H. H. Cole. London, 1869.
22. Kashmir, the Western Himalaya, and the Afghan mountains, by Dr. A. M. Verchere. J. A. S., Ben., XXXV., ii., 89, 159.
23. Western Himalaya and Thibet: a narrative of a journey through the mountains of northern India during the years 1847-48, by T. Thomson, M.D. London, 1852.
24. Voyage dans 1'Inde, by V. Jacquemont. Paris, 1841.
25. Letters from India, describing a journey in the British dominions of India, Tibet, Lahore, and Cashmere during 1828-31, by the same. London, 1834.
26. Notes taken in 1829 relative to the territory and the Government of Iskardo, by C. M. Wade. J. A. S., Ben., IV., 589.
27. Notes on Iskardo, by Vigne. Ibid, V., 56, 308 : VI., 773.
28. The abode of snow : observations on a journey from Chinese Tibet to the Indian Caucasus, through the upper valleys of the Himálaya, by A. Wilson. Edinburgh, 1876.
29. The Jummoo and Kashmir territories : a geographical account, by F. Drew. London, 1875.
30. The northern barricr of India, a popular account of the Jummoo and Kashmir territories, by F. Drew. London, 1877.
31. A Gazetteer of Kashmir and the adjacent districts of Kishtwar, Bhadrawár, Jamú, Naoshera, Punch, and the valley of the Kishenganga, by Capt. E. Bates, B.S.C. Calcutta, 1873.
32. Handbook to Kashmir, by Dr. Ince. Calcutta, 1868.
33. Recollections of India, by the Hon. C. H. Hardinge. London, 1847.
34. Vazeeri Rupi, the silver country of the Vazeers in Kulu, by J. Calvert. London, 1873.
35. The Himálayan clistricts of Kooloo, Lahoul, and Spiti, by Capt. A. F. Harcourt. Lahore, 1874.
36. Hunting in the Himalaya, by R, H. Dunlop. London, 1860.
37. Large game shooting, Thibet and the North-West, by A. Kinloch. London, 1876.
38. The large and small game of Bengal and the North-Western Provinces of India, by S. J. Baldwin. London, 1876.
39. From the Hebrides to the Himálayas, by C. F. G. Cumming. London, 1876.
40. A grammar and vocabulary of the Kashmiri language, by M. P. Edgworth, J. A. S., Ben., X., 1038
41. A grammar of the Kashmiri language, by R. Leach. Ibid, XIII., 397, 553.
42. Kashmiri vocabulary and grammatical forms, by L. Bowring. Ibid, XXXV., ii., 225.
43. A vocabulary of English, Balti and Kashmiri, by Capt. H. H. Godwin Austen. Ilvid, XXXV., i., 223.
44. A vocabulary of the Kashmiri language, by Dr. W. J. Elmslie. London, 1872.
45. Kashmiri test-words, by the same. J. A. S., Ben., XXXIX., 05.
46. A vocabulary of the Roonawar language, by A. Gerard. Lbid, XI., 479.
47. Manners and custom of the Dards, by G. W. Lcitner. Ind. Ant., I., 7, 84, 187.
48. The languages and races of Dardiston, by the same. Lahore, 1877.

Section F.-Afghanistan.
 (a)-BaLochistan.

1. Notes taken on a tour through part of Baluchistan in 1838-39 by Haji Abdun Nabi of Kábul, edited by R. Leech. J. A. S., Ben., XIII., 667, 780.
2. Some account of a journey from Kurrachee to Hinglaj in the Lus territory, descriptive of the intermediate country and of the port of Sonmeance, by N. Hart. Ibid, LX., 134.
3. Map of the route to Hinglaj, by the same. Ibid, IX., 615.
4. Journeys in Balochistan, Afghanistan, the Panjáb, and Kalat, by C. Masson. London, 1844.
5. Caravan journeys and wanderings in Persia, Afghanistan, Turkistan, and Baluchistan, by J. P. Ferrier. London, 1856.
6. Travels in Beloclistan and Scindc, by H. Pottinger. London, 1816.
7. Central Asia, Part III., Balochistan, by Col. MacGregor. Calcutta, 1875.
8. The country of Balochistan, by A. W. Hughes, London, 1877.
9. Gazetteer of Sind, by the same. London, 1874.
10. Report on the country between Kurrachee, Tatta, and Sehwan Scinde, by E. P. de La Hoste, J. A. S., Ben., LX., 907.
11. Brief history of Kalat, brought down to the deposition and death of Mehrab Khan Brahoce, by R. Leech. Ibid, XII., 473.
12. Memorandum on the Beloch tribes in the Dera Gházi Khán district, by Capt. Minchin. Lahore, 1869.
13. Sindh and the races that inhabit the Indus valley, by R. Burton. London, 1851. Corespondence relative to Sinde, 1836-43, presented to both houses of Parliament by Her Majesty's command. Calcutta, 1844.
14. Note on the Brahooes, by N. Hart. Ibid, X., 136.
15. General notice of the tribes of Kujjukzes, by the same. Ibid, IX., 1214.
16. Report on Upper Sindh and the eastera portion of Cutchee, with a menaorandum on the Beloochee and other tribes of Upper Sindh and Cutchee, by J. Postans. Ibid, XII., 123.
17. Vocabulary of the Scind language, by J, B. Eastwick. Bombay, 1843, and J. A. S., Ben r, XII., 1,
18. Sindhi and English dictionary, by G. Stack. Bombay, 1865.
19. Sindhi reading-book, by Dr. E. Trumpp. London, $18 \overline{\mathrm{~S}}$.
20. Grammar of the Sindhi language, by the same. London, 1872.

21: Grammar of the Sindhi language, by W. H. Wathen. J. A. S., Ben., VI., 347.
22. Epitome of the grammars of the Brabniky, the Balochky, and the Panjábi languages, with rocabularies of the Baraky, the Pashi, the Laghmani, the Cashgari, the Teerhoi, and the Deer dialects, by Lieut. R. Leech. Ibid, VII., 538, 608, 711, 780.
23. A Balochec grammar, by E. Mockler. London, 1877.

(b) -Westimn frontier.

24. Narrative of a journey into Khorasan and the countries north-east of Persia in 1821-22, by J. B. Fraser. London, 1825.
25. Extracts from a demi-official report on a mission into Khorasan, by A. Conolly. J. A. S., Ben., X., 116, 718.
26. Ibn Haukul's account of Khorasan, by W. Anderson. IVid, XXII., 162.
27. A description of the country of Seistan, by R. Leech. Ibid, XIII., 115.
28. Sketch of the physical geography of Seistan, by A. Conolly. Ibid, IX., 710.
29. Journal kept whilst tiavelling in Scistan, by the same. Ibid, X., 319.
30. Narrative of a journey from Heraut to Khiva, by Capt. J. Abbot. London, 1843.
31. Central Asia, Part IV., Persia, by Col. MacGregor. Calcutta, 1871.
32. Narrative of a journey through the Province of Khorasan and on the northwestern frontier of Afghanistan in 1875, by Col. C. M. MacGregor. London, 1879.
33. From the lndus to the Tigris : a narrative of a journey through the countries of Baluchistan, Afghanistan, Khorasan, and Iran in 1872 : together with a synoptical grammar and vocabulary of the Brahoe language, by H. W. Bellew. London, 1874.
34. Clouds in the east: travels and adventures on the Perso-Turkoman frontier, by V. Baker. London, 1876,
35. Journey on the Turkoman frontier of Persia, by G. Napicr. P. R. G. S., XX., 3.
36. Eastern Persia: an account of the journeys of the Persian boundary commission, 1872. London, 1876.
37. The sixth great oriental monarchy, or the geography, history, and antiquities of Parthia, by Professor Rawlinson. London, 1876.
38. The seventh great oriental monarchy, or a history of the Sassanians or new Persian Empire, with notices, geographical and antiquarian, by the same. London, 1876.
39. Persia, from the earliest period to the Arab conquest, by W. S, W. Vaux. London, 1876.

> (c)-ATGHANISTAN.
40. Journcy from Bengal to England through Kashmir, Afghanistan, and Persia into Russia, by G. Forster. Londlon, 1798.
41. Account of the kingdom of Cabul, comprising a history of the Afghan nation, by M. Elphinstonc. London, 1818.
42. Account of the kingdom of Cabul and its dependencies in Persia, Tartary, and India: a view of the Afghan nation and history of the Dooraunee monarchy, by the same. London, 1842.
43. Narrative of a visit to Ghazni, Kabul, and Afghanistan, by G. Vigne. London, 1840.
44. Journcy to and residence in Cabul, by A. Barnes. London, 1842.
45. Journey to the north of India overland from England, by A. Conolly. London, 1834.
46. Ariana Antiqua: a descriptive account of the antiquities and coins of Afghanistan, with a memoir on the buildings called topes, by C. Masson, by H. H. Wilson. London, 1841.
47. Ancient geography of India: Buddhist peried, by A. Cunningham. London, 1871.
48. Memoirs of Zehir-ed-in Muhammad Baber, written by himself in Jaghatai Turki, translated from the Persian version by Leyden and Erskine. London, 1826.
49. Geographical notice of the valley of Jalalábad, by G. H. MacGregor. J. A. S., Ben., XI, 117.
50. Notice of Jalálabad, by J. G. Gerard. Ilid, III., 325.
51. Journal of a political mission to Afghanistan in 1857, by Dr. Bellew. London, 1862.
52. On the higbland region adjacent to the trans-Indus frontier of India, by Col. J. T. Walker. R. G. S. J., XXXII., 316.
53. Central Asia, Part II., Afghanistan, by Col. MacGregor. Calcutta, 1875.
54. Survey operations of the Afghanistan expedition, the Kurram valley, by Capt. G. Martin. P. R. G. S., I., 617, N. S.
55. Afghan geography, by O. R. Markham. P. R. G. S., XX., 4, 1876.
56. Mountain passes on the Afghan frontier, by the same. Ilid, I., 38, N. S.
57. The upper basin of the Cabul river, by the same. Ibid, 110.
58. The basin of the Helmund, by the same. 1bid, 191.
59. The mountair passes leading to the valley of Bamian, by Lieut.-Col. Kaye. Ibid, 244.
60. March and operations of the army of the Indus to Afghanistan in 1838-39, by Major W. Hough. London, 1841.
61. British operations at Kábul in 1841-42, by the same. London, 1849.
62. Campaign in Sinde and Afghanistan, by Col. Outram. Londen, 1840.
63. Narrative of the campaign of the army of the Indus, in Scind, and Cabul in 1838-39, by R. H. Kennedy. London, 1840.
64. Diary of a march through Sinde and Afghanistan, by Rev. J. N. Allen. London, 1843.
65. Sale's brigade in Afghanistan, by Rev. G. R. Gleig. London, 1846.
66. The Sikhs and Afghans immediately before and after the death of Ranjit Singl, from the journal of an expedition to Cabul through the Panjúb and the Khaibar Pass, by Shahamat Ali. Calcutta, 1847.
67. History of the war in Afghanistan, by J. W. Kaye. London, 1851.
68. Reminiscences of forty-three years in India, by Lieut.-Gew. Sir. G. Lawrence. London 1874.
69. A retrospect of the Afghan war, with reference to passing events in Central Asia, by Sir V. Eyre. London, 1869.
70. The Panjáb and North-Western frontier of Lndia, by Major-Genl. II, Coxe, London, 1878.
71. Gencral Gilbert's raid to the Khaibar, by R. W. Bingham. London, 18 \% 0.
32. History of Afghanistan from the earlier period to the outbreak of the war in 1878, by Col. Malleson. London, 1879.
73. Journal of a tour through part of the Panjáb and Afghanistan in the year 1837, by Agha Ablass of Shiraz, edited by R. Leech. J. A. S., Ben., XII., 564.
74. Account of parts of the Cabul and Peshawar territories, by the same. Jbid, XIV., 660.
75. Reports by Burnes, Lord, and Wood, political, gcographical, and commercial, on Scinde and $\Delta f g h a n i s t a n . ~ C a l c u t t a, ~ 1839$.
76. Memoir on the climate, soil. produce, and husbandry of Afghanistan, by Lieat, Irwin. J. A. S. Ben., VIFI., 745, 779, 869, 1005 : LX., 33, 189.
77. Extracts from a leport on subjects connected with Afghanistan, by W. Griffiths. Ibid, X., 977.
78. Notes on the geography of Western Afghanistan, by W. Anderson. Thid, XVIII., i., 553.
79. Verification of the itinerary of Hwen Thsang through Afghanistan and India, by Capt. A. Cunningham. Ibid, XVII., i., 476, and ii., 13.
80. Route from Dera Gházi Khán through the Veziri country to Kábul, by M. Honigberger. Ibid, III., 175.
81. Route from Dcra Ghazi Khán to Kandahar tlrough the Sakhi Sarwar and Bozdar passes, with other routes, by R. Leech. 1bid, XIII., 527.
82. Diary of a trip to Pind Dadan Khán, \&c., by A. Fleming. Ibid, XVI., I., 664.
83. Account of Ghazni. Ibid, VE., 775.
84. Itinerary from Yezd to Herat (official). XIII., 827.
85. Route from Kandahar to Herat (oficial). XIII., 121.
86. Report of a journey by Candahar, Kábul, and the Panjúb from Herat to Simla, by Major Todd. XIII., 339.
87. Description of Herat, by Mohan Lal, III., 9.
88. Central Asia, Part I., our north-western frontier, by Col. MacGregor. Calcutta, 1871.
89. Bannu, or our Afghán frontier, by S. Thorburn. Jondon, 1876.
90. Notes on the Bunroo district, by Major H. B. Urmston, Lahore, 1869.

> (d)-LANGUAGES.
91. Dictionary of the Panjábi language, prepared by a Committee of the Lodiana Mission. Lodiana, 185t.
92. Pukhto-English dictionary, by H. G. Raverty. London, 1860.
93. Grammar of the Pukhto or Pushto language, by the same. London, 1869。
94. Grammar of the Pashto, or language of the Afghans, by Dr. E. Trumpp. London.
95. Dictionary of the Pukkhto or Pukshto language, by H. W. Bellew. London, 1867.
96. Grammar of the Pukkhto language, by the same.
97. Grammar of the Pushtoo or Afgháni language, by R. Leech. J. A S., Ben., VIII., i. : XXIII., 550.
98. Is the Pushto a Semitic language? by Rev. I. Loewenthal. Ibid, XXIX., 323.
99. Some remarks on the origin of the Afghan people and dialect, by H. G. Raverty, Ibid, XXIII, 550.
100. Translation of the Pukhto text-book, Kalid-i-Afghani, by 'T. C. Plowlen. Lúhore, 1875.
101. Notes on the Eusofzye tribes of Afghanistan, by E. Conolly. Ibid. IX., 924 : XVII., i., 624.
102. Report on the Yoosoofzaie district, by Lieut. H. B. Lumsden. Sel. Rec. Panj., I., 5, 1853. And Covert, J. A. S., Ben., V., 481.
103. Au account of the early Gliiljaecs, by R. Leceh. Ibid, XIV., 306.
104. An account of the early Abdalees, by the same. Ihid, XIV., 445.
105. An account of the Mazarehs, by the same. Ihid, XIV., 393.
106. Accouṇt of Roh in Derajat, by H. G. Raverty. Ibid, XXVI., 177.
107. The district of Dera Ismáil Khán, by T. W. Tolbort. Ibid, XL., 1.
108. History of the Gakkhars, by J. G. Delmerick. Ilid, XL., 67.
109. Kough notes on the Khutuks of the Teree country and Khurah below Δ tok, by Lieut. F. H. Pollock. Lahore, 1850.
110. Report on the eastern Khutuks, by Lieut. H. Lumsden. Ibid, 1851.
111. The lower Deraját frontier, by Capt. G. O. Jacob. Ibid, 1854.
112. Eohistan of the Jullundhur Doab, by Lieut. Parish. J. A. S., Ben., XVII., i., 281 : XVITT., i., 360.
113. The Syads of Tira and their quarrels with the Sunis, by Capt. P. Cavagnari of Kohat. Jahore, 1875.
114. Notes on the Dera Ghazi Khán district and its border tribes, by R. Bruce. Lahore, 1871.
115. Memorandum on the Dera Gházi Khán district. Sel. Rec. Panj., IV., 4, 1860.

> (e)-Kohistán.
116. An account of upper and lower Suwat and the Kohistín to the source of the Suwat river and of the tribes inhabiting those valleys, by Capt. H. G. Raverty. J. A. S., Ben., XXXI., 227.
117. An account of upper Káshkár and Chitrál or lower Kashkár, together with the independent Afghén State of Panjkorah, including Talish, by the same. Ibid, XXXIII., 125.
118. An account of the Panjkora valley and upper and lower Káshkára, by Rajah Kháa of Cabul, edited by R. Lecch. Ibid, XIV., 812.
119. Some account of a visit to the plain of Kolh-i-Daman, the district of Ghorband, and the pass of Hindu-kush, by P. B. Lord. Ibid, VII., 521.
120. On the Sialh-posh Kaffirs, with specimens of their language and costume, by Capt. A. Burncs. J. A. S., Ben., VII., 325.
121. Information regarding the Siah-posh tribe, by A. Burnes. Ibid, II., 305.
122. Further information regarding the same, by Mohan Lall. Ibid, III., 76.
123. On the language of the Siah-posh Kafirs, with a short list of words, to which are aided specimens of Kohistáni and other dialects spoken on the northern borders of Afghánistan, by ․ G. Raverty. Ibid, XXIII. 267.
124. Notes on Kafiristan, by the same. Ilid, XXVIII., 317.
125. On the language of the so-called Kiafirs of the Indian Caucasus, by Dr. 'Trumpp. J. B. A. Sọc., XIX,

Section G.-Pamir and Turkistan.

1. Memarandum on rontes from the Pimjály to eastern Turkistán, Ly T. D. Forsyth. Lalore, 1868.
2. Report on the ronte to the Karakasls malley and pass, by Dr. H. Caley. Ihid.
3. Results of a scientific mission to India and High Asia, by II. A. and R. von Schlagentweit. Leipzig, 1861-66.
4. Ronte-book of the weatern parts of the Himblaya, Pibet and Central Asia, by the same. Leipzir, 1863.
5. Lahore to Yarkand, by G. Hemderson and A. Hume London, 1872.
6. Visits to High Tartary, Yarkand and Kashgarh, by R. shaw. London, 1871.
7. The Roof of the world, being the narrative of a journey over the high platean of 'Tibet to the Russian frontier aud the Oxus sontces on P'imir, by Lient.-Col. T. E. Gorton, C.S.I. Edinhurgh, 1876.
8. Kashmir and Kashgarh, a narrative of the journey of the embassy to Kashgarla in 1873-74, by H. W. Bellew, C.S.I. Loudon, 1875.
9. Report of the mission to Yarband in 1873 under command of Sir T. D. Forsyth. Calcutte, 1875.
10. Account of the survey operations in E. Turkistan, 1873-74. by Capt. H. Trotter. Calcutta, 1875.
11. A sketch of the Turki langugge as spoken in E. Turkistín, by R. P. Shatw. Lahore, 1875.
12. Les confins Anglo-Russes dans l'Asic Centrale: Wtude historique, geographique, politique, et militaire sur la Kachgarie (l. Turkistán), by Capt. Kouropatkine. Translated by G. TeMarchand. Paris, 1849.
13. Benoit de Goés, missionaire voyagemr, $1603-07$ (in W. Turkistan), by I. Brucker. Lyons, 1879.
14. Route from I'eshawar to Bokhara, by Dr. Gerard and Licut. A. Burnes. J. A. S., Ben., I., 139 : II., i., 143, 224.
15. Memoir on the Usbek State of Kokan, callect Khokend (the ancient Ferglana); by W. H. Watheu. Ilidl, III., 369.
16. Memoir on Chinese Tartary and Khoten, by the same. Ibid, IV., 6 B3.
17. Notes on the manners and habits of the Turkoman tribes, with some geogra: phical notices, by E. Stirling. IVid, X., 290.
18. Russian geographical operations in Asia, ly Col. J.T. Walker. 1bid, XXXY , 77.
19. Note on Central Asia. llid, XXXIV., 113.
20. Central Asia, by T. Mutton. London, 1874.
21. Central Λ sia and the Anglo-Russian frontier, by A. Vambery. London, 1874.
22. History of Bokhara, ly the same. Landon, 1873.
23. Asie Centrale, recherches, by A. von Humboldt. Paris, 1843.
24. Travels into Bokhara, journey from India to Káloul, Tartary, and Persia, and voyage on the Indus, by A. Burnes. London, 1834.
25. Diplomatic transactions in Central Δ sia, 1834-38, by J. Urquhart. London, 1841.
26. Journey to the source of the Oxus by the route of the Indus, Kabul and Badakshan, by J. Wood. London, 1841. New edition, London, 1872.
27. Narrative of a mission to Bokhara in the years $1843-45$ to ascertain the fate of Col. Stoddart and Capt, Conolly, by Dr, j. Wolf. London, 1846.
28. Mèmoire sur lir partie méridionale de l'Asic Centrale, by N. de Khanik of. Paris, 1861.
29. Notes of a journey in Russian Turkistan, Khokand, Bokhara and Kuldja, by E. Schayler. London, 1876.
30. Campaigning on the Oxus and the fall of Khiva, ly J. A. MacGalkata. London, 1876.

Section H.-Tibet.

1. Geographical notice of Tibel, by Csoma de Kürös. J. A. S., Ben. I., 121.
2. The physical grography of Westeru Tibet, by Capt. H. strachey. London, 1854, and J. R. G. S. XXIII., 2.
3. Thibet nach den resultaten geographischer forschungen fiüherer und nenester zeit, by K. Ganzemmïller. Stuttgart, 1877.
4. 'Sibet, Tartary and Mongolia, by H. T'. Prinsep. London, 1851.
5. Exploratious in Western Tibel by the Trans-Himalayau parties of the G.T.S. P. R. G. S., 444, 1879.
6. Mistorie générule des Huns, des Tures, des Mongols el des autres 'lartares oceidentaux, by Des Guignes. Puris, 1756-58.
7. History of the Mongols, by I. II. Howorth. London, 1876 .
8. History of the Genghizan the Grent, first Emperor of the ancient Moguls and Tartars, by Petis de la Croix, translated into English. Calcutta, 1819.
9. The book of Scr Marco Polo, concerning the kingdons and marvels of the easl, edited by Col. Yule. Lonclon, 1875.
10. Cathay and the way thither, by the same. London.
11. Recueil de 'Turkestan: compreuant des lives et des articles sur' l'Asie Centrale en génćral et la province du Turkistan en particulier, by V. J. Mejow. St. Petersburg, 1878.
12. Notices of the mediæval geogiaphy of Central and Western Asia, by \mathbb{E}. Bretschneider. Jondon.
13. Notes on Chinese medixval travellers to the west, by the same.
14. Itiméraite de Marco l'olo á travers la région da Panir alu Nille siécle, by J. B. Piquier. Paris, 1876.
15. Le Pamir : étude de géographie physique et historique sur l'Asic C'entrale, by the same. Paris, 1876.
16. The Russians in Central Asia, their relations with Khiva, Boklara and Kokand, descriptions of Chinese Turkistan and Dzungatia from the Russiun of Valiklanoff, se., by Mesprs. Michell. London, 186ã.
17. Le Kohistan, le Ferghanah et Kouldja, avec am appendice sur la Kachgarie, by C. E. de Ujfalvy de Muso-Kövesd. Paris, 1878.
18. Le Syr-Daria, Le Zératchàne, les pays des sept-riviéres et la sibéric-occidentale, by the same. Paris, 1879.
19. Résultats anthropologiques d'un voyage en Asie Centrale, communiqués au Congrés anthropologique de Moscon, by the same. Paris, 1880.
20. Dic Russen in Central Asien, by Fr. von Ilellwald. Augsburg, 1877.
21. Pévtsoff's expedition in North-Western Mongolia, by E. D. Morgan. P. R. G. S. 701, 1879.
22. The Russians on the Δ mur, by E. G. Ravenstein. London, 1861.
23. England and Russia in the East: a series of papers on the political and geographical condition of Central Asia, by Major-Gencral Sir Henry Rawlinson. London, 1875.
24. Mongolia, the Tangut country and the solitudes of Northern 'Tibet; being a narrative of three years' travel in eastern High Asia, by Licut.-Col. N. Prejevalsky. London, 1876.
25. From Kulja across the Tian-Sláu to Lob Nor, by the same. London, 1879.
26. The river of Golden Sand, the narrative of a jouruoy through China and eastern Tibet to Burmah, by Captain W. (ill, R. E. ; with an introductory essay by Colonel H Yule, R. L., London, 1980.

CHAPTER II.
 Physical Geogimphy of the Himálapa.

CONTENTS.

Abstract

The Himdayan river basins-The Indus basin-Subordinate systems of the Indus basin ; The Ganges basin-Subordiuate systems of the Ganges basin; The Brahmaputra basin-Sulordinate systems of the Brahmaputra basin ; Systems of Tibet-Lob-Nor basin; Oxus basin. Plains of Hindustan-Indus plain; Indian desert; Gangetic plain ; Asúm valley; Bhábar ; Tarai ; Siwáliks; Dúns. Extent of Bhibar-Cause of the deposit-Hodgson's oceanic theory; Fluviatile thenty ; 'Tarai ; Siwáliks; Dúns; Ganges to Bralımapntra; Lower Himálaya. Materials of the mountains-Eocene period ; Mode of mountain formation; Mountainsculpture ; Ice-wedges; Avalanches; Glaciers ; Rain ; Rivers.

We have already decided to restrict our use of the word 'Himalaya' to that portion of the great mountain girdle which lics between the bend of the Indus on the west and the unexplored gorge of the Brahmaputra on the east. Hodgson, in 1849, estimated the length of this range at 1,800 miles with a mean breadth of about 90 miles, a maximum breadth of 110 miles, and a minimum breadth of about 70 miles. In fixing the breadth of the Himalaya, however, as in determining its lengll, we have similar difficulties to contend with. For, as we have seen that the popular estimate as to the boundaries of the range may possibly be correctly extended both on the east and on the west, so on the north, the channels of the Indus and the Brahmaputra, which are commonly assigned as the northern limit, are found in a phateau, but little lower than the passes by which the traveller crosses the first line of snowy mountains into libet. On the south, we have a well-marked descent to the plains of India, bat on the north there is no immediate descent to a lower country boyond. On the contrary, range after range is met with to the north, many of which may compete in altitude with the snowy mountains seen from the plains of northern India.

Before proceeding to a closer examination of the form of that

[^21] portion of the Himalaya lying within tho province of Kumaton, it will be comvenient briefly to describe the river-basins hroughout the Himálaya and
endeavour to trace the general law underlying their arrangement. For as this depends in the main on the direction of the great ranges and the position of the groat peaks, a consideration of it will conduce to a clearer apprehension of the entire mountain system itself as well as of the relations of its various parts. We find that from a water-parting about longitude 81° east and almost immediately due morth of Kumaon, the drainage of the southern part of the Clibetan plateau flows north-west in the Indus and south-east in the Brahmaputra. 'These two rivers maintain a course along the length of the table-land, and receive as they proceed the drainage of a large part of its breadth ; the exceptions being, first, the eastern border, which apparently is drained by the Lu-tse, the Lan-tsang, and the Murui-ussu, one of the sources of the Yang-tse-kiang ; ${ }^{1}$ second, an occasional strip along the southern edge from which the water passes. of ${ }^{2}$ more or less directly to the south through the Himálaya; and third, the north-western part from which the water has no escape, but is collected in lakes at the lowest level it can reach. ${ }^{3}$ The waters thus accumulated in the two great streams are at length discharged by two openings in the Himálayan slope through the plains of India into the Indian Ocean. No great portion of the drainage of the table-land, so far as we know, passes in the opposite direction through the northern slope, and the area that discharges itself southward at points intermediate between the debouches of the Indus and the Brahmaputra is with one exception, that of the Satlaj, comparatively small. The waters of the northern slope with a small area of the table-land adjoining flow down to the plains of enstern Turkistán : while, in like manner, those of the southern slope with the drainage of the exceptional area along the southern border of the table-land which passes through the line of water-parting from the north, give rise to such rivers as the Jhilam, Clinnáb, Ravi, Jumna,

[^22]Ganges, Káli, Gandak, Kosi, and Tísta. We thus see that the northern crest of the table-land or the summit of its northern slope practically forms the water-parting between the rivers that flow southwards and those that lose themselves in the plain of Gobi. In the southern crest we have a subordinate water-parting separating the rivers that fall into the Indian Ocean into two classes; first, those that rise on that slope and flow directly down it to the plains of Hindustán ; and secondly, those that are collected along the table-land and are finally discharged also through the southern slope, chiefly by two concentrated channels at distant points towards the ends of the range. Captain Henry Strachey ${ }^{1}$ has called the northern crest of the table-land the Turkish, and the southern the Indian waterparting.

If we examine the river-systems having their source in the Himálaya, we find a regularity of plan and arrangement which at first sight would not be expected. Taking the Indus basin and its system, we see that the Satlaj and all the rivers that join the lmbus on it: left bank hare a south-westerly direction towards the Arabian Sea. On the cast this system is bounded by the small inland basin of the Kaggar, which receives the drainage from an inconsidcrable portion of the outer hills between the Satlaj and the Jumna, and finally loses its waters in the Indian desert. The castern water-parting of the Indus system is found in the elerated range extending from the main Himálayan mass along the left bank of the Satlaj to Rupur, and is continued thence in the uplands bordering the khadir of that river until it meets the Arvali (Aravali) rango which constitutes the north-western abutment of the table-land of Central India. The character of the slope towards the south-west will be best understood from the following table of heights taken along the course of the Satlaj to Ludhiana, and thence by the Grand Trunk Road to the Jumna :-Táru, about two miles below the junction of the Panjnad and Indus, 337 foet above the level of the sea; Baháwalpur, 375 feet ; Núr Shál, 481 fcet; Pír Khális, seven miles north-east of Baháwalgarl, 548 fcet; Fazilka, 588 feet; Firozpur cantomment, 645 feet ; Jagraon, 765 feet ; Ludhiána, 806 feet; Amballa Church, 899 feet; and Madalpur, on the banks of the Jumna khádir, 906

[^23]feet. From Sodiwala in the Firozpur district southwards on the 75 th meridian we have Sodiwíla, 718 feet; Alımadwála, 705 feet; Sirsa, on a mound, 737 feet; level of Samblar lake, 1,184 feet. ${ }^{1}$ These olservations show a slight depression towards the south in addition to that towards the south-west, and would make us include the Kaggar inland basin in the Indus system. The Sotra or Hakra, the ancient river of the Indian desert, seems, however, to have once had its debouche in the Ran of Kachh, ${ }^{2}$ and would therefore be still entitled to be considered separate. To the west the Rávi and the Chinály run in lines almost parallel to the Satlaj, as well as the Jilam, from the town of that name, until it takes a bend to the south to its junction with the Chínáb. To the west, the water-parting of the Indus commences at Cape Monze on the Arabian Sca, and advances nearly northwards along the Hala mountains to the east of Sohrál, Kalát, and Quettah (Kwatah). It thence continues in the same direction along the western Sulaimán range, also known as the Konak, and Kúb Jadrán range to the Safed-koh, at the head of the Kurram valley. Thence it follows the crest of the Safedkoh westwards to the hills north of Ghazni, where it separates the southern affluents of the Kábul river from the waters of the small inland basin of lake Abistida. The direction is then continued northwesterly to the ridge separating the head-waters of the Argand-áb from those of the Kabul river, and again in the range that separates the waters of the Halmand basin from the most westerly affluents of the Kábul river, whence a transverse ridge near the pass to Bámian conncets the line of water-parting with the Hindu-kush. For 300 miles the line follows the Hindu-kush to its junction with the great Taghlambásh P'amír near the Baroghil pass. It then follows the Muztagh range, ${ }^{3}$ but cuts through it around by the Kárakoram pass to the north, so as to include the tributaries of the Shayok, and proceeds in a south-easterly direction by the Aling Gang-ri to its junction with the Gang-ri at Kailas, where a transverse ridge separates the head-waters of the Indus, the Brahmaputra, and the trans-Himálayan fceder of the Ganges system. The Indus has a length of 1,800 miles, and, according to Mr . Saunders, its basin has an area of 372,000 square miles.

[^24]The Fala mountains to the south of the Mula pass are better known Subordinate systems of as the Khirthar hills and as the Pubh hills, the Indus basin.
and the drainage from them loses itself in the plains before it can reach the Indus. The same may be said of the drainage through the Mula and Bolan passes, and that by the Thal valley. To the north, the Luni, Gomal, Kurram, and Kábul rivers, each possessing a perennial stream, have an easterly course more or less parallel to each other, and break through the range bordering the right bank of the Indus by deep and narrow gorges which form the passes into the upper country. The Kábul river itself is the drainage channel for the very elevated country from the hills north of Ghazni to the Baroghil pass north of Chitrál, and from Naushera to the pass leading to Bámián, and thus forms a compact subordinate system. well deserving of separate study. ${ }^{1}$ The upper waters of the Jhilam. drain the Tile and Kashmir valleys, and have a general direction between west and north to Muzaffarabad, where they unite, and, meeting a meridional ridge, take a bend southwards to the plains. The Chinab, in the upper portion of its course known as the Chandra, has a similar direction between west and north until it meets the spurs from the range which forms the water-parting between it and the Jhilam, whence it seeks an outlet southwards towards the plains. The Ravi runs in a valley parallel to that of the Chínáb and south of it until it meets the outliers of the range that forms the water-parting between it and the Chínáb, when it also turns suddenly southwards towards the plains. Next comes the Biás, which has also a westerly direction until it meets the ridge between it and the Ravi, when it takes a bend to the south through the outer hills. The upper course of the Satlaj has a similar westerly trend until it meets the great obstruction culminating in the Lco Porgyul peak, after which the direction is between west and south until it enters the plains. A range runs between the Satlaj and the southern branch of the Indus from the meridian of Tirthapuri by Gar, to where it is joined by the ridge connecting it with Leo Porgyul, and thence into Rupshu to the north of the Tso Moriri lake, and constitutes the subordinate water-parting between the Satlaj itself and the

[^25]Indus. Thus we see that the great feeders of the Inclus system from the west have a similar character, and that those from the cast, from the Himálaya proper, have a general westerly direction, in the upper portions of their courses in the hills, until they turn southwards towards the plains, where the direction is south-west to their junction with the Indus.

Next we have the Ganges basin with its subordinate systems.
The Ganges basin. To the nortl, the water-parting, as a rule, follows the ghait-line of the Himálaya and on the extreme west separates the sources of the Jadh-Ganga, one of the head-waters of the Bhágirathi, from the IIop-gadh, an affluent of the Satlaj. North of Kumaon, however, we have a phenomenon similar to that observed near the Kárukoram ${ }^{1}$ pass, where the waters of the Shayok, Yárkand, and Kárakash rivers have a common origin in that elevated plateau at no great distance from each other. We find that to the east of the Unta-dhura pass, north of Milam in Kumaon, the water-parting of the Ganges basin crosses to the north of the ghat-line to a place called Tara, where the sources of the Satlajj and the Karráli lie close together, "divided by an almost level plain, across which a man might walk from one river to the other in an hour or two, without a vertical ascent or descent of 500 feet," yet the waters of one stream seek the sea at Karáchi, and of the other by Goalundo. Further east the water-parting is continued in the ghat-line to the Arun river, which has its sources to the north and forces for itself a way through the Himalaya to the plains. The water-parting then follows the eastorn boundary of Nepal to the plains, where an intricate system of drainage is met with, throwing off feeders sometimes to the Brahmaputra and sometimes to the Ganges down to their junction at Goalundo. Following the line on the west from east longitude $79^{\circ} 11^{\prime}$ and north latitude 25°, we

[^26]find in the extreme north-west that the water-parting keeps to the crest of the range running along the left bank of the Baspa, an affluent of the Satlaj, and is continued by Hattu to the ridge on which Simla is built. Thence it proceeds southward, and then oastward along the right bank of the Giri to the junction of that stream with the Jumna near Rajghát. Here the water-parting turns southwards along the line separating the drainage area of the Kaggar system from that of the Junna, and continuing along the Arvali range and the edge of the Málwa platean, passes through the Jabalpur and Mandla districts, separating the sources of the Nerbudda from those of the Son, and then aloug the range connecting the Sátpuras with the Raijmahal hills to the plains, where it follows a course along the left bank of the Sabamreki to the sea. Mr. Saunders has given the length of the main stream of the Ganges as 1,514 miles, and the area of its basin at 391,000 square miles.

The Ganges basin, like that of the Indus, possesses several subor-

Subordinate systems of the Ganges basin. dinate systems that may be called in their order from west to east, the Jumna-Ganges, Kaméli, Gandak, and Kosi systems. The alpine basin of the JumnaGanges system is bounded on the west by the well-defined range which descends from the Jamnotri group of peaks to the Satlaj river, and on the east by a similar ridge descending from the Nanda Devi group of peaks and separating the waters of the Pindar from those of the Iimálayan Sarju. To the north, the ghatt-line separates it from the source of the Karnoli on the east, and the source of the Satlaj on the west. Although the upper waters of both the Jumna and the Alaknanda, or principal source of the Ganges, have at first a westerly direction, they soon take a bend to the sonth, and form the main chamels to which are directed their affluents from either side. It is remarkable that, with the exception of the Rámganga, which unites with the Ganges in the FarukLabad district, neither the Jumna nor the Ganges before their junction receives any considerable affluent of Himálayan origin during its course through the plains. The western boundary of the alpine basin of the Karnali is marked by the ridge extending from the Nanda Devi group between the Pindar and Sarju rivers, already noticed. The eastern boundary
is formed by a similar ridge descending from the Dhaulagiri groap of peaks. To the west the Sarju, eastern Ramganga, Gori, and Káli enter the plains in one stream as the Sárda. Then the Swetaganga Karnáli, and Bheri form the Karnáli, and further east we have the Jhingrak or Rápti and its affluents. All unite in the plains to form the Ghogra, which joins the Ganges to the south of the Gházipur district. But this unitising law is better exemplified in the alpine basin of the Gandak, which reaches from the Dhaulagiri group to the Gosain-thán group of peaks. We have here seven rivers named in order from west to east, the Barigár, Naráyani, Swetigandaki, Marsyángdi, Daramdi, Burhiya-Gandaki, and TrisúlGandaki. These are called the seven Gandaki by the Nepálese, and unite their waters at Tribeni within the hills to form the Gandak river of the plains. Here we have what Hodgson ${ }^{1}$ terms an admirably defined natural division lying between two great groups of peaks. In the same manner as the Karnáli basin is bounded on the west by the spur descending from the Nanda-Devi group of peaks, and on the east by the ridge from the Dhaulagiri group, so the Barigár of the Gandak system does not receive a single streamlet, from the westward of the Dhanlagiri ridge, nor does the Trisul of the same system receive any water from the east of the ridge descending from Gosáin-thán. The alpine basin of the Kosi lies between the Gosáin-thán group and the Kanchinjinga group of peaks, and, like the Gandak system, consists of seven rivers, ${ }^{2}$ known as the seven Kosis. These, named in their order from west to east, are thre Milamchi or Indrawati, the Bhotiya-Kosi, Támba-Kosi, Likhu-Kosi, Dúd-Kosi, Arun, and Tamra or Tamor. The Arun has one of its sources to the north of the line of snowy peaks seen from the plains, and the Tamor is also said to have trans-nivean affluents, but all the others rise on the southern slope of the Himalaya, and unite within the hills at Varáha-Kshetra above Náthpur. The subordinate systems of the Ganges basin thus appear to be strongly characterised by a common origin within an area bounded on the north by the ghát-line, and on the west and east by well-marked groups of culminating peaks, whence ridges descend and form the water-parting between successive systems.

[^27]The Brahmaputra basin in its full extent has not been explored, but sufficient evidence has been collected by

Brahmaputra basin. recent travellers to show that from the waterparting between the sources of the Brahmaputra and the Indus, the northern water-parting of the former river continues in a range of lofty peaks on its left bank to the bend towards the south, by which it reaches the plains of India. This range has a direction south-cast, and to the west of the 86th meridian is sufficiently distant from the Brahmaputra to allow of such afflnents as the Chachu and the Charta rivers. About the 86 th meridian, a line of peaks culminating in the Tárgot Lai stretch in a north-easterly direction to the Gyákhárma group of peaks, south-east of the Kyáring-cho or Kyáring lake, one of the sources of the Nák-chu-kha. The drainage of the southern slope of the range is sent by the Dumphu-chu into the Kyaring lake, so that the northern water-parting of the Bralımaputra must here approach much closer to the river and run in a south-easterly direction. On the 89th meridian, it descends as low as the 30th parallel in the Shiang Lahu range, which appears to be connected with the great Ninjin-thángla range of snowy peaks to the south of the Jang Namcho or Tengri-Nor lake with a trend to the north-east, for it gives the head-waters of the Ki-chu or Lhása river from its southern slope, as well as other important streams further east, regarding which our information is still very imperfect. To the north-east we find the Nák-chu-kha or Hota Sinpo, a large river that issues from the Chargut lake about north latitude 32° and east longitude 89°, and flows eastward, having its drainage area on the south, bounded by the water-parting between it and the Brahmaputra basin. This great river takes a bend to the south, and according to one of the Pandit cxplorers,' flows by Tsiamdo on the road from Lhása to Bathang, and thence through Amdu to China, under the names Máchu and Konkong. These names would connect it with the Yangtse, but if it flows by Tsiamdo it should be one of the branches of the Lan-Tsang, the name of the upper portion of the Mekong or Kambodia river. Des Godins notes that the Nu-Tse or Lu-Tse is known as the Ngen-kio in Tibet, a name which may perhaps be referred to

[^28]the Nák-chur, and it would then be the head-waters of the Salweer, whist othere claim it as the source of the Irawadi. All that can, therefore, be said is that there is a great river in eastern Tibet, between which and the Brahmaputra is an unexplored tract of country, and within it will be found the eastern water-parting of the Brahmaputra. So far as we may conjecture from the imperfect materials at our command, the range that forms the northern waterparting of the Brahmaputra takes a sudden bend southwards between the 96 th and 97 th meridians along the right bank of the Lu-Tse. Thence one branch proceeds westwards in the Patkoi range, and another southwards, between the Irawadi and Salween. To the south, the watcr-parting follows the crest of the Patkoi range, and is continued westwards in the Manipur, Lushái, and Chittagong hills, where it separates the southern affluents of the Brahmaputra from those of the Barmese systems. To the west, the water-parting is conterminons with that of the Ganges basin. Mr. Saunders estimates the course of the Brahmaputra at 1,800 miles, and the area of its basin at 361,000 square miles.

Following the systems that carry off the drainage from the south- -

> Subordinate systems of the Brahmaputra basin. ern slopes of the Himálaya and join the Brahtrace much the same regularity found in the sabordinate systems of the Ganges basin further west. The Tista system of Sikkim is bounded on the west by a ridge descending from the Kanchinjinga group of peaks, and on the east by a similar ridge from the Chumaléri group that also forms the eastern boundary of Sikkim. The alpine rivers of this system in order from west to east are the Bári Ranjit, Ratong, Lachen, Lachung, and Rang-chn, and all unite within tho hills above Kalingpong to the cast of Darjiling. The alpine basin of the Tarsa-Gangadhar system extends from the Chumalári group on the west to the ridge descending some fifteen miles east of the 90 th meridian in the 28 th parallel, and which separates the waters of the afluents of the Tarsil from those of the Manás system. The rivers of this alpine basin from west to east are the Ammo, Dor, Par, Wang, Ma, Pachu, and Tanchu, which unite within the hills to form the Tarsa and the Gangadhar tributaries of the Brahmaputra. Further cast comes the Manús system, of which the western water-
parting is conterminous with that of the Tarsa-Gangadhar system. On the east, it is bounded by a ridge descending from the group of snowy peaks to the west of the Karkang pass crossed by the Pandit on the Tíwảng route in 1873, and for its alpine feeders has the Mati, Manás, Kuru, Lhopra, and Táwáng streams, which apparently also unite within the verge of the mountains to form the Manás. Eastawarls lies the Subansiri system between the Manás and the Bihong. The Sikang-chu, which rises to the south of the Karkang pass, probably forms one of its sources, but the remainder lie within the wild country of the Abors and have not yet been explored. The southern affluents of the Bralmaputra during its course through the valley of Asím are not so important, and may be divided into two classes-those which carry the drainage of the northern slope of the hills inhabited by the Singpho, Aror, and Nága tribes, and fall directly into the Brahmaputra, and those which carry the drainage of the northern slope of the hills of the Lushái country and hill Tipura and of the southern slopes of the Jaintiya, Khasiya, and Garo hills to the Megna, which joins the Brahmaputra below Dakka. To the former class belong the Dihing, Disung, Southern Dhansiri, and Kopili, and to the latter the Barak, Súrma, and Dhani. ${ }^{1}$ To the extreme east of the Asám valley is a snowy range from which issues the Lohit or Brahmakund river that gives its name to the Brahmaputra; but geographers have applied the same name to the great river flowing by Lhása, and which the best authorities identify with the Dihong that joins the Lohit in the upper valley of Asám. The more general name of the Brahmaputra, in the upper portion of its course, seems to be 'Tsanpo' or 'Sanpo,' meaning 'the river' or 'the great river,' used like 'Ganga' in the plains and 'Kiang' in China. In Asám, the name varies with the tribe inhabiting its banks or those of its tributaries, so that the designation 'Brabmaputra,' to express the entire course of the river from its sourco to the north of Kumaon to its junction• with the Ganges, must be considered a convenient device of geographers, and not a term based on received usage. We have seen that at its junction with

[^29]the Lohit, the Brabmaputra is called the Dihong. ${ }^{1}$ East of this, junction, the Lohit, receives a tributary from the north, called the Dibong, and on the south another called the Dihing, and again one called the Disung. Much confusion has resulted in Asím geography from not remombering that all these names refer to different rivers. ${ }^{2}$

We have already noticed the division of Tibet into the eastern, Tibet. western, and central provinces. It is called Si-tsang by the Chinese, and is also known under the names Tu-pu and Mu-tu, or Upper and Lower Tibet. From the accounts of the eastern province in the writings of Klaproth, Huc, Blakeston, Cooper, Des Godins, and Gill, we may assume that the drainage to the east of the 96 th meridian has a southerly direction, and that the general conditions resemble much those further west. Pengshan on the Yang-tse in western Sz-chuen is 1,500 feet above the level of the sea. At Ching-tu, some seventy miles due north of Pengshan, Cooper, in March, found the fields in the neighbourhood occupied by luxuriant crops of wheat, barley, sugarcane, and opium, the latter of which demands a climate similar to that of the plains below the Kumaon Himálaya. The same traveller crossed the Yalung and Kinsha branches of the Yang-tse between Chingtu and Bathang, and beyond Tatsien-lu entered Eastern Tibet, where yaks are used in the carrying trade and a more alpine climate is met with. Bathang on the west has much the same position with respect to the elevated highland to the north that Chingtu has on the cast, but lies a degree of latitude more to the south than Clingtu; so that from the meridian of Bathang, the range dividing the Tibetan plateau from the plains of China seems to take a north-easterly direction. The feeders of the Yang-tse and other rivers find their way through this range by a series of gorges similar to that of the Dihong further west. Between the Yang-tse and the Dihong, we have two

[^30]great rivers, the Lan-tsang identified with the Mekong or river of Kamborlia, and the Lu-tse or upper course of the Salween. Father Des Godins informs us that the Mekong has its origin in about 33° to 34° north latitude in the mountains soulh of Koko-Nor, and the Lu-tse further west is known as the Ngen-kio in Tibet; but whether this name is to be regraded as one with the Nak-chu-kha of the Pandit explorer is left to future travellers to decide.

Turning now to the upper portions of central and western Tibet, we find from the Pandit explorations that the drainage to the north of the northern water-parting of the upper portions of both the Indus and the Brabmaputra flows into a number of lakes. East of the 84 th meridian, these lakes appear to be comnected the one with the other, and eventually with the great river Nák-chu-kha, which has an casterly direction in the upper part of its course and finds a southern outlet in one of the great rivers to the east of the Dihong. From the Pangong lake on the west to the Lonkor Cho between the 83 rd and 84 th meridians on the east, the drainage is collected in a series of depressions without any outlet, each of which is the centre of a subordinate minor system of its own. We do not know of any considerable stream proceeding northwards or westwards from this tract. This lake-system is a characteristic feature of the orography of north-western Tibet. The waters of these lakes are generally brackish and the margins exhibit expanses of salt-marsh. Streams of fresh water are found, but in their course towards the lakes thesc rapidly become brackish, and in the end little influence the quality of the lakc-water itself. According to the Pandit, the country to the north of Garge and Garchethol is a great uninhabited plain. ${ }^{1}$ It was formerly customary to travel in a north-north-westerly direction from Thok Daurakpa ${ }^{2}$ for some twenty days to the range overlooking the Gobi plain in which the commercial entrepôt Nári Tháru lay. ${ }^{3}$ A two months' journey from Thok Daurákpa to the

[^31]north-east bronght the traveller to Ajan, also a commercial centre. ${ }^{3}$ This road lay throughout over an extensive plain ; no large mountains were seen and no streams were crossed. Drinking-water was obtained from a number of fresh-water lakes mostly dependent on the rainfall for their supply. From these reports we learn that northern Tibet is a platean of great elevation without inhabitants and possessed of few streams.

As we approach the west, the boundary ranges that support the Lob-Nor basin. Tibetan plateau between them on the north and south gradually incline towards each other, so that westwards of the Pangong lake they are little more than fifty miles apart. ${ }^{2}$ Here we find the water-parting of the Indus and Lob-Nor systems in the elevated Dipsang plain, which attains a height of 18,000 feet above the level of the sea near the Kárakoram pass (18,550 feet). From the Karakoram pass on the north flows a feeder of the Yárkand river, and from the east, an affluent of the Karakash river, both of which belong to the Lob-Nor system. On the south-east, only eleven miles from the pass, the Daulat-beguldi encamping ground is close to one of the feeders of the Nubra branch of the Shayok river that belongs to the Indus system. In one case the waters lose themselves in the Gobi desert, and in the other they reach the Indian Ocean at Karáchi. If the statements of Kostenko and Severtsof be accepted, we have here in the west an analogue of the arrangement that has been described as characteristic of all the river-systems along the southern face of the Himálaya between the Jumna and the Brahmaputra. The alpine basin of the Yamanyár lies between two great groups of peaks, some thirty miles apart. On the south-east of the Yamanyár is the Tágharma group, of which the Muztagh-Ata ${ }^{3}$ peak attains an elevation of 25,350 feet above the level of the sea. On the north-west there is a similar group, of which the Tásh-balik peak reaches an elevation of 22,500 feet. The Yamanyár collects its waters in an elevated valley

[^32]between these groups and the water-parting range on the west, which is known variously as the Tágharma plain or plain of the Kichik Kára-kul. ${ }^{1}$ The groups themselves are in advance of the water-parting range and are connected with it by transverse ridges. That on the south connects the Muztagh-Ata group near the Kok Mainak pass with the water-parting range, west of the Neza-tásh pass, while that on the north has not yet been accurately defined. Spurs from the groups descend northwards towards the plains and effectually divide the waters of the Yamanyar from those of the Kashgar-darya on the west and from those of the Yárkand river on the east. It has generally been supposed ${ }^{2}$ that these two groups of peaks belonged to a great meridional rauge ; but Severtsof, who has had recently exceptional means for obtaining an accurate estimate of its character, distinctly states that " these two peaks were supposed to be connected by a continuous range, while the real fact is that each is respectively the highest point of separate small high mountain knots capped with eternal snow." We have, therefore, in the west also an apparent snowy chain of mountains as seen from the plains, but which on closer examination resolves itself into groups of snowy peaks in advance of the water-parting range from which they are divided by an elevated valley. This valley gives rise to a river that makes a way for itself between the boundary groups to the plains below, while the groups themselves are connected by transverse ridges with the line of water-parting. A ridge from Muztágh-Ata to Yangi Hissar separates the drainage of the northern slope from that of the Kinkol river on the east, and a second ridge follows at some distance the left bank of the Yamanyár which shortly after its issue from the mountains is absorbed in artificial branches or canals for irrigation purposes. The whole system is a remarkable illustration of Hodgson's formula for the river-systems of the eastern Himalaya.

The alpine affluents of the Yárkand river known as the Sarikol and Zarafshán rivers also illustrate the unit-

Oxus basin. ising principle observed elsewhere. They
${ }^{1}$ Lesser Kára-kul or ' black lake.' ${ }^{2}$ The two groups form a part of Hayward's meridional Kizil-Art range, the existence of which was supported by Shaw and Trotter and denied by Fedchenko, who considered the phenomenon described by Hayward as merely representing the terminal butt ends of parallel ranges belonging to the Pamir platenu. Kustenko, however, maintajined it to be a great mountain range. Views of the Muztigh-Ata peak and the Karikol valley are given by Gordon in his ' Roof of the World.'
are separated from cach other by the Kandiar range, which descends in a north-easterly direction from the water-parting range to the south, and terminates where the Sarikol and Zarafshan unite their waters within the outer range of hills to the north. The Oxus syslem further gives an example of another of the characteristic features of the Himalayan river-systems. The water-parting follows the line of the Hindu Kush from the pass near Bamian to the Baroghil pass, and thence follows the Pamir range to the greater Kara-kul. The hoight of the water-parting on the Baroghil plain has been estimated by Captain Biddulph at about 12,000 feet. The Mullah states that in traversing it for a distance of five miles there was no appreciable rise or fall, and further it is said that from a point one-and-a-half miles short of the crest, the difference in height did not appear to be more than two hundred feet. The Sarhad head of the Panjah branch of the Oxus is not more than two miles distant from the Gez-kul or Oi-kul, the longest source of the Aksu branch of the same river known as the Murgháb. The principal source of the western head of the Panjah branch of the Oxus in Wood's Victoria lake is but twelve miles distant from the water-parting between it and another branch of the Aksu. So little is his water-parting marked by any defined physical feature that it was only after some difficulty that Trotter discovered it at a height of 420 feet above the level of lake Victoria. There is also reason to believe that the greater Káa-kul once gave off at one end a feeder to the Káshgár-darya of the Lob-Nor system, and at the other a feeder to the Oxus. We have alrearly seen that it is but a little difference in perpendicular height that determines the drainage between the Satlaj and Karnali and between the Nulma branch of the Shayok and the Kárakash, so that where rivers have their sources in these elevated areas it may be generally stated that a slight inequality in the surface, such as it is not possible to delineate on any ordinary map, is sufficient to determine the course of springs into chamnels that have a very remote debouche one from the other in the pla ns. The terms trongh, chamel, basin are in such cases olten misleading. Nor are the bounding ranges in these elevated regions marked with such woll-defincel characters as are met with elscwhere. The great P'amir is divided from the Alichur l'ímír on the west by a range hating an average elevation of only 3,000 feet above the lovel of the

Victoria lake, and from the little Pámír by a similar range averaging about 2,000 feet above the same level. The direction of the rivers depends, therefore, on the influence of much less relatively important masses of matter than are to be found at lower levels. The slight difference in level that determines the course of the head-streams of the Karakash and Yírkand rivers on the Dipsang plains, is sufficient to divert the former from their normal direction and drive them directly against the Kacn-lan range, where, finding a fault in the wall, thoy work their way through towards the plains. The influence of the law of gravity and the mechanical and chemical changes wrought by water are the sufficient causes for every form of river channel that is met with, and it is to their ceaseless action that even the stupendous gorges of the Iudus, the Satlaj, and tho Brahmaputra, are due.

Having concluded our review of the river-basins and their
Plains of Hinclustán. relations to each other, we shall now proceed to examine the different parts of the area under our consideration. The great plain of Hindustán which first claims our notice is a vast flat extending with an almost unbroken surfice along the foot of the Himélayan slope from the upper Indus to the Bay of Bengal. Its direction is from northwest to south-east over a distance of nearly 1,500 miles, and having an area, including its western branch along the Indus and its eastern prolongation into Asám, of about 500,000 square miles. On the

> Indus plain.
west it has its greatest development stretching along the Indus from the foot of the mountains to the sea, from north-east to south-east for a length of 750 miles. Its breadth from the Arvali hills to those west of the Indus is aloout 400 miles. The Arvali hills run in a north-easterly direction from the peninsula of Kathiawar until they lose themselves in the plain near Dehli. From this point they run in a south-casterly direction connecting with the Vindlhyas, and in both cases constitute the abouments of the elevated platean of Central India. They thus form two sides of a triangle with its apex towards the north, where it separates the Indus plain from that of the Ganges. The general slope of the Indus plain is south-west, with, as we have seen, a slight depression towards the south, until the influence of the northern slope of the Arvalis is felt, when it gradually rises again. Taking
a line along the Indus, ${ }^{1}$ we have Sehwan, 117 feet above the level of the sea; Shikárpur, 199 feet; Dehra Gházi Khán, 395 feet ; Segra, on the eastern bank of the Indus, opposite Dehra Ismáil Khán, 606 feet; and Khairabad, opposite Kálábágh, 750 feet. Following the 32nd parallel from west to east, we have Sandi on the left bank of the Indus, 629 feet above the level of the sea; Lodri, on the left bank of the Chínáb, 657 feet; and Rámdás, on the left bank of the Rávi, 796 feet : further east, we enter the hills. Following the 30th parallel we find Máre on the 71st meridian, with an elevation of 386 feet ; Núr Sháh on the 73 rd meridian, 482 feet; and Pakka Saráwa, on the 75 th meridian, 698 feet. The perfect uniformity of the surface is broken in the north-west by the small table-land between the Indus and the Jhilam, of which the salt range ${ }^{2}$ forms the abutment. These hills at the Sakesir station of the survey in the Jhilam district rise to a height of 4,994 fect above the level of the sea. They extend from Khairabad on the Indus to the Jhilam opposite Chilianwála, and thence those forming the eastern flank of the table-land as well as a subsidiary range to the east of the Jhilam turn abruptly north-east and connect with the outer ranges of the Himálaya near Bhimbar (1,200 feet). The table-land itself is seldom more than two or three hundred feet above the general level of the plain, and presents an undulating though tolerably even surface broken occasionally by ridges which attain a height of from two to three thousand feet.

The Indus plain along the foot of the hills is sufficiently watered, but to the east and south at any distance from the rivers cultivation on an extended scale is only possible when the scanty rainfall can be aided by artificial irrigation. The latter tract known as the great Indian desert stretches through Bhatiána, Bikanir, and Baháwalpur into Sind. Tradition tells us that in former time it was a fertile and populous country studded with numerous cities and towns and inhabited by prosperous and civilised tribes. A recent writer ${ }^{3}$ states that "there is nothing in history to show that the rivers (of this tract) ever contained much more water than they do now. Some diminution in their volume may have taken place during the

[^33]lapse of ages, from changes in the lower Himálayan range, as well as from the destruction of forests and increase of irrigation. There is no doubt also a tendency to the obliteration of the lower part of their course ; partly by the drift of sand and dust from the desert; and partly by the deposit of the silt brought down by the streams themselves, owing to the absence of the great river by which it would have been carried off to the sea." Between the Sarasvati and the Satlaj are a series of broad channels, most of them a mile in width, of which those to the west appear to terminate in the valley of the Satlaj, while those to the east, which are also the more ancient, lead to the channel of the lost river Hakra or Sotra. ${ }^{1}$ The Kaggar now runs in an old bed of the Satlaj and was formerly an affluent of that river. The change may have taken place owing to some great cataclysm ${ }^{2}$ which formed a new bed for the river and left the old one for its tributaries on the east, and there is much to be said in favour of the identification of the Sotra channel with this old bed. At the present day the water-level in wells in this tract is excessively low, being often so deep as three hundred feet from the surface. As the water when procured is often brackish, it is a matter of wonder that people are found to inhabit this country which long ago received the name of Marusthali, ' the region of death.'

The Gangetic plain extends from the debouche of the Jumna Gangetic plain. from the hills to the head of the delta of the Ganges, and lies between the great bend of the Himálaya and the north-eastern slope of the table-land of Central India, which here has a general elevation of about one thousand feet above the plain. The breadth of the plain varies from about two hundred miles at Agra to about one hundred miles at Rajjmahal. The direction is to the south-east, but to the east of the Ganges the courses of the rivers exhibit more southing. A general idea of the fall in height along the course of the Ganges may be obtained from the following figures: Saháranpur, 903 feet above the level of the sea; Meerut, 735 feet ; Aligarh, 610 feet; Agra, 516 feet; Cawnpore, 517 feet; Allahabad, 315 feet; Benares, 255 feet ; Patna, 174 feet; Bhágalpur, 159 feet; and Bardwán, 97 feet. ${ }^{3}$ Cross sections

[^34]show little difference in height at any point. Bhatpura, below Mohan, at the entrance to the principal pass into the Dehra Dan, is 954 feet above the level of the sea. Following eastwards the line along the foot of the hills, we have Hardwír, 1,016; Najíbabad 860 ; Barhapura, 910 ; Káshipur, 750; Bilahri, 760 ; Sigauli in Gorakhpur, 300 ; Madanpur in Tirhut, 230 ; and $\Lambda_{\text {mua }} 248$ feet. ${ }^{1}$ Noting these figures on any good map and following the course of the rivers, a sufficiently correct idea of the general slope of the Gangetic plain will be obtained. At the termination of the hills near Raijmahál, the plain once more expands largely to the south and again presents an uninterrupted surface from the mountains to the sea. The length of this section is about 350 miles, and its breadth from Rajmahal to the Brahmaputra about 150 miles, but increasing to about 300 miles along the coast at the head of the Bay of Bengal. The height varies from 100 feet, the level of the river Mahánadi at Málda, ${ }^{2}$ to 75 foct at Jelinghi, the head of the Hugli branch of the Ganges, ${ }^{3}$ and 31 feet at Chinsurah. The Howrah station bench-mark is but $18 \cdot 2$ feet aloove the level of the sea. ${ }^{4}$ These portions of the great plain, often though not very appropriately called the valley of the Ganges, are intersected by the countless tributaries of that river and are under the full influence of the periodical rains. They therefore, as might be expected, comprise the richest, the most populous, and the most civilised districts of India, and in these respects form a striking contrast to the western parts along the Indus which are doomed to perpetual sterility, not from any natural deficioncy in the quality of the soil, but only from the great aridity of the climate. This barrenness is no doubt, in a great measure, due to the relative position of the Indus plain to the higher ground around it and to the prevailing winds; matters which, at first sight, appear to be of little importance, but which are the efficient causes of the extremely dry climate that it possesses. Fluviatile action in erosion and deposition, productive of the alluvion and diluvium, terms so well known in the settlement records of these provinces, has clearly directed the course of the rivers in the great Gangetic plain. Mr. Fergusson, in an article quoted by the authors ${ }^{5}$ of the 'Manual of the Geology of India,' shows that the

[^35]rivers of the Ganges delta oscillate in curves, the extent of which is directly proportional to the quantity of water flowing down their channels. Thus, the oscillations of the Ganges between Mungir and Rajjmahál average $9 \frac{1}{2}$ miles, and between Allahabad and Chunír, only 3.7 miles in length. Further, when a great river runs through a low country, its course is considerably stayed by the sluggish expanses of stationary water generally termed jhals in Bengal, and it is thus compelled to deposit its silt along its banks. Hence arises the phenomenon of a riser passing throngh a country between banks that are higher than the aljacent alluvial flats, and the gradual increase of the banks until the stream makes its way through them to some lower level. Mr. Fergusson estimates that when the slope of a river bed falls to less than six inches in a mile, a denuding river will be converted into a depositing river, and as the deposit commences at the bottom of the slope, the change proceeds upstream. Moreover, since the Ganges receives its more considerable affluents from the north, the left bank gradually increases and drives the main stream more and more towards the table-land of Central India, and makes the point of confluence of its affluents continually move upwards. This tendency is well marked in the Jumna in the Mainpuri district, where the old silted-up bed is locally known as the bhayna. ${ }^{1}$ In the Taria below Kumaon the same law prevails, and streams that in the upper portion of their course are denuding rivers in the lower portion where the check in slope occurs deposit their silt, form jhíls, and continually change their courses like the rivers of the Gangetic delta.

The Astum valley forms a narrow prolongation of the enstem
Asim valley.
hable to annual floods. It has a length of about 300 miles with a breadth of thirty to forty miles, widening at its junction with the

[^36]G:ungetic delta. It is shut in on all sides, except the west, by mountains. The characteristic of a sudden and total change sidong a definite line at the foot of the mountains from a broken hilly surface to an absolute flat, which holds good throughout the other parts of the plain, here no longer prevails. We frequently see suíall isolated hills stauding out like islands from the general level surface, a phenomenon observable on a smaller scale where the Vindlyan'range mingles with the plain. From Sadiya, which is 440 feet ${ }^{\text {above }}$ the level of the sea, the fall is gentle to Gauhati, which is placed at 163 feet, and Goalpára, which is 150 feet.' Taking a line along the foot of the hills, we have Titaliya, 330 feet; Rajhat at the foot, of the hills near Buxa, 220 feet; and the station at the foot of the hills below Diwángiri, 670 feet: figures'. which show a more sudden descent than those at similar positions under the western Himálaya.

We shall now return to the plain between the Jumna and the Bhábar. Sárda, and more particularly to that part which lies immediately below the foot of the Kumaon hills. We find there a narrow belt of country usually covered with forest and remarkable for the entire absence of water, a phenomenon eminently characteristic of this tract. The great rivers preserve their course with some diminution in their volume, but all the minor streams that have their origin in the lower hills on entering this belt soon lose themselves in the shingly deposit that constitutes the substratum. In time of flood, however, they often prescrve a visible stroam throughout their comrse, but this appearance lasts only so long as the cause exists. This belt of waterless forest land is called the Bhábar or ukhar bhámi (watorless forest) under Kumaon, and has a breadth of from five to fifteen miles. Though no stream or spring exists, the Bhábar is clothed with a magnificent forest finding its nourishment in the few feet of alluvial matter that rests on the boulder and shingle deposit below. ${ }^{3}$ To the

[^37]south of the Bhabar, the character of the country changes into a swamp devoid of trees and intersected by sluggish streams that rise from unhealthy morasses. This tract is included with the Bhabar between the Ganges and the Phika under the general term ban or jungle. East of the Phika under Kumaon, where it apparently attains its maximum breadth, it is known as the Tarái, and under Nepál as the Taryanni, with some specific addition as Morang, \&c. It lics between the forest belt and the cultivated plains, with an average breadth of about ten miles under Kumaon, though varying much in different parts. Thus we have between the plains proper under Kumaon and the foot of the hills two distinct belts of country, each about ten to fifteen miles broad, known as the Tarái and the Blábar. The 'Larai is characterised by the presence of reeds and grasses showing the marshy nature of the ground. The streams carry off only a portion of the supcrfluous moisture and sluggishly run in tortuous chamnels, doubling back constantly in their course. The soil consists of moist alluvial matter without a sign of rock either in fragments or in site. In the Bhábar, on the other hand, no water rises from the ground. Throughout its whole extent not a single spring nor any water can be seen, except occasionally where one of the larger rivers takes its course. In the rainy season alone torrents cut into the ground, and the channels thus formed exhibit characteristic sections of this remarkable tract. We then find that there is but a thin covering of alluvial soil on a vast dry bed of boulders and of shingle, through which all rain that falls sinks rapidly, and which absorbs in the same way all the minor streams of the outer ranges. Instead of reeds and grasses, we have here all the maguificence usually attributed to oriental forest scencry. Gigantic halduis (Adina cordifolia) and khairs (Acacia catechu) rear their heads above a tangled undergrowth of creepers and thorn-bushes which present a barrier to progress that an clephant alone can surmomnt. Towards the hills we find the siel ${ }^{1}$ (Shorea robusta), and in Kota great groves of mangoes, while patches of cultivation appear wherever irrigation is practicable. For this

[^38]purpose, the streams of the lower hills are turned into artificial channels before they reach the shingle deposit, and even the lakes in the lower hills are dammed up to retain a sufficient supply of water for the Bhábar. West of the Kosi, however, there is little cultivation or irrigation, and the Bhábar there almost remains untouched by the plough. The actual slope of the ground between the Tarii and the foot of the hills is considerable, though not apparent to the traveller, except when he observes the rapidity of the current in the irrigation channels that line the road by which the Bhábar is crossed.

Before entering into more detail regarding the Bhábar and Tarái, there is yet a third feature characteristic of the tract below the Himálaya that must be noticed here as intimately connected with the other two, and this is the line of hills called the Siwallik ${ }^{1}$ or sub-Himálayan. These will be well known to palocontologists in connection with the rich collection of fossil mammalian bones discovered in them by Dr. Falconer and Colonel Cautley. As a rule, they appear to rise abruptly and without any intermediate undulating slope from the apparently level surface of the flat country below to heights varying from a few hundred to three or four thousand feet. They are composed of sandstones and conglomerates, and the dip of the strata is usually towards the general mass of the mountains at a low angle. The form of disturbance of the strata is very regular, producing broad normal anticlinal flexures, the axis-plane sloping towards the mountains. Towards the plains the slope has been weathered out, so that plainswards the Siwáliks exhibit a steep face from which rise the highest summits of the range, while a long gentle declivity slopes inwards and forms a longitudinal shallow valley by meeting the foot of the next line of hills. The latter, as a rule, run on a line parallel to the Siwáliks, but at a distance of from five to ten miles from them.

The bottom of this longitudinal depression is, as may be supposed, Dáns. by no means continuous. In some places it is cut through by the passage of the streans that drain the interior of the mountains ; in others, it is quite obliterated by the near approach to each other of the two ranges that flank it, and which usually form distinct lines. This is, moreover, a

[^39]structural feature and not due simply to denudation. In the country between the Satlaj and the Káli, these valleys are called Dúns and under Nepál, according to Hodgson, they are called Máris. They have been confounded by some writers ${ }^{1}$ with the Tarai, which, as we have seen, is quite distinct. The lower part of the Dúns generally appears to be covered with a deposit of boulders and gravel that slopes somewhat steeply from the Himálaya towards the Siwaliks, so that the whole bottom of the valley is considerably raised above the level of the plain without. In consequence of this elevation, the outer hills when vicwel from the interior of the valley, as from Masúri, present a very insignificant outline. The drainage of these valleys usually collects along their longitudinal axis and cither falls into some of the larger streams that cross them, or less frequently finds an independent exit for itsclf into the plains by a sudden bend to the south through a break in the outer range. Owing to the considerable elevation of the Dúns above the plains down to the level of which the drainage finds its way in a very short distance, the unconsolidated strata that form the floor of these valleys are constantly cut through to a great depth by water-courses. Consequently, the surface, though often presenting an apparent flat for several miles together, is frequently broken up into steps which, on the whole, are tolerably level, but at different heights, the one above the other. This phenomenon is not uncommon, and is constantly observed along rivers that are eroding their banks. To the same causes also are to be attributed the practical impossibility of procuring water by means of wells in the Dúns, a difficulty which mainly arises from the thorough dessication of the gravelly soil by the deep drainage.

We have not sufficient information to state distinctly how far Extent of the Bhábar. the Bhábar extends both east and west along the foot of the Fimalaya, but the following indications would lead us to suppose that this phenomenon is inherent in the relations of such a mass as the Himálaya with the subjacent plains. Under Nepál it is called the Jhári or Bhávar, and, according to Hodgson, ${ }^{2}$ extends from the Káli to the Mechi on the east with the same general characteristics as under Kumaon.

[^40]Eastward of the Tista, according to the same writer, the Bhathar and Tarai do not exhibit the same parallelism to the line of the Himilaya, but "show themselves plainwards, like an irregular series of salient and ro-salient angles resting on the mountains. Or like small insulated plateaus or high undulated plains, surrounded in both the latter cases by low swampy land analogons to the Taraii." An example of the former is found in the plateau called the Parbat Joár on the confines of Asám and Rangpur, which is considerably elevated, quite insulated, remote from the mountains and covered with sál, the characteristic tree of the upper Bhábar. Again, we have undulating plains, such as those that occur around Dinajpur and to the north-west and north-east of Siligori, all of which may be identified with the Bhábar. In all these cases where the detritus bed thins out, a moist tract is met with, though in no case so marked as to the westward. Herbert ${ }^{1}$ affirms the general applicability of his remarks regarding the submontane tract below Kumaon to the entire country between the Ganges and the Satlaj and Parish ${ }^{2}$ to the tract further west between the Satlaj and the Biás. There is no well-defined line dividing the area of swamp from the Bhábar proper between the Sárda and the Rímganga. To the east in the Tallades Bhábar, where the streams seek the Sárda directly, there is less Blábar, and the swamps that exist are not so extensive, but at the same time are more formidable, being often surrounded by tangled masses of cancbrake. The Dhyánirau Bhábar also is comparatively narrow, and it is not until we come to the Chhakháta Bhábar that we get a breadth of eight to twelve miles that lasts until the Phíka river is reached. The Tarái exist all along the tract to the south of, and parallel to, the Bhabar from the Sárda to the Phíka. But west of the Phíka it loses its characteristics and can only be traced in the closencss to the surface of the water-level in wells. Westward of the Phíka, the Bhábar or waterless tract also narrows and the sál forest does not descend more than six miles from the foot of the hills, and a few miles further west it has not a breadth of two miles. The Bhábar, however, exists, and is broader than the present sál forest, of which much has been cut down of late ycars. Its presence is shown by the absence

[^41]of wells, and similarly the Tarai appears in a line of wells with water at from three to six feet from the surfaco, rumning parallel to and bordering on the Bhábar. This limitation of both the Bháloar and Taraii is conterminous with the commencement of the Pítli Dún, which has detained the greater part of the detritus that is elsewhere spread out bolow over the plains. From the Plíkia eastwards to the Sarda, where these tracts attain their maximum importance, there are no Dúns, properly speaking; for the Kota Dún presents no great barrier to the south, and further east the Siwaliks are so blended with the outer range that a geologist alone can trace their sequence. In this fact, we have an illustration of that portion of Hodgson's theory that gives a narrow extent to the Bhíbar below the Dúns and a broader range where there is no Dún to intercept the debris from the hills. The facts that we know regarding the Bhábar to the north of the Saharanpur district ${ }^{1}$ further confirm this deduction.

In Eastern Turkistan we find a similar phenomenon. Trotter

The Bhibar in Turkistan. tells us that the Sagon river, which has its source at the eastern foot of the Terck pass, after it reaches the plains north of Kalti Ailak wastes away and leaks through erevices in the stony ground. The hákim of the latter place assured him that wells had been often sunk but proved of no use. Trotter writes:-"This diminution in the size of rivers as they descend is one of the chief characteristics of the country, and occurs in all minor streams that have come under my notice. Of course much of this is due to irrigation, which necessarily carries off large quantities of water, but the stony soil has also much to answer for ; on the other hand, the frequent appearunce of large springs giving consideralble supplies of water and often issuing from the open plains at long distances from the mountains may account in a great measure, if not fully, for the water thus lost in its early infancy." Here we have the existence of a Blábar and Tarái vouched for by competent authority in the Yárkand and Kashgár country. The same phenomenon, but on a larger scale, was found by Prejevalsky to characterise the tract between Korla and Lob-Nor. A belt of country about three to four miles wide, consisting of an undulating plain covered with a pebbly or gravelly soil and totally devoid of
vegetation, runs parallel to and at the foot of the Kurngh-trigh, a low waterless and barren range. Beyond this stony margin, which appears to define the shore-line of an ancient sea, lies the great desert of drift sand amid which salt marshes exist wherever the moisture comes to the surface. The same pebbly plain was found under the northern slope of the Altyn-tágh, the north-casterly continuation of the Kuen-lun mountains between the 90 th and 92 nd meridians, and north of and below the stony margin the usual salt marshes occurred. The latter are also found at the foot of the north-eastern portion of the Tibetan table-land in Tsaidam. It would, therefore, appear that tracts analogons to the Bhabar and Tarái of Kumaon surround the entire Himalaya-Tibetan mass, and that they vary in character according to local influences.

Hodgson attrilutes the distinctive character of the Blábar, as a

Cause of the deposit: Hodgson's oceanic theory. whole, " to the vast mass of diluvial detritus which was shot from the mountains upon the plains, like gravel from a cart, at some great geological epoch, and which has beon, since its deposit, variously and often abraded both in degree and direction by oceanic and, in a far less degree, by ordinary floods." Another writer considers that this theory of Hodgson's appears to be a reasonable explanation of the existence of these great beds of shingle, sand, and boulder all along the foot of the momataius. It is argued that no rivers can have laid out such a vast deposit, and we can only conclude that we see here the limits of an ancient occan that once washed the base of the Himálaya. The boulders and shingle are spread ont only for a distance of ton or fifteen miles from the mountains from which they are derived, while the finer particles of sand and clay are carried much further. Great variations in the depth and breadth of the deposit oceur, due, in a great measure, to local causes. One which apparently has had a great influence is the existence or otherwise of the Siwálik range. Where there was no sandstone range to intervene between the mountains and the plains and collect the detritus within their contained Dúns, the deposit is broader and not so thick. Where there was such a barrier, it has been carried less southwards and exists in great accumulations between the barricr and the mountains. Again, where no range existed but only spurs sent forth, like bent arms, upon the plains from the mountains, Hodgson observes that the embayed
detritus is simply deeply piled and lofty within such spurs, and thinly and unequally spreal without them, by reason of the action of the spurs on the current. He notices, as an example of this form, the debris embayed by a spur on the road to Darjiling by Pankabári, where it is accumulated to several hundred feet, and where, moreover, there is outside the spur a succession of terraces, apparently due to oceanic forces. ${ }^{1}$ Further, "where, as from Gauhati to Sadiya, there was not room upon the plains for the free spread and deposit of the detritus owing to large and rapid rivers and to other chains both proximate and parallel to the Himálaya, the phenomena, created elsewhere by the more or less unrestricted spread of the Hinalayan detritus over the plains, would necessarily be faintly, if at all, traceable. Lastly, if at the time of the descent of the débris, there existed a great dip in the Gangetic plain from north-west to south-east, the lithologic character, as well as the distribution of the débris, would be materially affected thereby, for the subsiding oceanic current would have a set from the former to the latter quarter and would eontinue to lash the gravel into sand and here to deposit both in a series of terraces, there perhaps utterly to displace both in the latter quarter long after the former had emerged from the waves."

The occanic theory of Hodgson is not accepted by the majority

> Fluviatile theory. of professed geologists. Mr. W. Blandford writes:2-" There is absolutely no proof of any sort or kind that the whole Indo-Gangetic plain has at any time been a marine area; but there is equally no proof that it has not. It has been shown that in eocene times the sea occupied the Indus walley as far as the foot of the Himálaya, and extended along what is now the lase of the mountains, as far cast as Kumann ; and also that marine conditions prevailed to the north-west throughout a great part of the tract now occupied by the Asam range; but it was also pointed ont that, in the area between Kumaon and the Gairo hills, no trace of marine formations had been found. Yet it is difficult to understand, if the Gangetic plain was a sea-basin, why mo marize beds occur. It is true that the northern border of the plain, throughout the most important part of the

[^42]intervening space in Nepál, is, unfortunately, inaccessible to Europeans; but still, if the Gangetic plain in any way corresponds to an eocene sea, as the Indus plain doubtless does, why are no traces of marine beds found to the south of the valley on the margin of the peninsular area, as they are in the desert to the cast of the Indus? In the Brahmaputra plain, also, no marine deposits of tertiary age are found ; in the plain itself only fluviatile doposits have been detected and the marine, cocene, and miocene beds are confined to the southern slope of the range forming the southern watershed of the valley." Mr. Blandford considers the post-tertiary formation of these provinces to be clearly river deposits. The latter tertiary formations belonging to the Siwálik series contain reptilia and mollusca, but not a single marine shell. "It is impossible to tell what beds may be concealed below the Indo-Gangetic alluvium, and marine strata may exist to an enormons extent without appearing at the surface ; it is also unquestionable that the amount of information hitherto derived from borings is very small indeed, but so far as that information extends, and so far as the lower strata of the alluvial plain have been exposed in the beds of rivers, not a single occurrence of a marine shell has ever been observed, nor is there such a change in the deposits as would render it probable that the underlying stratra are marine * * . The only evidence known in favour of marine conditions having prevailed during the deposition of any portion of the Gangetic alluvium is the occurrence of brine springs at considerable depths in a few localities. These springs, however, are not numerons, and, without additional evidence, it is impossible to look upon them as proofs of marine deposits. At the same time it is by no means impossible that the sea occupied portions of Sind and Bengal long after the plains of Upper India were dry limd." On the whole, Mr. Blandford thinks that the oceanic theory wants further support; that the fluviatile theory is the only one that fits in with the present state of our knowledge, and that the depression of the Gangetic plain is of contemporaneous origin with the disturbance and contortion of the Himalayan ranges, and that the physical features of the two areas are closely connected. No importint borings have ever been made in these provinces, and nothing has ever heen discovered, so far as we are aware, to show that the older theory is the correct one. The
newer theory is further supported by the discovery of the buried town of Behat in the Saháranpur district, some seventeen feet below the present level of the country and containing coins of the commencement of the Christian era, thus showing what can be effected by fluvial action in cighteen centuries.

We have already seen that the distinctive features of the Tarai
Tarái. are not found west of the Phika river, if we except a small tract on the left bank of the Rámganga, the condition of which, however, is probably due to defective drainage in that particular part, and might occur in any other place. The existence, therefore, of the Tarai as a distinctive feature must be due to local causes capable of explanation, but the imperfect nature of our knowledge will only allow us to guess at them. Herbert" described the Taraii as "defined in its southern boundary by a rise or step which runs parallel to the common boundary of mountain and plain land." He observes the height is variable, occasionally as much as thirty fect and somctimes sudden and steep. Modern research can discover no well-defined boundary beyond the chain of springs which sometimes approach within a couple of miles of the foot of the hills and sometimes are separated from them by a belt fifteen miles wide. In no case is there any such rise or step as described. Hodgson ${ }^{2}$ also accepted the existence of a longitudinal trough running parallel to the Himálaya as a characteristic of the Tarái, which he held to be a natural depression in the plain, and thus accounted for its peculiarities. This theory, however, is opposed to the results obtained by levelling operations and appears to be based on an entirely erroneous idea, the fact being that the drainage of the higher country, beyond which has been lost in the absorbent strata of the Bhábar, here breaks out again in a line of copious springs which collect into swamps in the Tarai. This feature has also somewhat plausibly been accounted for ${ }^{3}$. by the existence of an impervious stratum below the absorbent boulder detritus, and as the latter gradually thins out the finer and less permeable silt underlying it approaches nearer, and eventually reaches the surface, bringing with it the water that has been absorbed by the shingle talus and has been retained by the impervious silt.

[^43]lig. 1.
Plains Tará (a) Graver Bhabar (b)
(a) Point of re-appearance of water. 1 (b) Point of disappearance of water.

Althougli this explanation seems reasonable so far as it goes, it must be remembered that the swampy Tarái extends only from the Phíka to the Tista, and we must, therefore, look for some peculiarity in this part of the plain which does not exist elsewhere, by which we may account for the existence ofswamps exclusively in this particular locality.

In a recent note, Mr. Lawder gives the following section of the Bhábar and Tarái :-

His experience of this tract has led him to consider that, whatever may be the nature of the underlying formation, the surface beds are solely due to fluvial action. The mountain torrents along the foot of the Kumaon hills bring down every year a vast amount of débris which is spread out over the surface now on one side of their previous course and again on the other. This irregular deposition itself compels the torrents to change their beds from place to place until, as now obtains, the points where they debouche from the hills are marked by more or less irregular, great, fan-shaped boulder and gravel deposits. The clayey or semi-soluble particles are necessarily carried farthest and are readily deposited not only where there is a check in the slope, but where the current is impeded
by the tortnous nature of the channel which itself naturally assumes; that form under these conditions. Hero, during the rains, the streaus saturated with clayey silt, overflow their banks, form new chamnels, fill up old ones, and create the Tarai. Above this deposit of clay we find one of clay combined with sand, in which, however, the latter predominates. From this bed issues the line of Tarái springs that flow uninterruptedly throughout the year, and its margin marks the northern boundary of the 'Tarii. Above we meet beds of sand and gravel or gravel and boulders as we approach nearer to the lills. A longitudinal section taken at the top of the Bhábar (Fig. 2 B.) will show that the hill torrents in the upper portions of their course run along a ridge formed by the débris tramsported by themselves, whilst a similar section of the Tarai (Fig. 2 (.) would show that, as a rule, the river channels are found in depressions below the general level of the country. The geological section (Fig. 2Λ.) shows the gradients of the present ground surface on the road between Bareilly and Ránibágh, and from them it will appear that in the boulder region deposition takes place at a slope of sixty-six feet to the mile, whilst the clay is not deposited until the descent falls to about eight feet in the mile. It may fairly be assumed that these are the usual angles of cleposition of the materials, and that they have olbained since the degradation of the lower hills and the resulting deposition below them commenced. If so, a series of proportionate curved lines rumning almost parallel to the present ground surface may be taken to represent the ground surface of succeeding periods, and such portions of these lines as may be similarly inclined with the present Tarai portion (i.e., at the same angle with the horizon) will evidently represent the 'Tarái or clay deposit as it then existed. A line intersecting all these beds at the several points of junction of the 'clay' with the 'sand and clay' will represent the present impermeable bottom of the Bhabar basin and account for the line of springs upon the surface where the stratum of sand and clay crops out. The upper boulder and gravel beds permit of the filtration of water freely through them to the clay, at the same time acting as a capillary reservoir to keep up the dry weather supply to the springs below.

We have further evidence in support of this theory in the fact that the Tarai proper does not extend westwards of the Phika river.

Between the Phíka and the Sárda there are no Dúns, for the Kota Dún has its southern boundary broken through by rivers, and along the entire tract numerous torrents find their way directly to the flat country below. The proximity of these torrents to each other causes the accumulation of débris to exhibit a continuous appearance which seems to have suggested the theory of a marine origin. To the west of the Phika river, the drainage of the lower hills is carried off mainly by streams which collect the drainage within the Sub-Himalayan range and seek the plains in one well-defined channel. The Rámganga is the great arterial drainage channel for lower Garhwal, and between it and the Ganges, the only considerable stream is the Khoh, which has a small strip of Bhábar below it. In eastern Kumaon the Ladhiya serves a similar purpose, and where in its course towards the Káli it approaches the plains and docs not allow of any considerable stream from the southern face of the outer range, both Bhábar and Tarái are narrow, and as this influence of the Ladhiya on the east and the Rámganga on the wost decreases the Bhábar and Tarái increase and eventually attain their maximum breadth where that influence is least felt. Where rivers discharge large volumes of water like the Ganges and the Sárda, and in a lesser degrec the Rámganga and Kosi, the velocity at their debouches from the mountains is much less than that of the minor torrents, owing to their having cut back and more deeply their channels within the hills, so that only the lighter particles of eroded matter are carried onwards, whilst the boulders are left behind at their natural point of deposition. Hence, near these larger rivers it curiously happens that the width of the Bhábar and Tarai contracts in a certain ratio and in the case of the Ganges disappears.

This explanation is supported by the results obtained during the contour survey of the Tarái. ${ }^{1}$ The second diagram ${ }^{2}$ (Fig. 3) shows a portion of the country between the Dhora river and the Bhúta stream, taken from the survey maps, and will illustrate the intricate nature of the levelling operations, and show why in some

[^44]places the streams double back on their original direction and exhibit the tortuous courses so characteristic of this tract :-

Fig. 3.

It will also be observod that there is a sudden check in the slope where the Tarai commences; to the north in the Bhabar the slope is from sixty to a hundred feet in the mile, and in the Tarai it falls to about ten feet. These are the adequate causes of the existence of swamps, and though the neglect of artificial obstructions made for the purpose of utilising the water for irrigation may doubtless aggravate the natural defects of drainage, it would probably produce no effect whatever were it not for the peculiar physical conditions that exist here. To the west between the Indus and the Ganges, the great arterial drainage lines collect within the hills and run off directly from them, the general fall of the surface receiving no such check as is found under Kumaon. The same is true of the country to the east along the head of the Bay of Bengal, and in the narrow valley of Λ sam, the Brahmaputra rums in a decp, bed at right angles to the natural course of the streams from the hills, and thus forms a perfect system of cross-drainage that does not allow of the formation of swamps.

The Siwáliks appear to have a more or less definite existence along the whole of the Himalaya from the Indus to the Brahmaputra, presenting modifications of the same general features along the entire line. To the castward of the Tista they are wanting locally, a fact which it has been suggested is due to denudation as in the casc of the partially obliterated barrier to the south of the Kota Dún. As the Siwáliks will be noticed herealter in the chapter on the geology of Kumaon, we need not describe them here. ${ }^{1}$ Detween the Jumna and the Sarda they are found as the southern boundarics of valleys as far eastwards as the Nihal river, and thence onwards they almost coalesce with the outer range of the lower Himalaya.

Of the Dúns or valleys, between the Siwáliks and the Himálaya, that known as 'the Dún' or Dchra Dún, from the town of Dehra, is not only the most remarkable but the best known. Since the physical geography of this tract will be considered in more detail hereafter, in the notice of the Dehra Dún district, it will be sufficient for our purpose here to note that the Dun, a little to the west of the town of Delira, is

[^45]divided by a ridge that serves as a water－parting between the Asan， a tributary of the Jumna on the west，and the Suswa，a fecder of the Ganges on the east．The tracts drained by these rivers are known respectively as the western and eastern Dúns．The two taken together have a length of about forty－five miles and an aver－ age breadth of eleven miles．The cast end of the Dchra base line of the Great Trigonometrical Survey on the extremity of one of the spurs of the Gláti range，about one mile west of Mahobawala，is $1,957 \cdot 65$ feet above the level of the sea ：Mahobawala itself is $2,096.56$ feet and Dehra is 2,323 feet．The junction of the Suswa and the Ganges is little more than 1,000 feet above the level of the sea， giving a considerable fall for that strean between Dehra and the Ganges．A well sunk by Mr．Shore，when Administrator of the Dún，attaincd a depth of 221 feet before a plentiful supply of water was met with，and even at that depth the nature of the deposit was the same as at the surface．${ }^{1}$ The greatest thickness of the deposit is observed near the central ridge．It thins out to the west and east along the course of the Asan and the Suswa，and，according to Herbert，may be oljserved in the beds of the Jumna and Ganges resting on sandstone．Next，on the west，comes the Kayarda Dún，

Abstract

${ }^{1}$ The following table shows the character of the stratum，and is reproduced here from Mr．Shores notes in the Dehra archives compred with Herberts record as one ul the few notices of this character that we possess．

	$\begin{aligned} & \text { ت⿹\zh26灬 } \\ & \stackrel{y}{5} \end{aligned}$	Soil．	苞	長	Soil．
5	5	Finc ljack mould，few stones．	9	58	Sand，larger pieces of conglom
4	9	Reddish earth with gravel．			erate．
9	18	Sand，gravel，layre stones．	4	162	Do．，cnormous stones
2	20	Do．，with reddish clay．	f	168	Conglomerate and gravel．
3	23	Stift reddish clay．	3	171	Sand，gravel，and conglomerate
8	31	Do．，yellow clay．	S	174	Blocks of conglomerate．
33	342	Sand，gravel，little red clay．	38		Nant，gravel，conglomerate．
$1{ }_{2}$	36	Stiff reddish clay．	4	182	Do．，gravel．
	38	Sand and gravel．		18ショ	Conglomerate．
22	60	Stifl red clay．	22	185	Sand and clay．
2	62	Clay，sand and gravel．	18．6．	204	Loose sand and gravel and large
16	78	Sand and gravel．			blocks conglomerate．
12	90	Stiff yellow clay with little sand．		$\left[\begin{array}{c} 209 \\ 2091 \end{array}\right]$	Sand，gravel，very moist． Conglomerate，over half．
35	125	Sand，gravel，few round stones．	$1{ }^{2}$	211	Red clay．
${ }^{6}$	131	Sand，large conglomerate blocks．	7	218	Sand and gravel．
13	$1 \begin{aligned} & 144 \\ & 149\end{aligned}$	Do．，sravel，stones， Do．，larger stones．	31	$221 \frac{1}{2}$	Brackish clay with angular frag－ ments of clay slate．

Another well in Delma gives water at a depth of 88 feet from the surface，and one at Sati－badrg at 75 fect．There are only twenty－nine wells in the whole valleg， and many of these arc at favourable places near rivers，so that the difticulty of procuring water by this means is common（1）the whole Dun．Herbert records the
some six miles broad and twenty-five miles long, to the water-parting between the Jumna and the Kaggar systems. Beyond it we have the Pinjor Dún, which has in parts a breadth of six miles and a length of about thirty miles. The Siwáliks here are neither so broad nor so high as to the south of the Dehra Dún. The Pinjor Dún is divided into two parts, the eastern and western Dúns, by a ridge similar to that obscrved in the Dehra Dún, and which attains an elevation of 2,402 feet 1 above the level of the sea. To the east, the drainage flows into the Kaggar, and to the west into a tributary of the Satlaj. Mansi Devi, a temple in the plains just within the Dún, has an elevation of 1,263 feet, ${ }^{1}$ giving a fall to the rivers within this Dún similar to that found to exist within that of Delira.

East of the Dehra Dún we have the Pátli Dún, also divided into

> Ganges to the Brahmaputra. two parts, but by a depression, not a ridge, a fact possibly pointing to its being a valley of denudation. That to the west, which is drained by the Sona nadi, has a slope eastwards parallel to the Himalaya, and is known as the Kotri Dún. 'That to the cast, which is drained by the Rámganga and has a slope to the west in the same dircction, is called the Pátli Dún. The two rivers mect just before their waters take a bend to the south at an elcvation of about 950 feet ${ }^{2}$ above the level of the sea. A few miles eustward of their confluence, the valley of the Pitti Dún shows an elevation of 1,200 feet on the right bank of the stream, and thus allows a cousiderable fall to the Ramganga in a comparatively short horizontal distance. The peaks of the Siwatiks to the south along this entire line seldom rise above 2,500 feet, whilst the plains at their southern base average between eight and nine hundred feet. Further east comes the small Kotal Dún between

[^46]Dhikuli and Káli-dhúngi, much broken up by torrents, and having its southern boundlary cut through by the various hill streams that cross it at right angles. From Naini Tal to the Sírda the sandstone ridge that represents the Siwáliks is so close to the ITimálaya that the geologist alone can discern the connection. The Dúns are here reduced "to deep longitudinal gorges and low gaps, corresponding with a leading geological boundary, that between the old slaty and schistose rocks of the momtains and the massive tertiary sandstones of the Siwaliks." Further east, according to Hodgson, the Dúns are represented by the Saliyám Mári, the Gongtáli Mári, the Chitwán Mári, the Makwínpur Míri, and the Bijayapar Mári, all under Nepail. With the exception, however, of the Dún lying on the road to Kathmandu, none of these havo been subjected to scientific examination. "On this track," writes Mr. Medlicott, ${ }^{1}$ "'very complete representatives are found of the two sub-Himálayan ranges and their intervening dún or mári. Tho Chúriagháti range is structurally a facsimile of the originul Siwiliks. At the outer base at Bichiyakoh, there are some earthy rusty beds, all greatly crushed. The dip soon settles down to 30° to north-north-west, maintaining the same angle steadily to the top of the pass. This is the typical structure of these detached sub-ILimetay:an ranges, the flat inmer half of a normal anticlinal flexure. The range is about four miles wide." Thronghout the Sikkim and Bhutinn ductrs there is no representative of the Siwallik hills and therefore no dáns, but in the Dikrang basin of the Daphla hills, Colonel Goodwin-Austen discovercd two well-marked ranges of sub-Himálayan hills with an intervening dún. We have now seen that the first characteristic leatures met with in advancing from the plains to the Himálaya are the Tarai, Bhábar; Siwalik range, and dims or valleys, and that though not continuous and indeed occasionally altogether absent, they are, taking the whole range, characteristic of the relations of the Himalay mass with the suljacent plains.

Crossing the Dúns northwards towards the snows, we meet the
Lower Himálaya. outer ranges of the lower Himálaya. They have a general clevation of about 7,000 feet above the level of the sea, while the highest summits along the line reach between 8,000 and 9,000 feet. This generalisation, though giving the nearest approach to accuracy that the state of our know${ }^{1}$ Manual of Gcology; P. 5t3.
ledge permits, is only approximate, for we know very little regarding the outer range between the Sírda and the Brahmaputra. There is this peculiarity in Kumaon, that the outer range first crossed by the traveller is of considerably higher elevation than the intermediate ranges crossed between it and the outlying spurs of the great snowy range itself. We have said that we hold the entire Himálaya to be but the southern slope of the great Tibetan platenu; that however rugged and furrowed this slope appears, it is homogeneous throughout. We reserve for the district notices the purely geographical description, and will here try to answer the questions that naturally arise regarding these mountains as a whole. What have geologists been able to discover regarding their history and the mitterials of which they are composed, and are the canses at work sufficient to produce such very varied results as are here exhibited? In attempting ${ }^{1}$ to answer these questions, wo must refer to wellknown principles, ${ }^{2}$ which have been found true in Europe and apply with equal or even greater force to the phenomena observable in the Himálaya. Without trespassing on the domain of the professed geologist, we may briefly summrarise the facts observed rogarding the Himálaya as a whole. We have seen that the onter range forms a geological as well as a physical boundary under Kumaon. The whole mountain mass may be divided into three great belts. First, the sub-Himálayan tertiary sandstones outside the Himálaya proper of geologists, and which have a considerablo development west of the Jumna. To them belong the Siwiliks and the Sirmúr series on which the hill sanitaria of Kasauli, Dagsháai, and Subathu are built. Secondly, a belt of limestone and slate forming the outer range of the lower Himúlaya on which the hill sanitaria of Simla, Chakrátit, Masúri, Landaur, and Naini Tál are situate. Thirdly, the crystalline rocks with granitic intrusions that form the remainder of the lower Himalayan region as well as the line of snowy peaks, and across the British frontier to the north of Kumaon, the palcozoic and secondary rocks of Tibet. Thus we have as the materials of the Himálaya the two great classes of rock known as the stratified or bedded and the crystalline. To the

[^47]former belong the limestone, sandstones, and slates that have been derived from the waste of the older rocks ; and to the latter the granite, gneiss, and schists which occur in masses.

The core or nucleus of all great mountain masses is formed of

Materials of the Himálaya. crystalline rocks, while the stratified rocks enter largely into the composition of the lower subordinato ranges. This is true of the Himálaya, Alps, Pyrenocs, Rocky Mountains, and indeed of atl the great montain systems. A glance at the geological map given hereafter will show more clearly than any description the arrangement of these rocks in Kumaon. One of the fundamental principles of geology is that the sites of all the great mountain masses of the world at one time formed a part of the bottom of the soa. K2, Nanda Devi and Mount Everest, the last of which exceeds a height of 29,000 feet above the level of the sea, at one time apparently formed parts of the bed of an ancient ocean. For the crystalline rocks have arisen either from the gradual consolidation of materials which had been fused deep within the crust of the earth or from the influence of subterranean water combined with the earth's internal heat, out of earlier sediments such as sea-mud and sea-sand, which in the course of time had sunk down and been covered by many thousinds of feet of later deposits. ${ }^{1}$ Geologists tell us ${ }^{2}$ that while no important movements, except small and partial changes of elevation, can be traced in the peninsular formations of India, the whole of the gigantic forees, to which the contortion and folding of the Himálaya and the other extra-peninsular mountains are due, must have been exercised sinco eocene times. The sub-Himálayan beds were deposited upon uncontorted paleozoic rocks ; and although a part of the Himálayan area may have then been land, the direction of the ranges is clearly duc to post-cocene disturbance. It has also been shown that the movement has been distributed over the tertiary, post-tertiary, and pleistocene periods. It has been suggested that upheaval still goes ${ }^{1}$ on, as earthquakes are of common occurrence along the line of the Himálaya andas far westwards as Kábul. Three distinct shocks were felt at Naini l'ál in April, 1880, and Srinagar in Garhwál was almost destroyed by a great earthquake in 1803. A recent traveller,

[^48]M. Severtsof, attributes the contraction of the great Kára-kul lake on the western Pamir to a similar cause, and says that the connection of the Tián-shinn with the Pamir is due to an upheaval which geologically is of recent date and is still progressing. At the end of the cretaceous period and at the beginning of the tertiary period, the Tiín-shán was separated from the Pamir by a strait with rocky islands, the marine deposits of which are found beyond the TazAshu pass. It is startling to the uninitiated to be told that the mighty mass of the Himélaya, as it now appears, is a formation younger than the comparatively insignificant hills of the Dakhin (Deccan) and Central India. The same, however, is said of the $\Lambda l p s$, Pyrences, Andes, and Rocky Mountains, all of which reccived their chief upheaval in tertiary times.

According to Mr. Blandford it is probable that the crystalline Eocenc period. axis of the western Himálaya which apparently terminates in the Dhauladhar peak, the western extremity of the snowy range seen from Simla, coincides with the shore of the ancient paleozoic continent of which the Indian peninsula formed a portion. If this be a correct view, the cis-Himílayan paleozoic rocks are in a great part of fresh water origin, whilst the marine palcozoic formations are found throughout the extreme north of the Paujéb, Kashmir, and the neighbouring countries north of the Dhauladhar and crystalline axis. In eocene times, the peninsula of India was part of a great continent probably united with Africa. To the east was a great sea extending up the Asim valley along the southern base of the Gíro hills and thence southward throughout a considerable area west of the Irawadi in Barma. 'There was another sea to the north-west covering a great part, if not the whole, of Persia, Baluchistín, the Indus I lain, and extending as far north-east as Garhwál, and an arm of this sea extended up the Indus valley into Ladák. The Himálaya and perhaps 'libet, wholly or in part, were raised above the sea, but there is no evidence to show that they had then attained any unusual elevation. In later eocenc times, the Himilaya had risen sufficiently to send back the sea boundary to the north of the Panjáb, and in miocene times, the marine area was still further contracted. The existence of a sea in these places is attested by the presence of marine deposits and shells, and this discovery clearly shows
that not only did the sites in which they occur once furm the bottom of a sea but that the difference in height now observed between them and the level of the sea must be greatly added to in order to arrive at the true measure of the upheaval that has since occurred. The work of denudation that continually goes on shows us that the present summits of the mountains must in the course of time have lost a considerable portion of their substance, and in the next place we cannot suppose that the marine shells now found lay exactly at the sea level. The bed of the great sca may also have been subject to successive periods of depression and elevation before the eocene period without greatly altering its height. Professor Geikie ${ }^{1}$ tells us what the forces are to which these marvellous results are due:"The upheaval of the sea floor into land seems to have beon duc to a cause which has been going on from the earliest geological times and which is still in progress. It is believed that originally this planet possessed an enormously high temperature ; that, indeed, it was thrown off from its parent sun with a temperature probably even much fiercer than that of the sun at present; and that it has since been gradually cooling and contracting. The external crust of the earth, varying greatly in structure and otherwisc, has yielded unequally to the strain of contraction. One result of this process has been the elcvation of portions here and there into long ridges, forming the continental masses and mountain chains. You may illustrate this production of lines of elevation along a generally subsiding surface by what takes place when an apple dries. Its surface contracts and wrinkles, most of the skin sinking inwards, but, at the same time, inequally and leaving intermediate ridges to stand up. So in the gradual contraction of our planct, wrinkles have arisen on its surface. It is these wrinkles which form our mountain chains. But such a subsidence of the crust could not have taken place without a very great deal of folding of the rocks. Descending nearer to the earth's centre, the various layers of the crust had a less diameter to fill. They could only accommodate themselves to their new position by being crumpled up so as to occupy less space, or by being cracked across so as to allow some parts to be pushed above others." We find that both these results have been produced, and the records of the Indian Geological Survey teem with illustrations of them.

One other fact is noticed, by the same writer, in connection with

> Molc of mountain formation. the crumpling up of the mountains, and that is that this process has been the means of bringing up the crystalline rocks. "Before the time of the crumpling, the whole future mountain area was covered with one continuous sheet of marine strata. But as the mountain chain began to form, the central portions came to be more and more compressed, puckered, and crystalline, some parts being squeezed up, whilst intrusive masses and veins of granite and other crystalline rocks were injected amongst the intensely altered strata along the central nucleus or core. It was during this process, doubtless, that the crystallisation of the gneisses and schists took place, when they passed from their original character of fragmentary (bedded) rocks and assumed the peculiar crystalline texture which they now present." We have already noticed that there have been successive upheavals of the Himálayan mass through the tertiary and post-tertiary and even the pleistocene periods, and the effect of these upheavals on the form of the mountain ranges must have been considerable. Supposing, with Professor Geikie, that a whole mass of sedimentury rocks has been upheaved into land as a mountain chain, wo find that "on the outskirts of this elevated area, sedimentary deposits will continue to accumulate in the sea. If in the course of the slow secular contraction of the planet the upraised tract subsides, a new set of strata will be laid down upon the upturned edges of the older rocks. It is evident that in every junction of this lind, some considerable interval must have elapsed between the formation of the older scries of rocks A (Fig. 4.) and the newer series B.

Seetion of a mountain chain showing three epochs of uphenval (Gcikie).
"In the course of time, the region having once yielded to the strain from terrestrial contraction will probably yield again, and a new upheaval will take place. The series B will now be raised up together with A, and another series C will be laid down in turn
upon its edges. Subsequently, the same fate will befall the group C. 'These three sets of differently inclined strata would fix for us three successive periods of upheaval." This simple explanation shows how very varying must be the results of successive periods of depression and upheaval, and especially when, as in the case of the IIimálaya, such an immense area has been subject to disturbance. We have now seen that the primary factor in mountain architecture are the great changes in the earth's crust by which mountains have been formed, and the bedded deposits have become rocks, and eventually, as the process of upheaval went on, have been crumpled, folded, crystallised, and fractured. In this process, lateral pressure has been the chief agent, and this has been exerted simultaneously from different sides in the case of the Himálaya, at least in the pleistocene period. No better examples can be given than those enumerated by Mr. Blandford as characteristic of the western area. Here we have amongst the mountain ridges that encircle the Indus plain and comprise pliocene beds, "ranges running north and south such as the Khirthar and Sulaimán; east and west as the Mari and Bhugti and the Afridi hills; north-west and south-cast as the Pir Panjál ; north-east and south-west as the eastern Salt Range and Kharian hills; and many intermediate directions may also be traced, independently of curved ridges." Of the extent of these lateral thrusts an example will be found to the west of the Indus. Taking the Persian area and that of the Himálaya and Tibet, " the mountain ranges fall roughly into two great curves convex to the sonthward; but the deepor western curve has produced the smaller mountain ranges. That a gigantic lateral movement has taken place in the apex of the western curve is, however, shown by the fact that for nearly 150 miles between Gwádar and Jálk in Baluchistán, the track traverses beds, all apparently of tertiary age, at right angles to their strike and that all these beds are vertical or nearly so. The contraction in breadth, or in other words, the lateral movement must have been great to have converted horizontal formations into a series of undulations, with dips so high as those seen in the Baluchistín ranges." The terms at our disposal to denote the relations of magnitude and adequately to depict the changes that lave been wrought during such a period are utterly insufficient to convey a correct idea of what has taken place. Perhaps

Professor Geikie's simile of the dried apple is as far as we can go without entering into scientific details that belong to the professed geologist.

Only second in importance to subteranean influence in the formation of mountains are the sub-erial tools of the great sculptor, the different forms of water, ice-wedges, glaciers, snow, rain, and rivers. ${ }^{1}$ It is impossible to say what may have been the alpearance of the mountain ranges when first formed, but we have every reason to beliere that usually the process was gradual and that at once the denuding influence of the different forms of water came into play. Nature from the time the first atmosphere existed has ever been at work tracing lines which gradually work into gorges, maines, and valleys, weathering

> lce-werlges.
peaks and rounding ridges and producing those alterations in the general appearance of the mountains that on a very small scale are familiar to most of us in a neglected hill-station. Both crystalline and bedded rocks abound in joints or divisional planes by which they are sparable into blocks and no small part of nature's work in sculpturing mountains is thus rendered possible. Into these erevices runs the melted snow or rain, and there congeals and again expands, forcing the blocks asunder by slow degrees. The sun's rays turn the ice into water during the day, to penetrate still further and again congeal during the night, and this censeless process continued for many conturies shows its effect in the form of the monntains composed of even the hardest rocks. These are covered with massive boulders quarried by mature's ice-wedges in this simple fashion. Where the dislocation takes place near the edge of a weathered clift, the mass of ruin caused by the toppling over of huge blocks is often gigantic. Gerard describes the upper portion of Purgial (Lío Porgyúl) as the "wreck of some towering peak burst asunder by severe frost." Fraser tells us that the summits near Gangotri and Jamnotri are a mere confused mass of luge crumbling bonlders, and the same description applies to nearly all the peaks that hare been visited by travellers.

We have next to notice snow in the form of aralanches as one

> Avalauches. of the tools employed in momtain seulpture. The winter snow, when exposed to the summer

[^49]sun and influenced also by the heat of the earth itself, is often detached in masses sufficient to cause great matural disturbances. It has been suggested that the change in the bed of the Satlaj in the plains to its present one has been produced by an avalanche in its upper course having dammed up the river. In time the barrier gave way and sent down an immense flood to the plains, sufficient to carve out a more direct course which the river itself has since continued to occupy.

It is, however, to the action of snow in the form of glaciers that Glaciers. the more important results are due. These great engines of clenulation have the form of a solid river ever progressing downwards through the valleys until the point is reached where the rate of motion is balanced by the melting of the ice. In the figure of the Pindari glacicr, given hereafter, it will be seen that the glacier fills the bed of the upper valley and is fed by the drainage of the snow-covered slopes on either side. Its face is discoloured with mud and stones and is utterly unlike one's preconceived ilea of masses of ice. Along the sides and edges, too, are rows of earth, stones, and boulders transported and deposited in order by the ice-stream. These deposits are called moraines. Much of the material transported falls down into the crevices and gets between the bottom of the glacier and the rocky bed along which it moves, and which is thas subjected to a grinding process that reduces even the hardest rocks to powder. This fact accounts for the turbid character of glacier streams, especially near their source. The influence of glaciers, therefore, is two-fold, firstly in transporting materials and secondly in reducing them to mud or sand. The combined result is often seen in the mass of detritus heaped up towards the end of a glacier called a terminal moraine, and in the striated and smoothed appearance of the rocks that have been suljected to glacial action. As will be seen hereafter, thero is sufficient evidence of a great extension of glacial action in former times that must have had a very important influence on the form of the mountains. Cunningham records three great inundations of the Indus due to the bursting of glaciers in the upper portions of its course. These had dammed up the river bed and eventually gave way, sending a flood down the channel which in the cataclysm of June, 1841 , wpeared as a wall of water some
thirty feet high, destroying every thing that came within its reach. ${ }^{1}$

Rain has had even a more constant and penetrating influence Rain. on the mountain masses than any of the preceding forms, for it has furnished the materials from which the ice has been formed and is more universal in its operations. The salts and acids contained in it have also had a peculiar action of their own. Rain while falling through the air takes up some portion of carbonic acid and when it reaches a rock dissolves and carries away certain portions of its texture. The result of this process is that not only is the rock reduced in bulk by chemical action but what remains also becomes more easily operated on by the mechanical action of falling water in the next shower. For illustrations of these processes take any line along the limestone ridges about the hill sanitaria already mentioned, and it will be seen how the outer erust where exposed is crumbly to the touch, and has a rough sandy appearance. For those who have seen the long gneissic range extending from Almora to Devi Dhura in Kumaon, there could not be a better example of the influence of rain or rock than is there exhibitel. Along the road on cach side where the rock has been exposed to the weather, the outer layer is removable by the hand, and at the base will be found a little heap of sand that has been weathered away in course of time. Many of the more loosely formed shales, especially those that contain alum, speedily decompose on exposure to the atmosphere and it is on this account that in the midst of rocky formations in the Fimalaya it is so often very difficult to obtain good building stone. Another familiar example of the influence of the rain-fall on the rocks will be seen in the stones of old buildings throughout the hills. Where protected from the weather their surface exhibits the faintest trace of the graver's tool intact, but where exposed they are worn and eaten into and the outer skin appears granulated and rough. This waste of rock material has been in progress for centuries and has produced a soil in which trees have taken root and shed their leaves to produce by decomposition and mixture with the waste the rich vegetable mould that ovcrlies our forest-clad hills. The presence of these trees has had the further effect of retarding the removal of

[^50]the newly formed soil not only by absorbing a portion of the chemical elements carried down by the rain-water, but also by breaking the force with which the rain would otherwise fall on the soft soil. Thus we find that on well wooded hills the depth of useful soil is considerable and that springs are numerous and abundant. On the other hand where the hills have been cleared of forests, the finer soils are soon washed away by the almost tropical rain. The rocks from which the soil has been formed again appear at the surface and the rainfall rapidly drains off leaving no supply for springs, and if the process be continued over any considerable area, cultivation becomes impossible and the climate is essentially altered. What deforesting has done for Almora can be seen in its scanty rain-fall, its barren slopes, and few springs, although the area affected is so small.

The action of a river in the sculpture of mountains is three-fold.
Rivers. First, it has the chemical action of rain in dissolving portions of rock constituents : again, it has in its mountain course the grinding power of the glacier in the force with which it drives the gravel, stones, and boulders along its rocky bed : and thirdly, it has the glacier function of transporting material and laying them down in deposits elsewhere. In the case of glaciers the denuding process is the more important, and in the case of rivers the transporting function has, perhaps, more influence in moulding the features of the surrounding country. In the beds of many of our mountain streams we can detect the action of both glaciers and rivers in the striated and furrowed appearances produced by tho former and the rounded forms of worn pelbles duc to the influence of flowing water. The muddy colour of the water is due to mud or sand held in suspension, and it has been estimated that in this way one sixthousandth part of a foot is annually carried away from the water-shed of a great river. This waste is, however, very unequally distributed, being very much greater in slopes and valleys and less in plains. "We may be prepared, therefore," with Professor Geikie, "to find that solely by the continued erosion of rumning water, even the most recently upheaved mountain chains have had stupendous chasms carved out of their sides, and an almost incredible amount of material removed from their surface." Such has been the origin of the Scottish valleys which, according to the same writer, " have been cut out of the general mass of the upraised rock. The existing mountains are
what we now find them to be, becanse they have been left standing while the valleys have been excavated anong them." Play fair in his "Illustrations of the Huttonian Theory," as quoted by the same author, writes:-" If indeed a river consisted of a single strean without branches, running in a straight valley, it might be supposed that some great concussion, or some powerful torrent, had opened at once the chamel by which its waters are conducted to the ocean; but when the usual form of a river is considered, the trunk divided into many branches, and then again subdivided into an infinity of smaller ramifications, it becomes strongly impressed upon the mind that all these chamels have been cut by the waters themselves; that they have been slowly clugout by the washing and erosion of the land; and that it is by the repeated touches of the same instrument that this curious assemblage of lines has been engraved so deeply on the surface of the globe." In major and minor river systems the same principle is observed ; the lines marking the tributaries of a stream appear like the reins of a leaf all converging on the mid-rib and each forming within its own area a separate main line of a smaller system until the differences are inappreciable. But it may be asked why, if these influences are uniform in their action, the results are so varied. The answer is not far to seek and is to be found in the varied character of the materials on which the aërial forces operate. The southern flank of the Siwaliks below Dehra, consisting of soft sandstoncs, are weathered by the heary monsoon rains mutil they are almost perpendicular. The Krol limestones give their picturesque outline to the outer Himalaya, when compared with the other lower ranges. The shales and slates have a character of their own, and the great crystalline range itsclf owes its form to the rocks of which it is composed. Kamet has its peculiar pyramidal shape from its cap of granite, and Nanda Devi, Trisúl, and the Panch Chúli have had their peaks defined by simple aërial action on their materials. Thus, our mountain ranges are due in the first place to subterrancan disturbances, and in the second place, to the action of the different forms of water, chemically and mechanically, on the varied materials of which the rocks are composed. It is the combination of these two forces that gives such varied results, and until more accurate and comprehensive information is recorded regarding their operation, it is impos* sible to base our physical description on other than arbitrary grounds.

CHAPTER IIT.

Geolocix. ${ }^{1}$

CONTENT心.

Fosition of the ground. Embly observers: Herhert, Cautley, Fakoner. The monntain system. The sulf-Himalayan zone formed of tertiary rocks. Siwaliks. Post-tertiary deposits. Supposed gracial deposits. Lower llimilayan resion. Sima rescon. Sirmúr formation. Itclation of Simúr and Siwalik series. The Sathaj valley. East of Simal The Kmmann section. The Nepal seetion. Sikkim seetion. Slight correspoutence between the roeks of the Jimalaya and of the I'eninsula, Freguent oceurrence of eabonaceous deposits throughot the Lower Ilimalisat. Conjectural alliliation of the Iower Himalayan sections. The Cemtral Himalaya. Strachey. Stolickza. Westem Tibet. The principal erystalline areas. Nummulitie thposits. l'ost-eocene eruptive rocks. Central queiss. Kashmir-Kishtwár recrion. Central Tibet. Its granites, sehists, shates, conglomerates and fossiliferous rocks. Palamzoic strata, Silmian, 'Mas, Jurassic. Fonsils. Tertiary deposits. Eocallerl Niti fussils. General Strechers conclusions. Stolickzats views.

The British Himalayan districts, which form the immodiate
l'usition of the ground. sulpeet of this sketel, are themselves such a small portion of the immense reological region to which they belong, that we shall have to wander considerably beyond their limits to attain some idea of their place in nature. Some of the ground forms part of one of the best known, and certainly the most widely known, of our Tndian rock-formations: the Dehra Dún is pre-eminently the Dún ; and the low hills separating it from the wide Gangetic plains are the original Siwaliks, a mame to be found in every geological text book. The rocks of the higher hills to the north, below the snowy range, have as yet received only cursory attention, being ehicfly non-fossiliferous slates and crystalline schists. On the snowy range and beyond it in Chinese territory we again come upon formations of well-established position, but of which we have little real knowledge, and are altogether dependent upon the occasional observations of a few adventurous explorers.

In geology, no less than in other sciences, it is desirable to be able to trace the stages of knowledge. Even in descriptive geology this information is interesting ; and for the student such illustrations are almost essential. Although the germinal idea of geology, that the aboriginal

[^51]superposition of sedimentary deposits is a sure indication of succession in time of formation, and hence that the structural relations of rocks are the ultimate criterion of age, had to be conceived before geology could have birth. The difficulty of applying this test, of observing obscure and scattercd oatcrops, and of putting together and discussing the features thus laboriously collected, is so great, that, from the beginning, geologists have sought for, and adopted more ready tests for the chronological classification of rocks. The history of progress in geology is in great measure made up of the failures of generalisations thus too hastily arrived at; the total breakdown of false assumptions, and the correction of errors due to the forced application of partially understood principles; to the neglect of the regulating laws of structure. The science is so young that its history in India affords examples of these errors. In some cases our admiration of the men and the work they accomplished is positively enhanced by our knowledge of the difficulties under which they laboured. The names Herbert, Falconer, Cautley, and Strachey call especially for mention in connection with the ground under notice. Cautley and Falconer will be imperishably associated with the palæontological branch of geology, as having with great labour brought together the unrivalled collection of fossils, the description of which was partially published in the Fauna Antiqua Sivalensis. Work of this kind endures, in so far as it is to a great extent a record of hard facts, having each a permanent interest, such as the existence of a certain fossil within a fixed range of strata. It is not so with facts of the first order in geology proper : the announcement that such a kind of stone occurs in any particular place conveys no information that can be said to have scientific value ; it is only when accumulated and colligated under established principles of formation that such petrographical facts come to have any geological meaning. Herbert's observations were of this order. He dealt entirely with unfossiliferous rocks, and the principles under which he had to arrange those obscrvations were still to a great extent artificial ; his work has therefore only an historical interest.

Captain G. D. Herbert, however, must rank in merit as well as
Herbert. by date amongst the foremost pioneers of geology in India. As a man of great talent and of sound and extensive scientific culture, he may stand with Captain

Newbold, who did so much for the geology of Southern ludia. The advantage of the latter lay in the greater simplicity of the ground he worked in and in his being even a few years later in the field. The mineralogical survey of the Himálayan districts was one of the earliest attempts at a geological map of a considerable area made officially in India. The work was entrusted to Captain Herbert by the Marquis of Hastings ; but it was left to private enterprise to make known the results. The publication was taken up by Mr. Henry Torrens, of the Bengal Civil Service, the accomplished editor and proprictor of the so-called Journal of the Asiatic Society of Bengal, which was then brought out at the personal risk and responsibility of the Society's Secretary, and was really the continuation of the publication started by Captain Herbert himself in 1829 with the more appropriate title (under such conditions) of Gleanings in Science. The report appeared as an extra number of volume XI. of the Journal for 1842, nine years after the death of Captain Herbert, and seventeen years after the completion of the survey. The map to illustrate the report was issued with volume XIII. for 1844. It comprises the very large area lying between the river Kíli and Satlaj, more than 200 miles in length, and from the plains to beyond the snowy peaks, a breadth of 90 miles. Captain Herbert does not assume any pretensions to authority. He tells us very plainly that he made up his geology for

His geological theories. the occasion, but it is plain, too, from his observations and reflections, that he thoroughly mastered his authors. His suggestions in correction of current views are often very judicious, and display a truly scientific turn of mind. His work, nevertheless, can only be noticed in illustration of the history of Indian geology. He divides all the rocks of the mountains into two great 'primary' formations-one for the gneiss occupying the central region, and one for the micaceous, chloritic, hornblendic, and argillaceous schists, to which also he joins the limestones. He makes a third zone of the narrow strip of " secondary rocks, mostly, if not entirely, the Newer Red, or Saliferous Sandstone." On the strength of this purely imaginary identification borings were recommended, if not actually undertaken, along the margin of the plains, to find the carboniferous formation with its coal. This notion was not quite exploded by the discovery of the famous tertiary fauna in a part of the rocks designated by Herbert as New Red Sandstone ;
and by the latest writers, prior to the Geological Survey, the sandstone along the fringe of the Kumaon mountains, and now known as the Náhan or lower Siwálik group, are treated as secondary. The constant dip of the rocks of the southern Himálaya towards the central axis, so marked a feature in their structure, was treated by Herbert in a manner characteristic of the times. His three formations being by assumption successive in order of time, the observed structure seemed to subvert this ordained relation, making the younger apparently pass bencath the older, the schists beneath the gneiss, and the sandstones beneath the schists. Heattempted first to explain this anomalous feature by faulting; but when his calculations seemed to demand a fault having a throw of eight miles, he gave up the idea in favour of a supposition infinitely more extravagant. He came to the conclusion that the apparent bedding in each of his three series is not true stratification, due to the process of deposition in water, but only pseudo-stratification, produced by some process of concretionary action; thus, for the sake of a collateral issue, he cut away the very foundations of the science of geology.

The work of Cautley and Falconer was the geological converse
Cautley and Falconer. of that attempted by Iferbert. They dealt entirely with one series of rocks, and treated them almost exclusively from the point of view of their fossil contents. The range of their operations was limited to the low fringing hills between the Ganges and the Satlaj. The structural features were very slightly touched upon, the strata being taken to belong to one unbroken formation, which was recognised as of geologically recent date, and as being distinctly made up of the débris of the Himalaya. The following abstract list of fossils will give an idea of the extent of their labours, and of the richness of the fauna they discovered :-

SIWALIK FOSSIL VERTEBRATES.

Quadrumana.

Semnopithecus, Pithecus.
Carnivora.
Hycena, Amplicyon, Hyanarctos, Canis, Mellivora, Felis, Drepanodon, Lutra, Enhydriodon.

LITHOGRAPHED IN COLORS AT THE SURVEYOR GMNERAL'S OFFICE, CALCUTTA, FEBRUARY 1876 ,

Proboscidia.
Stegodon (4 sp.), Loxodon (1 sp.), Euelephas, Mastodon (2 sp.), Dinotherium (sp.).

Artiodactyla.
Mexaprotodon, Merycopotamus, Hippohyus, Sus, Chalicotherium, Sivatherium, Antilope, Cervus (sp.), Camelopardalis, Camelus, Bos (sp.), IIemibos, Amphibos.

Perissodactyla.
Rhinoceros (3 sp.), Antoletherium, Equus, Hippotherium.
Reptilia.
Crocodilus, Leptorhynchus, Varanus, Colossochelys, Emys, Triony., Testudo.

Undetermined species of Aves, Pisces, Mollusca and Crustacea.
It is to Captain Richard Strachey, of the Bengal Engineers, now General Strachey, Member of the India Council, that we owe the

Strachey. first sound attempt at a sketch of Himálayan geology based upon extensive observation. An abstract of his results was published in the Quarterly Journal of the Geological Society of London for November, 1851, and the map accompanying his paper includes about the same ground as that of Herbert. A comparison of the two maps shows how great an advance had been made. It is greatly to be regretted that official and other business prevents General Strachey from making with his own hand the few corrcctions and additions necessary to bring lis work up to date for the present publication. The annexed map is little more than a roproduction of General Strachey's, and the description also of a large portion of the ground is a reprint of his paper. ${ }^{1}$ Acknowledgment is made by him that a considerable portion of the observations recorded were contributed by his brother, now Sir John Strachey, late Lieutenant-Governor of these provinces.

For the geographer a mountain chain is fixed by the conditions of continuity and direction. The geologist would fain make his mountain systems to

[^52]depend primarily upon contemporaneity of formation, as suggesting causal connection. From neither point of view can the Himálaya pretend to fixity of limits. On the south, indeed, no great physical boundary could be more marked than the base of the mountains between the Jhelum on the west and the Bramaputra on the cast, a distance of about 1,500 miles. The line is remarkably unbroken, without projecting spurs or open re-entering valleys. It has a uniform curve, the bearing in Upper Asám being to east by north, while in the Panjáb it is nearly to north-west. Throughout this entire length the hills rise abruptly from the alluvial plains. The terminations of this boundary are also very well marked. The Asám valley ends against the ranges of the Barma-Malayan mountains, which pass up from the south, at right angles to the Himálayan chain, to coalesce with it in the elevated regions of Eastern Tibet. Similarly on the north-west the ranges of the Salimán and Hindu Kush pass continuously into the mountain region of Little Tibet, nearly at right angles to the run of the north-west Himálaya. It is on the north that the question of a physical boundary is to a great extent arbitrary. The chain of mountains that, under the name of Himálaya, forms the northern boundary of Hindustan, is in reality the southern face of the great mass of elevated land extending through nearly 30 degrees of longitude, from the sources of the Oxus to those of the great rivers of China, while its northern face appears upon our maps as the range called Kuenluen. To the south lie the plains of India, whose greatest elevation is about 1,000 feet above the sea; while on the north is the Central Asiatic desert, which nowhere is at a less altitude than 3,000 feet. The loftiest summits known on the surface of the earth are to be found towards the southern edge of this clevated region, at least one peak having been measured whose height is upwards of 29,000 feet, while along the whole line peaks of 20,000 feet abound.

So little is known of the interior and northern parts of this region that it is impossible to offer any general account of it based upon actual observation ; but as fiur as we may judge from those parts that lave been explored, it appears that the surface is, with few excep-

[^53]tions, broken up into a mass of mountains, the general elevation of which, valleys as well as ridges, is very great; and there seems no reason for snpprosing
that either the Himalayan or Kuenluen have any definite special existence as mountain ranges apart from the general elevated mass of which they appear to be the two opposite faces. The portion of the southern chain to which the following description more particnlarly refers, is somewhat to the west of a central line, on about the 80th degree of east longitude, which meridian passes through the island of Ceylon, and not far from Cape Comorin. The order of notice will be in successive zones from south to north-the plains, the Sub-Himálayan zone, the Oater or Lower Himálaya, and the Central Himálaya.

While difference of opinion exists as to the formation of the most
The plains. recent deposits, it is not to be wondered at that there is often much doubt as to the origin of ancient formations. The primitive idea that a water-basin is necessary to the accumulation of extensive sedimentary deposits is still widely held. To it is primarily due the not yet obsolete opinion that the plains of India are in great part of marine origin. The only direct evidence in support of this view is the local occurrence of saltwells, which also involves a popular error, for although the sea is the great receptacle of salt, it is chiefly by rock-decomposition on dry land that salts originate. This fact is likely to force itself disagrecably upon future generations in India ; at present we have only to do with it as at least weakening a mistaken geological position. The only fossil remains found in these plains-deposits are of land or fresh water origin, and these occur even in the delta below the present sea level.

The surface-form, and the distribution of the materials of these deposits, is, moreover, just what is now understood to be due to the normal action of rivers above their final point of discharge. Torrents, streams and rain-scour from the precipitous slopes have accumulated a wide bank of coarse diluvial deposits along the base of the mountains which is known in these provinces as the bhabar or forest zonc. In Rohilkhand it is about ten miles wide, and has a fall of from fifty to seventeen feet per mile, and, except in the rainy season, water is not procurable in it. Even considerable streams sink into the porous gravel-beds. Outside the bhábar is the tarai, also about ten miles wide, in which water is superabundant,
producing swamps and excessive moisture. Formerly it wats supposed that this was an area of actual depression; it has, however, a very considerable fall, averaging (in Rohilkhand) more than ten feet in a mile. The moisture is due to the copious re-appearance of the water absorbed at the head of the bhábar. From the tarcíi the plains gradually decrease in slope to three or four inches per mile in the deltaic regions.

A belt of fringing ridges, varying in width and abruptly lower

The Sub-IIimálayau or Siwálik zone, formed of tertiary rocks. thran the contiguous mass of the Himálaya, occurs throughout their entire length, with perhaps two short interruptions in Lower Asám, which are doubtfully and in part attributed to denudation. The pure geographer might, in some places, ignore this feature, as perhaps below Naini Tál and Darjeeling, choosing to regard its representative there as mere spurs of the mountains. Geological observation, however, draws attention to geographical features that might otherwise escape notice, and notes that these so-called spurs will always be found affecting the form, not of spurs proper, but of ridges parallel to the adjoining mountains, and in a more or less marked degree semi-detached from them by a chain of deep longitudinal gorges and low gaps, corresponding with a leading geological boundary, that between the old slaty and schistose rocks of the mountains and the massive tertiary sandstones of these fringing hills.

From this double consideration the name Sub-Himálaya las

Divisions of the tertiary series. been given to these lower ranges and to the rock-series forming them. For the most part these hills are apparent to the least observant traveller, their outer ranges being separated from the inner ones by broad flat valleys, or dúns. These more detached ridges have long boen familiarly called Siwáliks, a name extended by Cautley from the native name (Shib-wala) of the representative range separating the Dehra Dún from the plains. This name, too, has been hitherto currently applied to the hills and rocks here described as SubHimálayan, wherever distinctly recognised. The closer study of this zone has, however, brought to light distinctions involving some difficulties regarding the application of this familiar name. It has been found that there are recognisabie divisions in this great series
of the tertiary deposits of the Sub-Himálayan hills, and that the younger of these groups contains by far the largest share (if not all) of the well known Siwálik fossils. On this account it was proposed to restrict the name Siwálik to the band in which those fossils occur ; but there are good reasons for preferring to continue the extension of the old name, and to indicate the separable geological horizons as Upper, Middle, and Lower Siwáliks. On the small map annexed they are coloured together as upper tertiary.

It was in the ground west of the Jumna, between the Kayarda

> Supposed key section of unconformable groups. and Pinjor dúns, where the outer and inner hills are confluent for a length of about forty miles, that the separation of the original Siwálik series into distinct groups was first brought to notice. Throughout the whole cross-section the dip of the strata is inwards, towards the mountains; but along a sharply marked line, continuous through the length of these hills, there is a junction of highly contrasting rocks : the brown and yellow clays, and conglomeratic gravels at the top of the series forming the outer zoncs of low hills, abut against harder red clays and sandstones forming an inner zone of somewhat higher hills. The feature is nowhere better seen than in the region of the Márkanda, south of the town of Nahan, the capital of Sirmur. As is generally the case along the junction of rocks of very different textures, the actual surface of contact is concealed by débris; and the appcarance suggested by the conformable dips is that the outer rocks pass regularly beneath the inner ones.

Such was the view tacitly adopted by the discoverers of the Overlooked by early Fauna Sivalensis. It was from the same observers. trans-Jumna region, south of Náhan and of this rock-junction, that a very large proportion of the great Siwálik fossils were procured. No particular notice was taken of the striking feature just described; and Cautley accounted for the absence to the east of the Jumna of the highly fossiliferous beds known to the west, by supposing a lesser upheavement of the ground to have occurred in that direction ; thus distinctly implying that those beds underlie and are older than the rocks of the cis-Jumna Siwdilk range, which he had himself,
from fossil and petrological evidence, identificd with the rocks at Náhan.

Herbert's deliberate'rcjection of the elementary fact of stratifi-

Nature of the unconformity. eation, to make way for a theoretical difficulty, is scarcely a less remarkable datemark than the ignoring of so striking a stratigraphical feature by the original explorers of the Siwáliks. The facies of the two contrasting groups, as seen along the boundary, at once suggest that the outer and apparently underlying rocks are really the younger, and this is immediately confirmed ly finding that the conglomerates of this group are principally mado up of the déloris of the contiguous inner strata. Althongh this latter fact would be somewhat against the supposition, the steep abutting rock-junction would next suggest a fault, along which the lower strata were upheaved on the north, and thus brought into contact with younger beds of the same series. Patient search, however, revcaled an exposed section of the actual contact showing the relation of the strata to be quite different from that implied by faulting. The conglomerates were found to rest against a denuded surface of the older group of rocks; the junction being in fact that of an original steep edge of deposition to which an actually overhanging, inverted pitch had been given at many points by subsequent lateral compression.

The feature, as thus described, involves much more than simple

> First inferences from it. successive deposition of the groups. It exlibits strong unconformity between them, requiring the older group to have been upraised and deeply denuded before and during the formation of the younger one. Such a relation generally implies a considerable break and lapse of time between the formations, with a corresponding change in their fossil fauna. It is precisely the history of such changes which it is the business of geology to unfold. But to the unfortunate neglect of the simplest stratigraphical observations, fossils from both groups were mixed together in the magnificent collection that lay ready to the hand of the early discoverers. On account of the character and extent of this stratigraphical feature, suggesting that an unconformity of such depth must have a very wide range, it was proposed by the first observer of it to restrict the name Siwálik to the younger formation, and to dosignate
the older rocks, of the inner zone, as the Náhan group. It is the name by which Cautley identified a certain horizon in the series, although apparently assigning to it a position the reverse of the correct one.

Large as is the gap absolutely required between the ages of the beds actually in contact along this boundary, it was matter of surprise from the first that no trace of so great an uncouformity could be found in the immense thickness of deposits to the south of it. From the conglomerates at the junction, southwards to the plains, one crosses a descending section of several thousands of fect of strata without a trace of unconformity: showing either that even at the base of this section the beds of the Náhan group are not represented, or that the disturbance which produced the unconformity along this line of abrupt contact was of such a nature as to admit of continuous deposition within so very short a distance. Ruling ideas at the time were certainly against the latter supposition, that extended observation seems to confirm it. Going westwards along the Pinjor Dún, we find at the Satlaj, ou the very strike and extension of the Náhan range, a continuous conformable sequence from the beds of the Náhan horizon into the softer sandstones, clays and conglomerates at the top of the series. The line of disturbance which in the Náhan region resulted in a denuded scarp against which the topmost beds were deposited by overlap, produced in the Satlaj region an anticlinal flexure which must have been so gradually evolved that the deposits accumulating along its southern base were sensibly conformable throughout, although now we find the uppermost conglomerates almost vertical, with a southerly underlie, at the edge of the Din. Thus it is evident that a well-defined break is not a general feature in the Sub-Himálayan rock-series, and that it would be premature so far to sever such a portion of it by a separate name from the timehonoured Siwáliks. The name Náhan is already current in print, and may at present be understood to indicate lower Siwálik rocks. It is important, however, to point out that the real inference from the unconformable junction is of more interest than the prime facie one ; without it we should not have had distinct proof that slow disturbance of great amount took place in the Sub-Himálayan zone during the formation of the Siwilik deposits.

Although the marked separation of groups suggested by the peculiar feature of the hills between the Kayarda and Pinjor dúns A division maintained is not maintainable westwards, there is a unithrough the character of the rocks and fossils : upper Si wáliks. formity of change throughout the series from base to top whereby approxinate horizons are assignable. Conglomerates and gravels prevail at the top, variably associated with brown sandy clays. In many clear sections the thickness is quite 4,000 to 5,000 feet. It is not, however, to be understood that the deposits were ever strictly superimposed to that depth vertically. The mode of deposition in successive banks, each trailing upon and thinning out beyond its predecessor, as pointed out above for the section on the Satlaj, must greatly modify the familiar meaning of the word thickness as regards spoce; although where such deposits become tilted up by lateral pressure, and exposed along a comparatively shallow section, the appearance is quite the same as if vertical superposition of the whole series had obtained. Nevertheless, as regards time, the fullest thickness must be taken into account, for each bed is truly successive to that below it. Even when raised to the vertical, those upper Siwalik strata have so fresh an appearance as to be scarcely distinguishable from the most recent deposits-from the beds of the torrent shingle or of sandy alluvium now accumulating in the dúns or on the plains. The complete justification for their distinction as an upper Siwálik group is found in the few fossils they have yielded, some of which, as Bubalus palcindicus, would connect them with the pleistocene deposits of the Narbada valley rather than with the pliocene Siwáliks.

The main fossiliferous zone of the Siwalik series constantly occurs bencath the thick mass of deposits noticed in the last paragraph, and it has a fairly characteristic rock-facies of its own. Massivé, clear, gray; soft sandstone is decidedly the prevailing rock; but brightly tinted clays are also often in great force. The large vertebrate remains, although mostly found in sandstone, are certainly more abundant where there are associated clays. Several thousand feet of thickness must also be assigned to this middle Siwálik group. Falconer considered this Siwálik fanna to be miocene, but palæontologists are now decidedly in fivour of its pliocene affinities.

In conformable sequenco beneath the fossiliferous zone we find
Náhan or lower Siwálik. rocks of the samo type, but having a decidedly different aspect-strong sandstones, but of a darker hue, and often highly indurated, with hard clays generally of a decp red or purple colour. Throughout the Himálayan range, east of the Satlaj, they form the flanking ridges close under the higher mountains, and inside the dúns; or at least they mostly occupy that position, for it cannot be said that middle Siwálik beds do not occur there too, as will be seen from the remarks upon structure. No fossils can be quoted from those beds, but it is believed that some existed in the original Siwálik collections. They would probably be of miocene age.

One of the most interesting features in these Siwálik deposits is Horizontal variations the variation they exhibit in relation to the in the siwalik deposits. position of the great river-gorges. This is most marked in the case of the upper portion of the series. The accumulation of coarse conglomerates is immensely greater in the immediate vicinity of the large rivers of the Himálayan system, and, moreover, it is only within the range of those streams that we find the beds of large rounded blocks of quartzite and other hard rocks such as are now brought down by those great torrents. In the intervals between the rivers such conglomerates as occur are formed almost exclusively of the débris of the adjoining hills, the same as are found in the minor streams now flowing from those hills; but in this position sandy clays often form the bulk of the formation. The same influence is obsorvable in the middle group of the series, which is often conglomeratic and gravelly, or almost exclusively sandy, near the main rivers, while away from them the clays are often in great force. Thesc facts are very observable at the Satlaj; in the gorge above Bubhor the whole of the upper group is coarscly conglomeratic, and the middle one is more or less pebbly throughout, while at seven miles to the north-west the brown sandy clays, in which the fossil lubalus and camelus were found, form three-fourths of the entire thickness of the upper group. The apparent exception in the case of the Jumna is even a more marked illustration of the fact under notice. The river now flows through the Siwálik range at many miles to the west of the gorge. where it leaves the mountuins; the fact being that in the elevation of the outer range the

Jumna could not erode a passage through the great accumulation of conglomerates it had formerly discharged in front of that gorge, and which now form the highest summit of the outer range. It had to work round them not in the direction of its near neighbour the Ganges, but towards the region of lesser deposition. Thus the contrast between the Siwálik strata to the east and west of the actual river-passage is so great that it has been questioned if the formations can really be the same. To the east the upper group is made of the hard shingle conglomerates, while on the same strike to the west the conglomerates are composed of local, principally lower Siwálik, débris. In the cis-Jumna Siwáliks the middle group is formed of thick masses of soft sandstones that have yielded very few fossils, while to the west clays occur largely on the same horizon, and fossils abound. The facts indicated in this paragraph are of great importance, as bearing upon the question of the mountain-formation; showing, as they clearly do, that although these deposits, to a thickness of 8,000 to 10,000 feet, are now in many places turned up to the vertical, and even inrerted, yet the main features of the higher mountains must have been during the Siwalik period sensibly similar to what they are now.

So far we have briefly considered the original characters of the

Structure of the Siwalik rocks. Siwalik strata : it is necessary now to notice has taken place on the grandest scale. On the right bank of the Ganges above Hardwar the gray sandstones of the middle group have a high southerly dip; and this rises gradually, through an cnormous thickness of strata, to a nearly vertical underlie in the conglomerates at the outer edge of the range. A section of the same type is splendidly exposed in the gorge of the Satlaj above Bubhor, in the second range of the Sub-Himálayan hills. There is much method in the form of these flexures: they very generally affect the form known as normal, i. e., bends in which the dip is greater on one side of the axis, and so called because of more common occurrence than the symmetrical flexure-when both dips are equal-or than the folded flexure, in which the strata on the side of the steeper dip have been pushed beyond the vertical, and so partially inverted. As an almost universal rule in this region, the
steep side of these normal anticlinal flexures is turned from the mountains. From this there results the familar conformation of the Sub-Himálayan hills, presenting a scarped face to the plains and a long slope towards the interior valley. These duns, or at least the flat longitudinal valleys which are the typical duns, are thus structural features, not mere valleys of denadation ; they rest upon the comparatively little disturbed strata in the hollow of the synclinal flexure. The range separating the dún from the plains is formed by the anticlinal, the steep (outer) limb of which is generally broken up and denuded away, hence the south face of the range presents the searped outcrop of the beds on the north side of the axis of flexure.

In the inner ranges, where the disturbing action was greater, The Nun under Mus- the normal flexure often becomes folded, soorce. with, of course, inversion of the strata. There is an instance of this fairly seen in the Nún stream under Mussooree : below the narrow gorge, through massive sandstones having a steep northerly underlie, there is a continuous section in the low banks showing the sandstone becoming pebbly, then interbedded with thin conglomerates, then with thicker and coarser beds, all having the sume high northerly dip. This is undoubtedly an ascending section thongh apparently, according to the dip, it is a descending one, i.e., the whole series is inverted. To any one who has understood these simple explanations, it will be apparent that if these conglomerates are upper Siwalik, and unless there is a fault somewhere about the mouth of the Nún gorge, the inner Sub-Himálayan range under Mussooree must be in great part made up of middle Siwálik, and not of Náhan beds; and indeed their character would support that vicw. If these conglomerates of the Nún are not upper Siwálik they would form a new sub-division of the Náhan group, which could then hardly be classed as lower Siwálik. Similar conglomerates have lately been observed in this inner Sub-Himálayan zone east of Naini Tal. It is however to be remarked that these folded flexures often are attended by great faulting, on such a scale that all appearance of flexure is lost and we only find a section of upper Siwáliks dipping against, and apparently passing under, beds of the Náhan type. There are several grand instances of such faults in the broad area of Sub-Himálayan rocks beyond the Satlaj in the Kángra
region and on through the Jamu hills. They run quite straight or in very open curves for several seores of miles, and as the dislocation lessens, the unfaulted flexure is gradually disclosed. The section in the Nun shows us that to the east as well as to the west flexures may take the place of the peculiar unconformable overlapping boundary between the upper and lower Siwaliks described in the Náhan region, where there is no dun. The difference of structure would be such as might result from the presence of some unyielding mass of rock underground in this latter position, preventing the formation of flexures. This Náhan region is in other ways remarkable, as we shall see in following sections.

The form of the structural features prevailing in the Sub-Tiimálayan zone indicates plainly a thrust from the adjoizing mountain mass; and the magnitude of the total movement is astomishing in connection with the reflection made in a previous section, that it must in great part have occurred since the mountain mass had assumed somewhat of its present form ; or, at least, that the main drainage system had remained the same throughout.

From what has already been said, a general idea might be formed

Distribution of Siwdlik rocks.
the Siwalik series ; but the effects of denndation and other influences remain to be indicated. The chicf expanse of the Sub-Himálayan hills and rocks is beyond the Satliaj. From about Pinjor, the lower Himálayan ranges trend northwards towards the lofty gneissic ridge of the Dhauladhar, overlooking the Kángra Dún. The outer range of the Sub-Himalayan is not affected by this change of direction, so that the zone of tertiary rocks becomes permanently widened to about threc times the breadth it exhibits along the whole mountain range to the east. In the Kángra region there is a succession of three dúns occupied by conglomerates, separated by ridges of sandstone brought up along great faults. To as far as the Ganges the upper Siwáliks are still well represented in the outer hills; but east of this river, along the whole of Rohilkhand, only remnants of these outer Siwaliks have been observed. They seem to have been mostly denuded away, and one comes at once upon the older sandstones of the ranges immediately flanking the high mountains. This is the case under Naini Tál. The change, however, is not a permanent one; for, again, far to the east, on the road to

Káthmándu, there is a broad outer Siwálik range, formed of soft sandstones and conglomerates, and separated by a dún from an inner zone of lower sandstones. But, again, along the Sikkim and Bhutín lorder, there is no sign of the outer Sub-Himálayan range.

It has been said above that the uppermost Siwalik strata are
Post-tertiary deposits. considered to be of newer pliocene age, and we have seen modern deposits being laid down against them along the base of the hills in the bhábar region. In these a fossil village was dug out by Colonel Cautley in the excavations for the Eastern Jumna Canal. They no doubt passed down into beds of the prehistorical or recent period. Still there would be a great gap left in the sequence of formations-the whole of the pleistocene period, represented in Europe by the drift, and the cave deposits, which for years past attracted so much attention in connection with the discovery of human remains. For some middle portion of that period representatives are found in the SubIlimalayan zone. They are unmistakably exposed on the Satlaj, above Bubhor, where the hills on cither side of the river, to a height of some 500 feet, are capped by clays and coarse conglomerates, resting quite undisturbed on the edges of vertical Siwálik strata, both of the middle and uppermost groups. It is clear that a long time of disturbance and denudation must have intervened between the deposition of those totally unconformable deposits ; also that those high-level conglomerates are separated from recent deposits by at least the time it has taken the Satlaj to excavate its gorge to its present depth. These two limiting tests of age are quite as cogent as those applicd to corresponding deposits in Europe. Beds of the same age are well exposed above the sanction already described in the Nún river under Mussooree. They are here quite on a level with the summits of the Siwalik hills to south of the Dehra Dún.

The most interesting deposits of this age are those to which a Supposed glacial deposits. glacial origin has been assigned. It was long since observed that the glaciers of the Himálaya had once extended to a much lower level than they do now. Unmistakable moraines are found in Sikkim to within 8,000 feet of the sea level, the present limit of glaciers being about 14,000
feet. More recently a glacial deposit has been described in the Kíngra valley. Enormous blocks of gneiss are freely scattered in the low ground, at an elcvation of 2,500 to 3,000 fect, along the whole base of the Dhauladhár range, resting on the Siwálik strata. One cannot well assign a limit to the mass that may be moved by a rush of water on a considerable slope; but the distribution of these blocks makes it very difficult to account for them by any action of this kind through the existing gorges; for they occur along the slope of the flanking ridges, seemingly quite out of reach of any possible sweep of the torrents. They are three possible assumptions to account for their position : by supposing the scarp of the gneiss now forming the mountain-ridge to have once extended a couple of miles in advance of where it is now, and so as to bring those blocks within the range of its talus, but in this case the blocks should be found over the intermediate heights, which is not the case; or to admit that the blocks were ice-borne, and not by glaciers, for the blocks are not arranged in moraine fashion, but by floating ice in a lake of that period; or to suppose that the whole valley and the main gorges were formerly choked up with detrital accumulations to such a level as may have brought these lateral positions within the range of the spill from the gorges, ever overtopping the lower flanking hills. This is by no means a gratuitous supposition, for we find those coarse superficial deposits capping the heights above Kingra fort, on the south of the valley, and not derivablo from the Siwálik conglomerates on which they rest. The necessary slope of deposition for such materials, from this position to the mountain range, would give elevation enough there for any observed distribution of the great blocks, by simple diluvial action. This is probably the real history of the case ; but the possible influence of ice action to aid the process is not to be lost sight of. When the Himálayan glaciers reached to 8,000 feet lower than at present, ice-work must have been very active in the Dhauladhar, and its effects very marked in the deposits at the base of the range. All the facts suggest that those high-level gravels are of the same age throughout the Himálayan border, and probally of the same age as the former extension of glacial action; and it is impossible not to notice the near coincidence of this age with that of the glacial period of Europe. There is no independent evidence of changes of level since the age
of these deposits ; and it is doubtful how far mere difference of rainfall could count for the change; we should thus be driven to entertain the idea of an ice-age.

The confirmation of this physical evidence of a great phenome-
Importance of the theory. non having affected synchronously so large a portion of the earth's surface would be of the highest importance to geological science. Since the abandonment of the primitive idea that all similar rocks were of contemporaneous origin, we have been at a loss for any test of absolute time-horizons. Within continuous land areas some approach to a judgment can be made by closely comparing series of adjoining sections, but for any distant or detached area we have to trust to palæontology for the homotaxis, or comparativo classification, of formations. Palæontological homotaxis, however, implies difference as well as correspondence in actual time relations; and the problem of settling, from fossil evidence only, in which direction the difference should be counted, is an exceedingly complex undertaking. Thus paleontology itself was the chief sufferer by the natural limitation of age-tests for the stratigraphical foundation upon which it was based, and of which it is as yet far from being independent. And as the history of life upon the globe is the object of the highest interest in geology, the check to progress was a very serious one. The occurrence of even one semi-universal phenomenon, leaving such peculiar and well-marked stratigraphical characters as those of an ice-period, would afford an invaluable test whereby to check the direction of growth and distribution of organic forms in all the formations nearly connected therewith.

The change from the Sub-Himálayan hills to the outer region of the mountains is always, as has been
The lower Himúlayan
region. shown, a more marked feature than the mere difference of height would suggest. The hills of the Náhan zone range from 3,000 to nearly 5,000 feet, while the summits of the adjoining mountain-ridge vary from 6,000 to 8,000 . From this to the great snowy range there lies a tract more than fifty miles wide, of deep valleys and narrow ridges, the average elevation of which would be scarcely over that of the border-zone of mountains. This is the region appropriately known as the lower or outer Himálaya. The main watershed of this broad tract of mountains lies
well to the north of the line of snowy pals, and the great rivers traverse the lower hills in very tortuous courses. The configuration stamped upon the area by the denudation from rain and rivers gives very little clue to the rock-structure. Although the general strike of the formations is parallel to that of the range, the composition of the strata is too complex, and the cases of local distortion too frequent, to admit of anything like the regularity of feature that has been described in the Sab-Himálayan zone. One character may, however, be noticed as constant throughout the western part of the lower Himálaya to as far east as the Nepál frontier : along the outermost zone there occurs a strong limestone formation, producing ridges of more rugged outline and having a greater elevation than the hills for some distance to the north of it. Our knowledge of this immense stretch of mountains is so fragmentary that no connected account can be given of it. We can only give a sketch of the four sections that have been even cursorily observed, and offer some conjectures as to their connection. The four sections occur in the Simla region, the Kumaon region, Nepál and Sikkim.

The first thing to note of the Simla region is that it constitutes The Simla region. the termination of the Lower Himalaya as characterised above. In describing the Sub-Himalayan zone it was noted how from about Pinjor (on the main road to Simla) the boundary of the mountains trended round to the north for about eighty miles, up to the base of the Dhauladhár ridge, which is exactly on the line of the great snowy range, and is structurally its equivalent. Thus, of course, the continuous broad area of lower mountains is cut off. It is important to notice that this is not a freak of denudation, a great bay worn into the mountains by a tertiary sea : were this the case, we should find the successive formations of the area striking out along that curve and abruptly cut off there. The fact is not so. The strike of the rocks bends regularly with the direction of the boundary, thus showing that the entire feature is an original character of the mountainstructure. We have here, in the extinction of the Outer Himálayan region, the beginning of the north-westerly decrease of the Himálayan elevation. The mountains beyond the Ravi, which, in a superficial sense-as being south of the range of maximum elevation-might be held to represent the Lower Himálaya, do not
reproduce its characters. Kashmír has structurally more relation to the Central Himálaya than to anything south of the snowy range. This fact of diminishing original elevation comes out very clearly in the peculiar distribution of some of the formations that occur in the Simla region. These have been roughly classified as below :-

$$
\text { Sirmur } \quad \cdots\left\{\begin{array}{l}
\text { Kasauli. } \\
\text { Dagshái. } \\
\text { Subáthu (nummulitic). }
\end{array}\right.
$$

> Krol (? triassic).
> Infra-Krol.
> Blaini.
> Infra-Blaini.
> Schists and gureiss.

The marked change in the surface configuration from the Sub-
The Sirmur formation. Himálayan to the Lower Himálayan hills introduces for the most part a total change of rocks. Below Mussooree and Naini Tál, and throughout the whole range to eastward, one steps at once and for good from the upper tertiary sandstone to the much older slaty rocks. It is not so, however, in the region between the Jumna and the Satlaj. The high ridge on which stand the stations of Kasauli and Dagshái is formed of rocks very similar in character to those of the Náhan zone close by; but the marked boundary separating them is continuous with that forming to the cast the separation of the Naban from the slates. Indeed cven here, under Kasauli, the slates often appear along the boundary bencath the sandstones of the ridge, which have been uphcaved upon a bascment of their supporting rock. Resting upon the slatos in this position we find thick beds of dull brown, gray, and olive indurated clays with bands of limestone, in which there occur abundantly fossils characteristic of the nummulitic period. These beds are well seen about Subáthu. They are overlaid conformably and with alternating transition by red clays with hard purple and gray sandstone, woll seen about Dagshái. In the ascending section sandstone prevails to the exclusion of the red clays, as is well seen on the ridge at Kasauli. In these top beds numerous leaves have been found indicating the proximity of an abundant sub-tropical vegetation. The aggregate thickness of this threcfold formation (Subáthu, Dagshár,
and Kasauli) may be from 2,000 to 3,000 fect. Collectively it may be known as the Sirmur series, a considerable part of its area occurring within that State.

Here, then, at last we have a formation the horizon of which is fixed by a well-marked marine fauna. The Subathu group at the base of this series is certainly eocene ; and considering the perfectly transitional character of the three groups, we may provisionally consider the whole scries to be of this age. The study of its position and relations scems to throw much light upon the history of the mountain-system. It forms an almost isolated outlier, caught up on the edge of the moun-tain-area. Its greatest width, cast of Dagshai, is about ten miles. In that direction it stops out along the crest of a ridge at about fifteen milcs west of the Jumna ; the mode of termination showing that it was effected simply by greater elevation to the east, and consequent denudation. The only other known occurrence of these rocks within the south Himálayan boundary to castwards is a small patch of Subathu beds on the top of the ridge east of the Ganges close to the village of Bon in Garhwal. In the far east, however, the nummulitic deposits at the south base of the Gáro hills have a very striking resemblance to the Subáthu beds; but it is doubtful if they were ever connected. To the west, at the Satlaj, the outlier is attenuated to a band a few yards wide-a bottom remnant of the Subáthu beds. These rocks again appear in some force in the ridge beyond, but become gradually depressed in that direction, so that before reaching the Bias the most characteristic bottom group has disappeared. The band as represented by the upper groups is well marked, though very narrow, at the Ravi. The hill station of Dharmsala stands upon it.

Some points of interest have been made out regarding the rela-

Its uncomformity to the older rocks. tions between the Sirmur serics and the contiguous older formations. There is very deep unconformity : the Subáthu beds do not rest upon the next youngest rock, which is the great Krol limestone, but upon beds which underlie that limestone. This is fully made out. As a natural concomitant, we find that the surface of contact of the two contrasting formations is a very uneven one. On the ridge at Subathu there are not more than 50 fect of the typical Subathu
beds below the red rocks; while in the valley alongside there must be 600 to 800 feet of this bottom group. These facts suggest proximity to the cdge of deposition of the nummulitic sea; and the succeeding deposits, ending in the plant-beds of the Kasauli zone, tond to confirm the view.

It seems, too, that little or none of the contortion which now

Contortion of the slates post-cocene. affects all the rocks had occured before the deposition of the Subáthu beds ; for at Subáthu itself a characteristic bottom laycr is clearly seen, resting continuously throughout a considerable synclinal flexure upon approximately the same bed of the supporting slates. In agreement with this observation, we now find these rocks to have undergone equal contortion with the slates. The inner boundary of the cocene area is a very broken one; and outlying shreds of the nummulitic clays are found caught up in folds of the slates, as may be secn on the road north of the Haripur resthouse.

All thesc facts would tend to prove that although some general

> Inferences. elcvation of the mountain area, involving deep denudation of the rocks, had occurred here prior to the tertiary period, none of the special disturbance characteristic of the existing mountain-system, and so specially marked in this fringing zone, took place till after the deposition of the eocene rocks. The Sirmur series exhibits more intense and varied disturbance than is at all general in the Náhan group.

The relation of the Sirmur to the Náhan group cannot be so

Relation of Sirmur and Siwúlik scries. definitely made out, as they are only seen near each other along a single steep line of boundary ; and the question is, as to the nature of this boundary. The argument for the total separation of the groups in this region appears, however, to be pretty conclusive. Although, as has been said, the rocks of the upper Sirmur groupis have a strong lithological resemblance to those of the Náhan group-so much so that the type of the Sub-Himálayan deposits may be said to have set in with the eocenes-the facies of the Náhan and Sirmur groups are so distinct, in close proximity, that there is little ground for considering any parts of them, as represented in this Jumna-Satlaj region, to be equivalent. It is only on the supposition of the boundary
between the areas (which is also the chief boundary along the base of the mountains) being a great fault, that the question of correspondence can arise at all. But as this supposition is the primâ facie one-the one that would be applied from the accepted interpretation of like boundaries in other mountain regions-it is necessary to state the evidence against it.

Throughout the whole range of the Náhan zone in this region

> Probable unconformity. no trace of the very characteristic Subatho beds has been found, either at the apparent local base of the section, or as a remnant adhering along the supposed fault-ground. In the former position it might be said we should be more likely to find the top rocks of the older group ; but this too can be answered negatively : the lower we get in the Náhan group, we find clays to occur more frequently, whereas the Kasauli beds are almost exclusively sandstones. It is also to be noted that no remnant of the Náhan rocks has been recognised capping the Kasauli beds, or otherwise, within the cocenc area. No conglomerate has been observed in the Sirmur group. The only position from which the original continuity of the groups, with separation by faulting, could be maintained, would be to assert that, as the actual base of the Náhan group has never been seen in this region, the whole eocene group may be buried beneath it in conformable sequence, or otherwise; and correspondingly, that any trace of the Náhan deposits had been washed away from the present eocene area. So much for the direct evidence. As to the indirect, there is really little, except the fact of abruptness, in the character of the boundary itself to countenance the supposition of a great fault. A straight line drawn from the west end of the eocene area in Sirmur to the small nummulitic outlier east of the Ganges would touch the Siwalik hills south of Dehra; and along the great bay-like course of the boundary, north of that line, there are many sharp changes of direction, such as are not supposed to be compatible with dislocations of such dimensions as would be required in this case. The great faults in the Sub-Himálayan zone were seen to be remarkably straight. The alternative and most probable supposition is that the eocene area was upraised, and something approaching to the present steep edge of contact eroded out of it, before the deposition of the Nihan rocks.

It is, however, to be mentioned that far to the north-west

Change of character to the north-west. there is complete transition throughout the tertiary series, from the Subathu to the top Siwálik. The partial obliteration of the Sirmur series, as Corming a sharply defined zone at the base of the mountains, commences at some fifty miles beyond the Ravi about Udampur. The zone is there more than twenty miles broad, and rocks of Siwálik aspect occur within it. Still as a zone of greater upheaval it is traceable to beyond the Púnch; but before reaching the Jhilam it is quite effaced, the whole tertiary series sweeping across it in an anticlinal flexure. These facts do not in the least disturb our conclusions regarding the relation of the lower and upper tertiary scries in the Lower Himálayan region. They only form part of the concurrent evidence that towards the middle of the Himalayan system the elevation was greater, and commenced earlier than in the terminal region. The same fact is emphatically shown in the comparative relation of the Sirmurs to the older rocks in these two positions. In this case there can be no doubt of the deep unconformity in the Simla region-a relation of the same kind as that here adopted for the Sirmur-Náhan rolation in the same area. But this feature too is quite changed to the north-west : in the great inliers of old limestone that occur within the tertiary area of the Jamu hills, the Subáthu group, with the same characteristic bottombed as noticed at Subathu, is everywhere observed in parallel (conformable) superposition with the old limestone. It is not indeed proven that this rock represents the Krol formation ; nevertheless, the contrast of the stratigraphical relation is most striking.

We have again to refer to the Jumna-Satlaj ground for tho

Older rocks of the Simla region. best sections of the next older rocks to the eocene. The peculiarities of this region come out stronger as we recede in time. Its character in the plains, as the present main watershed of Hindustan, is really its least permanent feature : there is some reason to think that the Jumna once upon a time may have flowed towards the Indus through western Rajputána. It can certainly be affirmed that such a course was within the range of the diluvial conditions that formerly obtained in upper India. The peculiar unconformity found in this position between the upper tertiary rocks is not,
like the plains' watershed, accidental or temporary, but structural. In the well-preserved sections of the Sirmur group we found in this region the only representative of the eocene period within the Southern Himálaya; and again here we find the best preserved remains of the older formations. This ground too has been examined in more detail, so it will serve as a standard of comparison.

The Solan rest-house on the new road to Sinla stands between Standard section. three picturesque mountains of limestone, more or less isolated in each case upon a base of supporting rock. It is a blue gray stone, several hundred fect in thickness. From its position herc we are safe in taking it as the youngest group of the series with which it is connected. It has now for some years been spoken of as the Krol limestone. There is often a band of coarse sandstone at the base of it, which seems to vary a good deal in thickness, often at the expense of the limestone. Below this there is well exposed in this neighbourhood a thick band of black carbonaceous slaty shales, which pass down into similar non-carbonaceous flaggy beds, forming the whole base of the mountains in this zone, down to the lowest levels. At a thousand feet or more from the base of the Krol limestone there occurs in those slaty flags a thin band of compact limestone of clear pink, yellow, or gray tints, often accompanied by a bed of conglomerate, and a white quartzite. This band, though a thin one, seems to be very persistent to great distances; it is therefore important as a well-marked horizon. It has been identified on the tlanks of the hills under Simla; far up the valley of the Tons, at the crossing of the Simla-Mussoorec road; on the Ganges near Tapuban, and again on the hillside north of the Kota Dún in Kumaon. It is called the Blaini group. The Krol group is traceable eastwards almost continuously, and in about the same condition as at the Krol, through Deoban in Jaunsár to Mussooree and Naini Tál.

From certain lithological resemblances to the rocks in Spiti,

> Conjectured affinities. which he had classified from fossil evidence, Dr. Stolickza has conjectured that the Blaini and infra-Blaini beds may correspond with members of his Muth and Bhábe series, of upper and lower silurian age; that the Krol group represents his Lilang series, which is triassic; and that the infra-Krol may correspond with his Kuling series of the
carboniferous period, in the central Himalaya. But no recognizable fossil has yet been found in these rocks in the lower Himálayan region.

The relation of this series, which forms so continuously the

> Wxteusion to Simla. outermost zone of the lower Himalaya, to the metamorphic rocks on the north is very puzzling, yet essential to the explanation of the mountain structure. Some important hints towards it are found in the Simla region. Unless one chances to stumble upon an outcrop of the Blaini group, The flaggy slates of the inficu-Krol and infra-Blaini horizons are indistinguishable. Immediately north of the Krol there is a compressed anticlinal flexure, with elevation to the north of it ; so that the slaty rocks oceupy the whole ground till we reach the quartzites of Tara Devi and Boileauganj, which dip towards their common synclinal axis at the gap south of Simla : limestonc occurs above them on Jatog. These may represent the Krol group. However this may be, there can be no doubt about the identification of the Blaini group on the spur under the Yarrows and under Chota Simla, on the opposite sides of Jako. The thickness of strata above these outcrops, to the top of Jako, would quite carry the section up to the base of the Krol groop.

An interesting feature of the section is that the rocks of the Jako and Boileauganj hills are highly

Typical instance of overlying metamorphism at Simla. metamorphic-mica-schists and garnetiferous hornblende-schists with abundance of vein-quartz-while the flaggy slates above and below the Blaini group, all round the west, north and east base of the hill, are as little metamorphic as on the base of the Krol. This is a crucial instance of a phenomenon that meets us far and wide throughout the Himálaya, the superposition of highly metamorphic upon non-metanorphic strata. The metamorphism is often apparently greater than herewe find gneiss instead of crystalline schists at top-while the case for superposition is less distinct; se that it is possible to doubt the fact of its being a normal ascending section ; and accordingly this has always been a chief stumbling-block in the interpretation of the lower Himalayan sections. It is the feature that so fatally puzzled Herbert fiifty years ago. We shall have to return to the subject presently, and would only remark here that the very instructive
instance we have just scen occurs in a much frequented position, where many English people pass many idle hours.

The same flaggy slates seem to continue for a long way north of

> Section a long ridge north of Simla. Simla, for the most part with a moderate north-ensterly inclination. There are several lines of crush and strain, generally found at the gaps, but apparently unattended by great dislocation, for no new rock appears along these lines. The Blaini group has been identified on the ridge north of Theog bringing in the Krol beds towards Matiann, where there are symptoms of gradual general metamorphism. At Nágkanda this change is very decided, and here those slaty schists seem to pass into the flauks of Hatu, the top of which is formed of massive beds of gneiss, lying nearly horizontally. This rock is the same as the so-called central gneiss forming the southern basement of the great snowy range, where its chicf characteristic seems to be the prevalence in it of ramifying veins of albitc-granitc. These observations have suggested that the Krol beds had here overlapped the slate series, and are in original contact with the gnciss.

We have now seen a gencral section up to the great mountain Parallel section in the range. It is taken for the most part along Satlaj valley. the watershed in a north-east-by-east direction from Simla. The apparent simplicity of it is very encouraging ; but we have not far to go to dispel this illusion. It may be noted that no limestone appears on this section beyond Simla. The Sháli mountain, however, only a few miles to the west of Matiinn, is made of strong limestone, not unlike the Krol rock, with an accompanying sandstone, and underlaid by flaggy slates like those about Simla. If they are the same, and indeed in any case, their position is somewhat puzzling, for from Sháli they dip eastwards under the schists of Matiani and northwards down to the Satlaj, where the limestone seems to pass under the gaeiss of the Jalori ridge. It is not merely a case of dipping tovards these metamorphic rocks; the V-shaped outcrop of the junction along the steep sides of the Satlaj gorge points up the valley, and is more or less parallel to the dip of the strata in both rocks. In the Satlaj valley above and below Suni, close to the north of Simla, the confusion of the limestones and slates is indescribable ; and there is profuse trappean intrusion : whereas, on the whole section through Simla, from
the flains to Nágkanda, only one small dyke has been observed. The vbsence of fossils in these limestone and slate rocks makes it almost impossible to settle their stratigraphical relations with any certainty. ${ }^{1}$

The distribution of these limestones and slates is as irregular to the east as to the north of Simla. The Chor mountain-directly between Simla and Mussoorec, and remarkable for being the highest summit (12,000 feet) occurring within such a short distance of the plains-is an isolated mass of gneiss. To cast of it the limestone stretches again far into the mountains, along the valley of the Tons, forming Deoban hill; along the Mussooree ridge it occurs frequently, as on the Abbey and Camel's-back hills. On the top of Landaur it is mixed with sandstones; and appears again by itself on the Tapuban point. The Blaini limestone and conglomerate are well seen on the flanks of the Sarkanda summit, and again in the Ganges at the confluence with the Hiunalgár.

In the Kumaon section we still find the limestone and slate rocks

[^54]fairly represented. The ridge of Naini TäI is a broad synclinal range, with many local fractures and contortions, like its type the Krol range. The strong limestone that forms the summits about the lake is very like the Krol rock. Here, however, and also at Mussooree, there is a good deal of trappean intrusion. In the Syámkhet valley, north of Naini Tal; trap-rock is in great force, and immediately to the north we come nuon crystalline schists. Along the heights of Sunthala and Gágar these are gneissose. The dip throughout is at a moderate angle to north-north-east, and about Almora one or more bands of granitoid gneiss occur in these rocks. Its general mode of appearance is that of interstratification with the schists; but in one place it has beerdescribed as intrusive, which would establish its character as a true granite. North of this, for some way, there is a reversal of the dipto south-south-west up to a line of trappean intrusion, which has been traced for many miles along the strike. The rocks to the north of this band are of a more varied character ; some are slaty; and limestone is of frequent occurrence, often steatitic in the vicinity of the trap. The dip is less constant in these rocks, and their relation to the crystalline schists of the snowy range is not well defined.

[^55]Where we next get a section of the lower Himálaya through the
The Nepál section. Nepál valley, there is little outward resemblance to what we have seen to the west. The Churia Ghati range, between the plains and the Etounra Dún, is a pattern specimen of the Siwálik type. North of the Dún there is an equally characteristic representative of the Náhan range flanking the mountains. But inside this we no longer find the border mountain-range of slaty rocks capped by plain blue limestone that is so constant to the west of the Kali. We come at once upon schistose rocks. These, however, are not mica schists of the ordinary type, such as those north of Naini Tál. First there are earthy (slaty) schists, some quite black and with carbonaceous layers ; then flaggy quartzose schists, passing up into strong schistose quartzites ; and these are succeeded by a great mass of dense highly crystalline white limestone within three miles from the Náhan boundary. All are more or less vertical and folded with a prevailing northerly underlie, the strike being 15° south of east. Beyond this steep ascending section there is a broad band of still greater disturbance, apparently a synclinal ; for the limestone is variously repeated, and the underlying rocks brought in again. It would seem to be followed in the Chessa-garhi ridge by a crushed anticlinal, aboat the axis of which there are thick bands of porphyritic gneiss associated with flaggy quartzites. From here there is again a general ascending section through similar flaggy quartzitic schis ts to the Chandragiri range, bounding Nepál on the south-south-west. This ridge and all those to west-north-west and cast-south-east of the valley are made of folded repetitions of one set of rocks, in which a calcareons element is more or less prevalent; varying from strong beds of pure limestone to earthy schistose limestone, and prominently a thickly bedded finegrained quartzite, with scanty calcareous bond. The Shiupuri ridge, on the north-north-east of the valley, is of massive gneiss ; schists appearing again to the north in the valley of the Tádi and the Trisúl Ganga.

There is sufficient resemblance in the two bands of limestone and

[^56] the underlying flaggy quartzites of this section to suggest that they are repetitions of the same series; and this has certain characters of resemblance to the rockscries at the Krol, which admit of our conjecturing their identity. The whole of this Nepál section exhibits an intensity of disturbance
throughout, such as has not been observed in any other section of the lower Himálaya. Only one instance of a doubtful trap-rock has been noticed in the above section, in the schists near the outer boundary.

We have one more section of the lower Mimálaya to take note

Sikkim section : Damuda formation. of, far to the east, in Sikkim, and still more unlike than that in Nepal to the sections of the north-wost Himalaya. It is of the highest interest, because we find here in a recognizable state a formation well known to us in the peninsula of India, thus establishing almost the only link between these scparate geological provinces. There are, indeed, the nummulitic deposits resting against the edges of the Deccan trap at the base of the western ghats to compare with the nummulitics of Subáthu, and showing that the Himálayas are youngor than the Deccan plateau. But this is a comparatively superficial connexion ; whereas in Sikkim we find a bottom formation of one of the great rock-serics of the peninsula, intimately connected with the rock forming the mountains. It is now thirty-one years since Dr. Hooker discovered Damuda fossils near Pankabári, at the foot of the Darjeeling hills; but it was only in 1874 that an examination of the mode of occurrence of the rocks was made by Mr. F. R. Mallet, of the Geological Survey, who was sent to investigate the prospect of a useful coal being found. He traced the band of Damuda rocks from Pankabári to Dalimkot; at the Tista it is nearly a mile in width. In the western Duárs it does not occur, but on or about its horizon there is a new formation, not found in Sikkim, consisting largely of massive dolomite, and called by Mr. Mallet the Buxa series. In 1875, Major Godwin-Austen, who accompanied the expedition into the Daphla hills, found the Damudas again in force at the base of the mountains in Upper Asám, the Buxa series being there wanting. It is, of course, possible that the Damudas may recur to the west also, in Nepall, though they do not appear at the Sikkim end of the frontier, and certainly they are not specifically represented in the section through Káthmándu.

Lithologically as well as by fossils the formation resembles its

> Its condition and position. prototype in the Damuda valley, consisting of strong sandstones, gray shales, and coal seams. In some few spots the rocks are so little altered that the resemblance is complete, the coal itself being the only rock that has
not escaped modification. It is always crushed to powder, and could only be utilized by being made into bricks. Very often, however, the whole group is as much altered as the contiguous rocks to the north, the sandstones being converted into foliated quartzites, and the shales into splintery slates or carbonaceous schists. The important point to settle is the stratigraphical relation of the group to the other rocks of the mountains. These are, first, a zone of slate rocks, some greenish and slightly unctuous, some ordinary clay state with bands of flaggy quartzite, rarely hornblendic and calcareous, and also rarely carbonaceous. These form the Daling series of Mr. Mallet. Next comes the gneiss of the upper hills: it is distinguished as the Darjeeling gneiss. The dip in all these rocks is into the mountain, and hence the immediate inference that they underlie each other in the above order. Here, then, we find again an instance of the puzzle noticed in the section at Simla, and on which Herbert made shipwreck. Mr Mallet was unable to find any escape from the position ; the Daling beds pass most regularly with parallel interstratification into the gneiss by increase of metamorphism, appearing underneath it all up the gorges of the Tista and the Ranjit ta the north of Darjeeling, but in a more altered condition. Also he found in several clear sections most completely conformable and transitional junction between the Daling and the Damuda beds. Their junction forms a re-entering angle up the Tista valley; the Damudas, however, are not known to rise to the surface again in the interior of the mountains. The conviction was forced upon him that they are indeed what they appear to be,--the lowest and oldest rocks of the Himálayan scries in this position.

Yet so great is the prepossession in favour of gneiss as necessa$\begin{aligned} & \text { Theoretical considera- rily a fundamental rock, that doubt still pre- } \\ & \text { vions. }\end{aligned}$
vails amongst those who have not seen for
although when gneiss occurs extensively on the flat, we may be entitled to regard it as a fundamental rock, due to such hypogene action as would require any underlying rock to exhibit as great a degree of metamorphism as itself, yet when we come to mountain formation the case is very different. Here a special concentration of forces has manifestly occurred which may be adequate to the production of this apparently anomalous result. In a recent and very thorough discussion of this branch of geological dynamics we find a direct explanation of our difficulty ; that if a mixed mass of strata were subjected to compression, those portions which by position or texture were least capable of yielding, whether by shrinkage or contortion, would have to bear the brunt of the pressure, and to undergo in some other form its effects, prominently in the development of internal heat. ${ }^{1}$ In some such way overlying massive strata may have been converted into gneiss, while softer beds below underwent no crystalline metamorphism. If it should be shown, as in the Simla rogion, that the Darjeeling gneiss is the same as the central gneiss, the above interpretation of the Sikkim section would have to be abandoned.

Geologists in India have been long on the look-out for a connect-

Slight correspondence

 between the rocks of the Himálaya and of the Peninsula. ing link between the rocks of the Peninsula and of the Himalaya. Somany of the formations in the former region are unfossiliferous, it was hoped that some clue to their lomotaxis might be obtained through their representatives in adjoining regions ; and although the elevation of those mountains may have occurred in tertiary times, the rocks so upraised might, of course, be of any age. Thus this discovery of the Damudas, as apparently the oldest formation in the Lower Himálaya, at least in the east, comes rather as a surprise. Although the Damuda series is, according to the most recent estimate of its fossils, of lower mesozoic age, its appearance in the field amongst other Indian formations is one of comparative youthfulness. It is, for instance, immensely younger than the great Vindhyan formation, which cover such large areas in undisturbed stratification, but in which as yet no trace of life has been observed, and below which there are several groups of slaty and sub-metamorphic rocks before we come to the fundamental gneiss of the region. However, in these matters, what is, is best ; the object being to know what ${ }^{1}$ Sce R. Mallet on Volcanic Energy, Phil. Trans., Vol. CLXIII.: page 147.really has occurred. If the Himálayan sections would reflect to the geology of the Peninsula some light in return for that it has now received therefrom, by clearing up the doubts that still exist about the age of the Damuda formation, it is all we could expect.

There is but one character found almost constantly throughout Frequent occurrence of the Lower Himalayan sections-the frequent carbonaceous deposits thronglout the Lower Himálaya. appearance of carbonaceous matter. It may be of no great significance, but it is worth notice. Coal-mining had been attempted near Subathu in the carbonaceous shale of the infra-Krol group, or rather where this rock has been compressed and glazed in fault-ground. And this appearance of carbon (some of it as volatile hydro-carbons) with fault-rock is very common throughout the Lower Himálaya. It occurs at Simla, below Nágkanda, at Mussooree, and east of the Ganges. Among the more highly metamorphosed rocks it is represented by graphite, as about Almora. Its appearance in the Kátlmandu section, at the outer fringe of the mountains, next the tertiary sandstones, is about the only specific similarity between this section and that in Sikkim, where carbonaceous matter occurs in the Daling and theBuxa, as well as the Damuda horizon. It may provisionally be taken as a suggestive link of affinity between all these rocks. In this connection it is important to recall that in Dr. Stolickza's independent classification the infra-Krol horizon corresponds with his Central Himálayan Kuling series of carboniferous age, which is also the age assigned by some to the Damuda formation.

From what we have seen of the rocks of the Lower Himálaya, Conjectural affiliation of there is not much prospect of a near solution the Lower Himálayan sections.
of this question. The main hope is in the present manifest want of information. Immediately west of Sikkim comes Nepál, taking up the whole middle region of the Himálaya for 500 miles in length, and which through the unaccountable forbearance of our Government, is as much a forbidden land to Europeans as is Chinese Tibet. Except on the single track to Káthmándu, which has lately been traversed by a geologist visitor to the Resident, no Englishman dare set foot in Nepál, whose people are entirely dependent upon our good will for communication with the outside world, and freely enjoy it. In the section to Káthmándu, which is only thirty miles from the plains, we have seen a general
resemblance to the rocks of the Simla region, the contrast being chiefly the universally high dips and general metamorphism. Except in this latter character it has little in common with the Sikkim section; specific resemblance in the two rock series cannot be made out. The great limestone has no equivalent in kind in the whole of Sikkim. Where distances are so great, much allowance must, however, be made for probable original change in the nature of synchronous deposits. The fact that the present base of these eastern Himálayas adjoined, or indeed formed part of the Damuda land surface, suggests a difference in the deposits near it from those at a distance. We have also had to notice all through our sections a disposition in the Krol limestone to pass into a sandy rock. In some such manner it may yet be shown that the Darjeeling gneiss is on the same horizon as the fine calcareons schists of the Nepal valley. Every geologist will understand the very precarious nature of such a speculation. As an object to confute, it may be of some scrvice.

The Central Himálaya.-In treating of the Lower Himálaya we

Consist largely of well-

 known formations. have had almost entirely to depend upon to be satisfied with conjectural identifications of them in different parts of the ground. This unsatisfactory result is owing to the want of fossils. For a great part of that ground it must be a permanent difficulty, owing to the high state of metamorphism of the rocks; but there are large tracts where this condition does not obtain, and where we may hope that fossils will yet be found. At the snowy range and over a large part of Tibet the case is quite different. There numerous zones of strata are identifiable, not only locally, but in the established scale of formations, by the presence of wellknown fossils.Our information of those regions is, however, in a very fragment-

Strachey, 1848-49. Stolickza, 1864-65. ary state, and must long remain so, owing to the inaccessibility of the ground and the rigours of the climate at such great elevations. Numerous travellers have crossed the mountains in various directions, and have brought back a few fossils and isolated observations of the rocks, but only two observers have given a comected geological description of any considerable area. One account is of a portion of Central Tibet in

Chinese territory, north of Kumaun visited by Captain R. Strachey, R.E., 1848 and 1849. The description is quoted in extenso frum his paper, the map attached to which is reproduced to illustrate this chapter. The second and fuller account is that of Western Tibet, by Dr. Stolickza, published in the fifth volume of the Memoirs of the Geological Survey of India. In the summers of 1864 and 1865 he explored the region between Spiti and Drás and the Indus. It will be recollected that he died in June, 1874, after crossing the Kárakoram pass, on the return journey with the mission to Káshgár, having lost his life through his zeal for scientific research. His observations on this expedition complete a rough section across the whole Tibetan mountain region from the Panjáb to the plains of Khotan.

Western Tibet.	Dr. Stolickza's list of f in Western Tibet, is as	formations, observed follows :-
	Age. Gromp.	Fossils.
$\begin{gathered} \text { IV.- RIVER } A \text { ND } \\ \text { LIACUSTRINE } \\ \text { DEPOSITS. } \end{gathered}$		
III.-Tertiarx. - Nummulitic ... Indus or Shingo Beds ...Nummulites.		
$\begin{gathered} \text { II.-S E CON } \mathrm{D}- \\ \Delta R Y . \end{gathered}$	Cretaceous ... Chikkim Becls	...Rudista and Furaminifera.
"	Jurassic Gieumal Snndstone (Upper).	... Avioula cohinata.
"	$\begin{gathered} \text { Jurassic ... Spiti Shales (Braun } \\ \text { Jura). } \end{gathered}$	Aonmonites macrocephalus Parkinsoni, triplicatus, etc.
"	Middle Lias ... Cpper Tagling Lime. stone.	Trochus epulus, Chemnitzia undulata, Terebratula sinemaripasis.
"	$\begin{aligned} & \text { Lower Lias ... } \begin{array}{c} \text { Lower Tagling Lime- } \\ \text { stone. } \end{array} \end{aligned}$	Terebratula grevaria and pyriformis, Rhynchonella Austriaea, Belemnites.
"	Rhætic ... Para Limestone	...Megalodon triqueter. Dicerocardium Him. alayense.
"	Triassic Lilang series (Upper).	... Halubia Lommeli, Ammonites foridus etc.
I.-Palemozorc -	Carboniferons, Kuling series	...Productus culatus, Keilhavii, Spiretifer Keilhavii, etc.
"	Upper Silurian, Muth series	...Tentaculites, Orthis etc.
Gneiss, Metam	Lower Silurian Bhábeh series ronpuic Schists, etc.	... Orthis?

The distribution of these formations, though subject to many local
Synclical basins. irregularities, exhibit well the general structural features of the region. There are two main synclinal rock-basins, along the centres of which the younger members of the sedimentary series, with one important exception, are found. These geological features have no superficial relations to any geographical basins. The Indus receives a great part of the drainage from both areas in this region, flowing nearly along the intervening anticlinal axis. The southern basin is best exhibited in the Spiti valley, where the fullest section of the upper secondary formations is found. The northern synclinal-basin forms the Karakoram range. This latter ground has been very little searched, and as yet neither oolitic nor cretaceous strata have been observed in it. Dr. Stolickza describes the Kárakoram pass as formed of liassic rocks resting upon trias.

These long rock-basins are bounded by parallel areas of crystal-

The principalcrystalline areas. line metamorphic rocks. The southernmost of these is that already spoken of as the central gneiss. Its peculiarity, as compared with the other crystalline ridges, is that we seem to have here what may be locally called the fundamental rock. On Dr. Stolickza's type section at the Bhábeh pass, and in General Strachey's ground, 200 miles to the east, the infra-Silurian rocks in a non-erystalline state, and of great thickness, are represented as overlying the gueiss. There is no doubt a parallelism of strike in the two contiguous rock-systems, but the condition suggested or implied is that the conversion of the gneiss is of preSilurian date ; althoug?, in the east at least, granite seems to penetrate both formations. It was in this sense of basal that Dr. Stolickza applied the word central to this gneissic axis.

The gneiss and schists forming the middle region of the mountain mass, from 70 to 80 miles wide at the

> Middle crystalline axis. Pangkong and Moriri lakes, are described of a quite different type, as being largely syenitic, and as more or less made up of metamorphosed Silurian rocks. Along the north outcrop of the southern synclinal basin even the zone of carboniferous rocks is hardly recognizable, and all below it is converted into crystalline schists and gneiss, the sonth-westerly dip.continning in these rocks up to the Indus: similarly alorg the north-east side of this gneissic
mass the carboniferous formation is the first that is clearly recognizable; all below it being strongly foliated and mineralized, passing with a north-easterly dip under the Kárakoram synclinal basin.

The gneissic axis of the Kuenluen is also described as formed Northern crystalline chiefly of syenitic gneiss and quartzose and axis.
chloritic schists, the relation of which to the adjoining slates has not been made out. Carboniferous rocks with fossils have been observed on both sides of the range. On the northern flanks of the Kuenluen, triassic and cretaceous deposits are the only secondary formations noticed by Dr. Stolickza.

Some minor features in the distribution of the several formations

Peculiar position of the nummulitic deposits, will be mentioned presently. We must mentioned, in the general arrangement as above sketched. The nummulitic formation occurs in great force in the Central Himálaya of Ladák, but not even approximately in sequence with the next oldest group. The cretaceous deposits are found capping the sedimentary series in the centre of the southern synclinal basin; but no trace of nummulitic beds has been noticed near them. These occur in force along the valley of the Indus, in the centre of the middle gneissic area. Dr. Stoliczka remarked how strongly the rocks resemble these of the same eocene age at the south margin of the mountains, especially those of the Dagshai and Subithu groups. It may also be noticed how similar the statigraphical conditions aro in both positions. In the Simla region wo saw that the Subathu beds were deeply unconformable to the contiguous formations, the youngest of which is thonght to be triassic. In the Central Himalaya the unconformity is even more striking, because the upper secondary period is well represented, yet the succeeding lower tertiary rocks are in a totally independent basin of deposition. Stoliczka estimates their thickness at 5,000 feet.

There is yet another formation to be mentioned in the Central

Extensive post-eocene
eruptive rock.

Himálaya. We have seen granite in connection with the central gneiss. Stoliczka frequently notices greenstone as locally associated obscurely with the Silurian rocks; and intrusive trap (much of it of presumably tertiary age) is occasionally, as has been said, very abondant in the
lower Himálayan rocks. There is, however, one exhibition of eruptive rocks in the Central Himálaya that calls for special notice. It occurs in the middle gncissic zone, locally forming the axis of a mountain range. It is more than ten miles wide at the Hanle valley, and is continuous thence, with a variable thickness on the south edge of the eocene rocks, to Kargil. Stoliczka describes it as an epidote, diallage and serpentine rock. It appears to be, at least in part, the sane rock which he speaks of as syenite to the west of Kargil, where the nummulitic rocks stop out. The eruptive rock there gets entangled in silurian schists, and becomes quartziferous. This igneons rock strongly affects the eocene strata and is therefore of younger date, and is probalbly connected with the similar rock deseribed by General Strachey on the same strike far to the east. We were able to draw some very instructive warnings from errors of the carly school of Himalayan geologists, so we must not let the moderns escape the same ordeal. On Stoliczka's first visit he did not recognise the rocks on the Upper Indus as nummulitic. In that position they are considerally altered, and he took them to be a very old formation. In then writing of the contiguous eruptive rock, he remarked (l.c., page 128) : "From their dark colours these rocks have sometimes been referred to busclts, but they have certainly nothing to do with these more receut volcanic rocks." His next season's work proved that they camnot be older than middle tertiary, and therefore much younger than the great basaltic formation of the Deccan. The ider of the lithological criterions of age in eruptive rocks has still a strong hold upon the German school of geologists.

It cannot be supposed that the rough cross section we have

Range of the nummu. litics. sketched near the west end of the Tibetan mountain mass can be taken as a type for the immense region to the east. Already within known ground, some interruptions can be pointed out to the longitudinal extension of the several structural zones. Of the continuation of the Kirakoram and Kuenluen, and even of the middle gneissic range, we may be said to know nothing. Stoliczka describes the nummulitic band as completely stopped out against the syenite at Kargil ; and although this obtruding rock is at least in part of later date, it is suggested that the termination of the cocene beds here is probably aboriginal. The eastern
extension of these deposits is quite unknown, save that nummulitic strata occur in the far east north of Sikkim. Somo doubtful observations of them in the Changelenmo valley and about the Pankgong lake are recorded.

The southern synclinal basin of secondary rocks, continuous for

> Range of the southern basin. 200 miles from Spiti to the north-west, is an upheaval of metamorphosed palcozoic rocks. Any recurrence of regularity in this strike cannot be expected, for the whole Himálayan mountain system becomes confused there, towards the transverse gorge of the Indus, where the stratigraplyy is complicated by other systems of flexure. The short break that occurs at the transverse gorge of the Satlaj botween the secondary basin in Spiti and the perfectly homo'ogous one to the east, as described by General Strachey, is also due to a transversely obtruded mass of partially metamorphosed palzozoic rocks, through which the stratigraphical continuity is so far maintained.

Although the main elevations, constituting the chain of Fimálayan

> Extension of the central gnciss. region, formed of the older stratified rocks along the outerop of the southern synclinal basin, the underlying, pseudo-conformable, central gneiss must be taken as the stratigraphical axis of the range. Stoliczka's type-section of it at the Satlaj and the Bháloeh pass is on the actual contimuation of that described by General Strachey to the east, in a more central portion of the great Himálayan chain, where these gneissic rocks are much more prominent. The connection of this gneiss of the main chain with that forming the core of the ridges to the north-west of the Satlaj has not been proved. There are three such ridges. On the direct line of the great chain there is the Dhauladhár ridge, having an axis of coarse gneiss, with slates (probably silurian and lower) resting high on its northern shoulder and passing down into the valley of the Rávi in Chamba. But the Dhauladhir is cut off from the Bhábeh section by the deep valley of Kulu, on the upper Biás, where no massive gneiss has been observed. The Dhauladhár ridge absolutely terminates at Dalhousie, the slates sweeping round the end of the gneiss at the bend of the Ravi. Again, Stoliczka observed his 'central gneiss,' though greatly reduced, north of the

Chínáb, at the southern base of the Zanskir ridge, below the Baritlacha pass. But on the south of the Chinall valley, on the northern Hanks of the Rotíng ridge, he observed slates which he conjectured to be continnous with those of the Bhábel pass ; in which case the gneiss of the Zánskir ridge can hardly be continuous with that of Bhábeh section. This ridge of the Roting pass is apparently from the maps the structural continuation of the Pir Panjal range, in which a coarse gneiss is again prominent. These three ridges are in a manner confluent in the mountain region of Lahul and VaziriRupi, from which flow the head-waters of the Chínáb, the Rávi, and the Biás. The Bhábeh gneiss strikes into it from the east. Thus it would seem as if the main Himálayan axis broke up into three minor features of the same type in its extension to the north-west.

The gneiss of the Pir Panjal passes beyond Kashmír towards

The Kashmir-Kistwár region. Kaghán. But north-west of Kashmir, at the Zojila, the gneiss of the Zánskír ridge is extinct, the whole range being there formed of the palæozoic schists and triassic limestone, which thus roll over from the libetan area into Kashmír. Carboniferons limestone occurs in the valley, striking through the Marbal pass into Kistwír. Lruptive rocks have been frequently observed in Kashmír, but none of later than silurian age. The whole Kashnír-Kistwar region, between the Pir Panjál and Zánskár ranges, is very little known. Its geological affinities are with the Central Himálaya rather than with the region specially designated as the lower Himálaya, east of the Satlaj.

General Strachey's description of the Central Himílaya, towards
Central Tibet. the sources of the Indus and Satlaj, is so brief that it can be given in full in his own words, with his summary of conclusions upon the mountain-formation. A few notes are added, giving additional information or suggesting other opinions :-
"Entering the region of the crystalline schists ${ }^{1}$ of the great line of peaks, we find the strike still remaining the same, with the dip pretty constantly to the N.-N. E. Along the lines on which

[^57]the points of greatest elevation are found in this part of the range, we invariably see for a breadth of several miles, veins of granite

Gramite. in great abundance penetrating the schists, often cutting through them, but perhaps most frequently following the bedding of the strata, between which they seem to have been forced. The great peaks are, I think, in almost every case composed of schistose rock, but the granite-veius may be most clearly seen on the faces of the mountains to very great elevations. Kamet, one of the highest of the peaks in this region, seems, however, to be among the exceptions of this rule ; its summit, which is upwards of 25,500 feet above the sea, appearing to consist of granite alone. This line of granite seems to be subdivided into several branches, distributed generally along the strike, but otherwise not very regularly (see map). It appears to consist, where I have seen it, almost entirely of veins of moderate size, and such is probably its general character in the portion of the mountains between the Satlaj and the Káli ; but the veins occasionally expand into masses of considerable magnitude, and more rarely large outbursts are met with that constitute whole mountains. In the vicinity of the peak to which I have just alluded, Kamet, the granitearea is very large (see map), and a similar development of it also occurs in the vicinity of Gangotri, at the source of the sacred branch of the Ganges. The vein-granite is usually large-grained with schorl-crystals. It is very hard and durable, neither it nor the schists that accompany it being at all liable to decay. The felspar of all granites that I have seen in these mountains is white, and kyanite is of frequent occurrence in the veins.
"The schists that accompany this granite are very hard and crystalline, and comprise all varieties of mica-schist and gneiss. Beds of highly crystalline limestones, some pure, others hardly to be distinguished by sight from mica-schist, are of frequent occurrence, and a band of such rocks seems to traverse the country near the line of greatest elevation. The strata, where penetrated by the granite, are often very much contorted, and the dip appears on the whole to increase as we approach the granite, where it reaches an angle of 45°, which it does not often exceed. Thermal springs are met with in many of the valleys along the line of granite, and in several
that I am acquainted with the temperature seemed pretty regularly to be about 128° Fahr. The whole of the appearances presented by the granite and crystalline schists of the great line of peaks in this part of the mountains seem to be universally repeated throughout the whole length of the chain when we reach the region of maximum elevation ; and as we extend our examination, we still continue to find additional reasons for concluding that the gencral geological phenomena of the range, and the causes that have produced them, remain very similar over great distances.
"In immediate succession to the crystalline schists penetrated by granite veins, we here come at once upon slaty beds overlying them, along the bottom of which, near the mica-schists and gneiss, is a line of granite-veins differing somewhat in appearance from those of the larger eruption, and not producing any great alteration in the slaty beds themselves, as is shown by the occurrence of a coarse conglomerate, the component parts of which are perfectly distinct, only a few feet above the granitc. Sufficient change, however; has taken place to prevent our distinguishing much more than that the constituents. of this rock are chiefly quartzose, and that it contains rounded stones of all size. I have met with this conglomerate in a similar position, and with much the same general appearance, thirty miles or so further to the cast. Above these are slaty beds, in all perhaps 9,000 feet in thickness, consisting of course slates, grits, and limestones, all more or less affected by slaty cleavage, and all devoid of fossil remains.
"It is after reaching the top of" these strata, which is rarely
Fossilliferous recks. done at a less elcvation than 14,000 leet above the sea, that we at length enter again a region of fossilliferous rocks, which extends as far as my examinations have been carried. And it is not a little wonderful to find at this immense elevation a regular succession of most of the more important formations, from the Silurian to the Tertiary Periods. The Palaozoic beds met with immediately above the slaty rocks I have just mentioned seem to have a thickness of about 6,000 feet, but it is quite possible that organic remains may extend lower than I supposed ; indeed, from the very difficult nature of the country, the precise thickness of the deposits and the limits of the different formations cannot be determined properly without a much more
careful examination of the comntry than I was able to give it. The lower portion of these strata are undoubtedly of lower Silurian age, and I am indebted to Mr. Salter for the following list of the species that he has been able to recognize on a somewhat cursory examination of my specimens.
"Among the Trilobites are-Cheirurus (the Silarian form of the genus), Lichas, Asaphus (only as yet found in Lower Silurian beds), Illcenus, Calymens, Prosopiscus, Sphurexochus.
"Of Molluscs arc-Strophomena, a strongly ribbed Orthis, Terelratula, Leptana very like L. depressa, Lingulla, Orthoceras, Cyrtoceras, Lituites, Theca, Bellerophon, Murchisonia, Pleurotomaria Raphistoma, and Ctenodonta.
" Of Polyps—Ptilodictya, Chcetetes.
"Also Encrinites and Cystida, Tentaculites and other Annclids and Fucoids.
"I had also an opportunity of showing these fossils to M. Barrande, who appeared to have little doult, from their general charicter, that some of the beds from which they came were certainly of Lower Silurian age.
"The lowest beds of these Palæozoic strata consist of darkcoloured thickbedded limestones, in some places filled with corals. They are succeeded by limestones mixed with slates, in which were found the strong-ribbed Orthis, Terebratula, Lingula, Bellcrophon, and fragments of Encrinites. Above these come flaggy limestones with grits, that contain the greater part of the Trilovites, Strophomena, Leptoma, Lituites, Ptilodictyon, Cystidece, and Fucoids. The beds then become more argillaccous, and shales and slates mixed with an impure concretionary limestone follow. In these beds are found Cyrtoceras and Oithoceras, and amongst the nodular coneretions of limestone a Chatetes is common. Next in order come dark-red grits, sometimes marly, containing only a few fragments of Encrinital stems. Above these, pale flesh-coloured quartzite, and finally a white quartzite, in neither of which I cver found any fossils, and which form tho highest peaks of the ridges composed of the Palæozoic rock. The whole of these strata aro in varions degrees affected by cleavage and joints, which fenctiate all the beds without regard to their
mineral character, althongh in a somewhat less marked degree in the limestones and quartzites. That the general sequence of these strata is pretty regularly maintained, I have seen over a longitudinal extent of about fifty miles, but it appears highly probable that their development has a far greater range, as we shall also see to be the case with some of the other groups of the fossiliferous rocks.
"Before passing on, I must olserve the very remarkable similarity of general mineral appearance that sulsists between the Silurian rocks of the Himálaya and of England. The peculiar pale tint assumed by many of these rocks answers most exactly to the descriptions given by Sir Roderick Murchison of the Silurian districts of Wales, and the characters of the concretionary limestones of both countries appear equally to correspond. Even in hand specimens the texture and appearance of the rocks and of the fossil impressions are so similar that they might most readily be mistaken one for the other. In pointing to these resemblances, however, I would not have it supposed that I should wish in any way to set up mineral character as a criterion by which to decide on the age of any rock. Nevertheless, the facts, if they are to be relied upon, would appear to indicate that as we sce the conditions of the existence of organic matter to have been generally similar over large areas, or even over the whole carth, during the same epoch, and to have changed with the progress of time, so likewise has it been with the conditions under which the mineral constituents of the carth have been aggregated.
"The Palæozoic strata that I had an opportunity of examining
Silurian predominates. in detail in situ, which I have just been describing, appear to be exclusively Silurian, but the existence of rocks of Devonian or Carboniferous age seems to be shown by some of my specimens, not found in situ, which contaị Productus, Chonetes, Athyris, Orthis, Aviculopecten, Spirifer. I nay here be allowed to repeat that the higher portions of the Silurian rocks being usually found at elevations of 17,000 or 18,000 feet, their examination is not a very easy task, and the difficulties occasioned by the great altitude are infinitely aggravated by the confusion into which the beds are thrown by the vast dislocations that have accompanied the elevation of these mountains. In concluding my remarks on the Palæozoic beds I would observe that,
as a' general rule, to which, however, there are no doubt many exceptions, these rocks are to be found forming the summits of the highest passes between the British provinces of Kumaon and Garhwál and Tibet, which probably average 18,000 feet in elevation, and that the highest points of the ridges on which these passes are found not unfrequently reach nearly 20,000 fect in altitude.
"In proceeding along the section, we shall next observe some beds very remarkable from their apparently close similarly to the Trias of Europe. I can now only regret that, not having been sufficiently aware of their importance, their exact relation to the beds below them has not been better made out; but their position in the series immediately above the Palæozoic rocks is at least certain. In one place these strata were found in situ intermediate between the Palæozoic and Secondary rocks, but the greater part of my specimens were obtained from fragments lying on the north slope of the Palæozoic ridge, which appears to terminate with a line of fault, to the north of which a cliff of Oolitic age suddenly rises. From these strata I have obtained not less than twenty-five species of fossil shells, which is a remarkable circumstance, considering the small bulk of the specimens that I was able to bring away with me. Mr. Salter, who has been so good as to examine thesc also, tells me that we have Ammonites several, Ceratites, Orthoceras, Natica, Exogyra, Halobia, (Avicula), Pecten, Lima, Athyris, Waldheimia, Rynchonella, Spirifer. The Triassic beds were chiefly dark-coloured limestones and, where seen in situ, were associated with shales and dark-red grits, the latter of which seemed very similar to those found near the top of the Palæozoic series. The line on which they were seen was, however, a very bad one for determining such matters, for it was in one of the great valleys, and consequently on a great dislocation where accumulations of débris almost always greatly predominate over rock in situ.
"In our progress northward, we next come upon the strata that
Jurassic series. form the representatives of the Jurassic group. As in the Palæozoic beds, so we here find the general dip to be to the north ; but it is impossible for me to offer any opinion as to the degree of conformability of any of these deposits one to another, owing to the great disturbances to which they have everywhere been subjected. It appeared to me, however, as
probable that in the parts of the mountains that I examined, a great line of fault intervened between the Oolitic and Palæozoic series. The mountain-ridge of Silurian age most carefully examined by me lies generally parallel to the line of strike, and along its north-cast face runs a stream separating it from the Secondary rocks, which rise in an almost impassable precipice beyond. The section here exposed must be at least 5,000 or 6,000 feet in thickness, but the difficulties of the route prevented my extending my examinations into the-lower beds. The lowest that I reached were of black limestones and shales, with very few organic remains, and those very imperfect. Above these lie several thousand feet of limestones of various descriptions, the rock in some places being almost made up of fragments of shells. Professor Forbes, who haskindly looked over my specimens from these beds, is inclined to identify some of the species with certain forms that occur in the Fuller's Earth and Cornbrash of England; and it appears that there is here no representative of the Lias.
"Continuing to ascend in the series, we reach next a large devel-
Oxford Clay. opment of dark-coloured shales which abound with remains of Ammonites and Belemnites, the former usually imbedded in spherical nodules, apparently of much the same nature as the shale itself, but exceedingly compact. The shale is for the most part, on the other hand, very rotten, and the band of country along which it is found is often depressed so as to form a valley, apparently in consequence of this disintegration of the rock. Thís shale Professor Forbes pronounces to be without doubt of the age of the Oxford Clay, a conclusion indicated by the peculiar forms of the Ammonites, two of which seem to be identical with species found in beds of the same age in Kachh and Sind, which have been figured and described in the Transactions Geol. Soc. ${ }^{1}$ The existence of these beds in the northern parts of the Himálaya was pointed out by Sir Roderick Murchison some years ago, as proved by the occurrence of some of these Ammonites, which he had seen. There is indeed direct evidence of the existence of these Oxford Clay strata for a distance of about 200 miles to the westward of the places where I have myself seen them, and their prolongation along the north of the

[^58]mountains for 200 miles more in an asterly direction is rendered highly probable by the well-attested recurrence of the A momorites in the eastern parts of the kingdom of Nepail. Although we find stralified deposits apparently lying conformably on the Oxfordian strata, I cannot say anything definite regarding them, as they appear to be almost entirely devoid of fossils. They are very hard and compact, consisting of grits, shales, and limestones, and have not improbably been converted into their present state by the action of eruptive rocks which are of common occurrence in this region. ${ }^{1}$
[Subsequent to the publication of General Strachey's papers in the Journal of the Geological Society, a description of his collections of fossils was drawn by Mcssrs. Salter and H. F. Blanford, and printed for private circulation. The following complete lists are taken from that work:-

Silliminn Fossils.

Asaphus emodi.
Hixenus brachyonisus.
Do. pmedulosus.
Cheirurus mitis. Prosopiscus mimus. Sphæacxochus joliotes. Lichas Tibetanus. Calymene nivalis. Tentaculites sp. Serpulites sp. Nautilus? involvens. Cyrtoceras centrifigum. J,ituites iuliformis. Orthoceras striatissimum.

Do. Kcmas.
Theca lineolata.
Bellerophon Ganesa.
Strophomena trachealis.
Do. chæmerops.
Do. umbrella.
Do. armea.
Do. nubigena.
Do. bisecta.
Do. halo.
Do. lincatissima.
Orthis Thakil.
Do. 'I'ibetica.

Murchisonia Finalensis.
Do. pagoda
Pleurotomaria turbinata.
Raphistoma emodi.
'Trochonema htimifusa.
Cyclonena rama.
Do. subtersulcata.
Holopea varicosa.
Do. pumila.
Ctenodonta sinuosa.
Cyitodonta? imbricatula.
Lingula Kíli.
Do. ancyloides.
Leptena Himalensis.
Do. repanida.
Do. cratera.
Do nux.
Orthis compta.
Do. monticula.
Do. uncata.
Ptilodictya ferrea. Do. plumula.
Spharospongia melliflua. Do. iuosculans.
Chatetes? Yak
Heliolites depauperata.

Carboniferous Fosbils.
| Athyris Roissyi.
Aviculopecten hyemalis.

Productus Purdonii.
Do. Flemingi.
Chonetes Vishnu.
${ }^{1}$ In 1873 Mr. T. H. Hughes, of the Geological Survey, brought some fossils from the Milam Pass. They were identificd by Dr. Waagen as representing crestaccous, jurassic, triassic, permian, carboniferous, and silurian formations. This lorings the series here into fuller agrecment with that described by Stoliczka in Western Tibet.

Ammonites floridus.
Do. Aon.
Do, Winterbottomi.
Do. planodiscus.
Do. diftissus.
Do. Gaytnmi.
Do. Ausseemus.
Do. Blanfordii.
Ceratites Jacquemonti.
Orthoceras pulchellum.
Do. salinarium.
Natica sulglobulosa.

Triassic Fossils.

Oolitic Fossils.

Belemnites suleatus.
Amonites acucinctus.
Do. alatus.
Do. lifions.
Do. biplex
Do. comumunis.
Do. concavus.
Do. Engenii.
Do. Gerurli.
Do. Griflithii.
Do. guttatus.
Do. Hookeri
Do. heteroplyylius.
Do. Himálayanus.
Do. IIyphasis.
Do. Jubar.
Do. Melea.
Do. Nepalensis.
Do. octagontis.
Do. robustus.
Do. scriptus.
Do. Spitiensis.
Do. strigilis.
Do. tenmistriatus.
Do. torguatus.
Do. triplicatus
Do. Thounrsensis.
Do. umbo.
Do. Wallichii.
Turritella montium.
I'leurotomaria? sp.
Turbo invitus.
Chemnitzia sp.

Anatina Avagimula.
Myophoria Blanfordi.
Carclium truncatum. Cypmina trigonalis. Astarte minjor. Do. unilateralis.
Modiola sp.
Nucula cuneiformis. Cucullea virgata. Do. leionota. Inoceramus Hookeri.
Lima acuta
Do. girantea.
Do. míiloidea.
Monotis concenticus.
Avicula echinata
Do. inequivalvis.
Pecten arpuivalvis
Do. comatus.
Do. bifrons
Do. monilifor.
Do. Lens.
Do. Salsal.
Ostrea flabelloides. Do. acuminata.
Terebratula numismalis.
Do. carinata.

- Do. globata.

Rlynconella variabilis. -
Do. concinna.
Acrosalenia?
Pentacrinites sp.]
"But the most striking feature of the geology of these mountains is probably that which I have next to Tertiory deposit. mention, viz., the existence of a great Tertiary deposit at an olevation of from 14,000 to 16,000 feet above the sea, still preserving an almost perfectly horizontal surface. On crossing the watershel-ridge between the streams that flow to the south into the Ganges, and those that fall into the upper part of the Satlaij to the north, which here constitutes the boundary between the British territory and Tibet (see map), we find ourselves on a plain

120 miles in length and varying from 15 to 60 miles in breadtif, that stretches away in a north-westerly direction. Its western portion is everywhere intersected by stupendous ravines, that of the Satlaj being nearly 3,000 feet deep. The sections afforded by these enable us to see that this plain is a deposit of boulders, gravel, clay, and mud of all varicties of fineness, laid out in well-marked beds that run nearly parallel with the surface, and that hardly deviate from a horizontal position. The discovery of the fossilized remains of several of the larger mammalia distinctly marks the Tertiary age of this deposit. The existence of such fossil remains in the northern parts of these mountains had been long known, but we were altogether ignorant of the precise locality whence they came, and had no facts before us from which any conclusions could be formed as to their geological import. The Níti Pass, from which it was said that the bones had been brought, was not the place where they were found, but one of the routes only by which they came across the great Himílayan chain from unknown regions beyond.
"Mr. Waterhouse, who has been so obliging as to examine the specimens that I procured from these beds, informs me that he recognizes amongst them the following :-Metacarpal bone and distal end of tibia of Hippotherium ; patella of small horse ; distal end of radius of a larger species of horse ; distal half of tibia of a horse of very large size ; part of metacarpal of a horse ; upper end of tibia of bovine ruminant; dorsal vertebra of a ruminant. Portion of head of an undescribed animal allied to goat and sheep, having, like them, prominent orbits, and the hords above the orbits; but which differs in the peculiar forms the bony core of the horns. The horns are remarkable for being placed very near to each other at the base (their upper portions are broken off). There is a specimen in the British Muscum, however, from the same locality, of an animal very like this, in which the horns are seen to be short, stout, and slightly bent outwards at the apes. Right wing of the atlas vertebra of rhinoceros; phalanx of one of the outer hind toes of ditto? ; and portion of tooth of elephant? Specimens of the bones of ruminants, pachydermata, and other animals from this district, presented to the Society by Sir Thomas Colebrooke and Dr. Traill, are in the Museum of the Geological Society, London.
"The bones that we have hitherto obtained from these strata are

Actual site as yet not identified. almost all very miscrable fragments, so that it is difficult even for the very learned naturalists that I have mentioned to do more than distinguish the genus to which they belong. It is therefore, I am afraid, at present impossible to come to any decided conclusions as to the identity or otherwise of the species here found with those of the Siwilik hills, a question of the greatest interest with reference to all our speculations on the geology of these mountains. The fossil bones I have not seen in situ nor indeed, curious to say, could I, in spite of every attempt, learn a definite locality in which any one knew positively that they had been found. Burt of the gencral position where they occur there can be no doubt, for, besides the common account of their being found in some of the ravines that traverse the plain, on many of the specimens quite enough of the rock in which they are imbedded has remained to enable me to recognize a fine-grained calcareous conglomerate exactly identical with bods such as I have seen intercalated with the boulder and gravel beeds that constitute the mass of the deposit. Hills of limestone rise here and there above the general level of the plain, and it appears as though the calcarcous matter derived from them had cemented together portions of the sands and gravels that were deposited near them.
"The existence of such animals as I have mentioned as being found in these beds being a physical im-
Probably of marinc origin. possibility in the present state of the country, there can be no doubt that the strata have been elevated to their present height from some lower level since the time of their deposition. There is no clirect proof that these beds are marine, no shells having been obtained from them, but I think on the whole that the probabilities appear to be in favour of this plain having been a true sea-bottom rather than of having been occupied by a detached body of fresh water. The general extension of some of the older fossiliferous rocks along the northern face of the Himálaya over a great longitudinal distance is a fact of which we have tolerable proof, and it thence follows that the line on which they occur, distant about twenty or thirty miles to the north of the groat line of peaks, has probably been a sea-margin from the remotest ages of the carth's history until as late as the Oolitic
period at least. So far, therefore, there is nothing adverse to my supposition ; nor is the present interruption of the plain any proof that it did not once have a far greater extension. This is sufficiently proved by my having traced these tertiary beds to the very top of the watershed-ridge in the vicinity of the Niti Pass, where they reach an elevation of upwards of 17,000 feet ; the summit of that pass being strewn with boulders that appear to be derived from the white quartizite capping the Silurian strata of the neighbourhood. Further, two or three miles to the south of the pass, a detached portion of this deposit is to be seen on the declivity of the mountain, which must have been separated from the general mass by the dislocations that have upheaved the whole country. It is, moreover, to be noticed that there scem to be grounds for supposing that plains, such as I have mentioned, are found in other parts of the chain under somewhat similar circumstances, which may not improbably have once formed portions of the same sea-bottom. The plain of Pamir, so long known from the accounts of Marco Polo, and the existence of which is fully corroborated by Lieut. Wood of the Indian Navy, in his Narrative to his Journey to the Source of the Oxus, may be its representative to the west; while to the east the plains described by Turner as having been passed over during his embassy into Tibet, as well as others mentioned by Kirkpatrick as existing to the north of Nepall, the descriptions of which are quite confirmed by Dr. Hooker, are not improbably of a similar nature. Another argument in favour of the marine origin of this deposit is, I think, also to be derived from the very regular way in which the beds of gravel and boulders are laid out, for which I should conceive that some action like that of the tides would be requisite. ${ }^{1}$

[^59]"I have already mentioned the occurrence of eruptive rocks in the Tibetan plateau. A great outburst, in which are found lhypersthene and bronzite, besides syenitic and ordinary greenstones, and various varieties of prophyry, occurs in the vicinity of the lakes which are found at the eastern extremity of the plateau (see map). The greenstone is known to extend considerably to the west, and forms, at an elevation of about 17,600 feet, the summit of Balcha, one of the Himálayan passes into Tibet which I have crossed.
"Having thus given a general description of the geology of this General Strachey's con- region, I shall, as shortly as possible, enucinsions. merate the chief conclusions to which I have been led with regard to the physical forces that have been called into action in the formation of these mountains :-
(a.)-The general extension of the chain along the direction of the strike of the strata is a phenomenon necessarily connected with the action of an upheaving force along a line. This longitudinal action is further evinced by the parallelism of the lines of eruptive action with that of the strike. The continuance of action of the upheaving forces along the same general line for a vast period of time, with occasional intervals of repose or of subsidence, is indicated along both the north and south faces of the Himálaya. The great depth at which the forces have originated seems to be proved by the regularity of the action along the entire length of the chain, as shown by the elevation of such a ridge as the Siwálik hills.
(b).-The granites appear to constitute lines of clevation, not of rupture ; but there seems to be no specific action produced by them on the dip of the strata, which they appear to leave generally unclanged.
(c.)-The greenstones, on the other hand, usually follow lines of dislocation of the strata, being sometimes apparently contemporaneous, and at others intruded through rocks already consolidated.
(d.) -The cause of the general north-easterly direction of the dip is obscure, although its occasional sudden reversal to southwesterly seems to indicate some connexion with the action of an upheaving force from below, or of violent lateral thrust.
(e.)--The lines of facture of the strata are constantly either parallel or perpendicular to the direction of the upheaving force. The positions of the rivers appear to be altogether depenclent on the configuration of surface produced by these fractures ; while the configuration of surface, on the other hand, seems to be but slightly affected by the action of the streams, of which there is rurely any risible sign at 200 feet above the present lerel of the waters, and never to my knowledge above 300 feet.
(f.) -The fact of the granite of the great snowy peaks being seen in veins, penetrating the schists up to 20,000 feet, makes it highly probable that the granite must have been injected long before the mountains received any considerable development. That this granite is older than the Silurian period is rendered probable by the comparatively unaltered state of the lower beds of the Azoic slates at the foot of the Palrozic series, where almost in contact with it.
(g.) -The conglomerate bed near the bottom of these same Azoic slates shows the proximity of land at the time of its deposit, and indicates that some upheaval of land had already taken place near the present line of great peaks, possibly occasioned by the granite in question.
(h.) -The occurrence of pelbbles of greenstone in the sandstones along the southern edge of the mountains shows that the exterior lines of greenstone are older than those beds of sandstone.
(i.)-The frequent occurrence of boulders of the quartizites, slates, and greenstones of the onter ranges of mountains among the Tertiary deposits of the Siwalik hills shows that the Tertiary ocean washed the foot of those mountains.
(j.) -The regular slope of the plains of Northern India up to the Siwálik hills, which rise suddenly from the flat ground, leads me to infor that the sea must have continued to reach at least as far as the foot of the Siwálik hills for some time after their upheavement.
(k.) -The rise of the Tibetan plain has not been caused by the granite eruption of the line of snowy peaks. That the greenstone rocks that abound in many parts of it have equally not cansed it, is proved by the peculiar nature of the valleys among the hills to
the west of the lakes, which must have been laid out level under water ; from which it is to be inferred that these eruptive rocks are older than the tertiary beds of the plain. The same thing is shown by the occurrence of worn pebbles of greenstone in the surface of the plain in the xicinity of some of the detached hills of that rock.
(l.)-The former extension of the glaciers far beyond their present limits is a phenomenon that may be noticed almost everywhere in these mountains, and may give rise at first sight to an idea that there may here also have been some special period of cold corresponding to the glacial epoch of Europe. But it seems, I think, more probable that this is here only the result of a change of elimate consequent on the uphearal of the great plains of Northern İndia.
(m.) - The existence of ancient moraines on the tertiary plain of Tibet proves that the extension of the glaciers is post-tertiary. Now, if we conceive that after the rising of this plain to nearly its present elevation, the sea still continued to wash the foot of the Siwálik hills, as I have already said that I considered likely, it is clear that the climate of the Himálaya would have been far more moist, and that the quantity of snow that fell on the highest parts of the mountains would have been greatly in excess of what now falls there, causing a great extension of the glaciers beyond the limits to which they have now receded."

There are several points in the foregoing summary that might

Remarks on the above summary. be objected, to in detail, but it is hardly necessary to point them out. With the much more extensive information now available than was at General Strachey's disposal, one ought to be able to give a more precise account of the phenomenon under discussion. But one lesson of experience is caution. From all sides the geologists of Europe have been for long years hammering at the Alps; yet the mode of formation of those mountains is still a subject of very vague speculation. What then can we expect from our fragmentary knowledge of Himálayan geology? In one respect we seem to have the advantage : the much grander scale on which the phenomenon took place, and perhaps also the less advanced stage of the process, have resulted in a somewhat less complexity of structure.

The process of investigation is to find out as far as possible from these remmants of the formations, and their relations to each other, what were the couditions of the surface at the time of deposition of cach, and what successive changes of conditions occurred. Thus General Strachey's observations that the metamorphism of the rocks forming the crystalline axis and the introduction of the granite are of pre-silurian date; that this axis of elevation was a shore of deposition at that time, would be facts of prime importance in the early history of this region. It would give a prodigious antiquity to the beginning of the Himálayan mountain systom, for all subsequent disturbances have conformed in clevation with that which produced the gneissic axis. It may be romarked that this view is apparently in immediate opposition to what is now a very fivourite theory of mountain-formation-that which connects these areas of special contortion and elevation with a preceding long-continued accumulation of deposits, and accompanying depression, in the same area; whereby through the gradual rise of temperature in the sediments thus sunk to a considerable depth, expansion occurs, and also a softening of the rocks, including a yielding to the horizontal thrust in the carth's crust, thus producing the compression and up-squeezing into mountains of the accomlated sediments. ${ }^{1}$ In the simple application of this process the position of greatest elevation should approximately coincide with that of the preceding greatest deposition, and not with the limit of the deposition, as we find it according to General Strachey's observation.

To this objection, and in defence of the theory, it may be very fairly argued, that the line of actual maximum elevation is due to denudation having removed the softer and more broken strata and left the more massive rock; that according to the observation under discussion, the sedimentary series never passed across this primitive gncissic axis; and that the position of greatest clevation (in the active sense of upheaval) occurred about the middle gneissic axis formed of metamorphosed palwozoic rocks, all the once overlying strata having been removed ; that but for this result of denudation we should have the crest of the Himálaya to the north of the upper valley of the Indus.

[^60]The interpretation of the dranage system gives direct support to this view. It is an evident postalate of physical geology that along any line of elevation the drainage is originally transverse. The manner in which this primitive system becomes largely converted into longitudinal drainage lines is explained in every text-book on geology. Now, making the fair assmption that the initial line of elevation coincides with the maximum line of upheaval, the main watershed of the future continent is determined by that initial line, and it is presumably a very permanent feature. Every geography book notes the fact that the Himálayan watershed lies far to the north of what is more particularly described as the Himatayan range, but the line of reasoning we have just indicated would suggest that the real axis of maximum clevation in the Himálayan system may coincide more or less with the watershed. We should thus have two magnificent examples of the process of drainage-conversions above alluded to : the Indus and the Sampo (Brahmajutra) now flow from about the same central position, having gradually worn back along the line of easiest crosion, cutting off in succession the originally transverse drainage along the whole line.

The applicability of this theory of mountain-formation to the Himálaya system does not, however, depend upon the correctness of Gencral Strachey's view regarding the exceeding antiquity of the first gneissic axis. The gneiss there in early Palkozoic times

Stoliczka's vicws. may have been a floor of shallow deposition without being a range limiting that deposition. Stoliczka does not adopt this latter view though, leaving it an open question. His own provisional identification of lithologically similar Silurian rocks in equal force to the south of the axis would, perhaps, suggest their original continuity across that axis. He hazarded very few remarks upon the gencral geology of the Himálaya, wisely postponing such considerations until the data would warrant something definite. He points out that the deposits of carboniferous age, filling only broken ground in variable thickness, represent the close of a general geological epoch. The Permian and lower Trias are not reprosented. He considers that after the Trias extensive upheavements occurred, laying dry large tracts that have not since been submerged. The Jurassic basin was then approximately defined. The evidence for these conclusions is
not given, and they seem difficult to reconcile with the general regularity of succession of the rocks. On his figured sections the Para limestone (Rhretic group) is the only one that exhibits great inequality of distribution, being of considerable thickness on the north side of the basin, and altogether wanting to the south. His remarks would, however, assign at least an early Mesozoic age for the origin of some of the prominent features of disturbance now stamped upon the Himalayan system.

The most notable features in the sequence of formations in the Himalaya is the position of the nummulitic deposits, as already mentioned. They are in greater thickness than any of the older formation sexcept the lower Silurian. Stoliczka speaks of thenr as having been deposited in the narrow basin where they now lie in the very centre of the mountain region. This view strongly confirms that previously arrived at from the consideration of the sime deposits. at the south edge of the mountains: that long and extensivedenudation of the Himálayan area had preceded the Tertiary epoch. It seems to have been greatest, as would naturally occur, along the centre of the area of upheaval, wearing down to the metamorphic rocks along what may then have been the back of a brord flat tuberence of the earth's crust. A comparatively slight settlement of the area, submerging only the more deeply croded parts, would then have sufficed for the accumulation of those eocene deposits, and it seems possible that the production of the synclinal basins of the Central Himalayn-as was shown for the contortion of the infraKrol beds of the Lower IIimílaya-did not occur, or, at least, was not stron gly developed till the great compression upheaval in middle Tertiary times.

CHAPTER IV.

The Himáaya.

CONTENTS.

The outcr Himálaya. Mountrin systems: Jumna; Ganges; Káli. Subordinate boundarics. . The Nayár. Western Rámganga; Kili. The snowy range. Axis of highcst elevation. The Tibetan plateau. Glaciers. Glacier of the Pindar ; feeders of the glacier; moraines; crevasses and ice tables. Glacier of the Kuphini. Motion of the Pindar glacicr. Snow-line. Observations in the castern Himálaya. Observations in Kumaon. Bisahr. Across the snowy range. Kumnon ; Garlwál ; Knnaor; Western Tibet. Lakes.

We have seen that the term 'outer Himálaya' has different

The outer Mimálaya. meanings according to the sense in which it is used. Geographers understand by it all the mountain systems lying letween the snowy range and the plains of India, whilst in the western Himálaya geologists restrict its use to the limestonc and slate formations that lie between the outlying tertiary scries and the central crystalline axis. To the geologist Simla and Naini Tál are situate on the outer Himílaya, and Kasauli and Subithu are not ; whilst to the geographer all these hill sanitaria are on the outer Himálaya. To obtain a correct appreciation of the physical relatious of the ranges of the outcr Himalaya we cannot ignore their geological affinities, but we have as yet no geological details on which we can rely for the greater portion of their area. For the tract between the Tons and the Káli we have the record given in the preceding chapter and the map that accompanies it. A glance at this map will show us that the main line of gneiss and granite, which is almost conterminous with the region of perpotual snow, is met with between the cightieth and ninetieth milo from the foot of the Himáliya, and at a distance of from twenty to thirty miles south of the Indian water-parting. Between this line of perpetual snow and the plains there are numerous well-defined ranges, some seemingly spurs from the snowy axis, and of which the geological relation is not well established, and others having an apparent separate and independent existence. As we have already noticed, the travoller from the plains mects first an outer range, which has a general clevation of about 6,000 to 7,000 feet above the level of
the sea, and which in China above Naini Tíl rises to 8,568 feet, and in a peak, on the 'Tirlii road, east of Masuri, to 8,565 feet. This band or outer range has a general direction parallel to the plains, and is pierced by the greater rivers, such as the Tons, Jumna, Ganges, Rámganga (western), Kosi, and Káli. Between it and the ridges descending immediately from the snowy range we cross a number of subordinate ranges which are, as a rule, of considerably less elevation than the outer range. Between Chína and Dhákuri Bináyak, on the road to the Pindari glacier, a distance of forty-five miles as the crow flies, there is no peak having an elevation of 8,000 feet, and very few attaining to 7,000 feet. But further westward, in the same parallel, we have groups of peaks attaining an clovation of over 10,000 feet, notally those comnected with the Dudu-ka-toli range in Garlrwál. When the river valleys close to tho snowy range are reached, the increase in elevation is rapid and marked. The flanking ranges seldom fall below 10,000 feet, and are crowned with peaks rising still higher, until the culminating ridge crowned with perpetual snow is met.

If wo carefully examine the great sea of mountains lying be-

> Mountain system. tween the outer Himilaya and the snows, we shall find that the dominating ranges are spurs from the great gromps of peaks, remarkalle alike for their elevation and the position they fill as the boundaries of the several river-basins. On the west, the western boundary of the Jumma system is found in the elevated ridge that has its origin in the group of peaks crossed by the Shatríl and Burenclie passes. This ridge follows the left bank of the Satlaj in a south-westerly direction to Hatu (10,700 feet), where it bifurcates: one branch continuing

Jumna system.

 the normal dircetion to Bilaspur, and the second proceeding in a south-easterly direction by Chor (12,081 feet), where it forms the water-parting between the Giri and the Pábar branch of the Tons. A sccond great ridge, descending from the Jamnotri groups, and marked by the Deoban (9,347 feet), Chakrita (7,300 feet), Chilmeri (7,160 feet), and Bairát (7,423 feet) peaks in British territory, scparates the affluents of the Tons from those of the Jumna. The eastern boundary of the Jumna system is formed by a great ridge having its origin in the same group of peaks, and which joims the outerHimálaya near the Sarkanda peak to the east of Masuríi (Mussooree). The castern boundary of the Ganges system is found in the great ridge descending in a south-westerly direction from

Ganges system.

 the Nandakot peak, and which passes along the left bank of the Pindar to its junction with the Alaknanda, and thence along the left bank of the Alaknanda to Deoprayig. It admits of two great hifurcations: one at the head of the Katyúr valley and one at the head of the Lohba valley. From the group of peaks at the head of the Katyúr valley a branch passes in a south-casterly direction through Binsar and Dol and along the right bank of the Ladlhiya to Barmdeo on the Sárda, andKáli. from the head of the Lohba valley a branch runs south-by-east to Gujargarh, whence it passes almost due west to the Ganges at Kharak and Chándi. The tract to the south of these two arms is in shape a great obtuseangled triangle, with its base towards the plains and its apex in the group of hills to the north of Dwára Hát. It forms the mountain basin of the western Rámganga. The eastern boundary of this system forms the western boundary of the Kalli system, of which the eastern boundary is found in a great ridge descending from the Api peak in Doti of Nepál. It is clear from the above brief description that it is the spurs from the snowy range that bound the river basins, and if we examine further the affluents of each systom, we shall see that the ramifications from these spurs form the water-parting between each minor system.

The principal affluents of the Jumna system are the Tons and

> Subordinate boundaries. the Giri. The Pábar, Rúpin, and Súpin unite to form the Tons, and are separated from each other by transverse ridges descending from the great boundary ridge. United they drain a delta-shaped basin having its apex at Kílsi. To the south-west the Giri drains a similarly shaped basin having its apex near Kalsi, and to the east the Jumna drains one having its apex at Kálsi. We find that the point of junction of the apices of these three deltaic basins lies within the Siwaliks, the outer range of geographers, and that the union of these three main affluents forms the Jumna of the plains. This basin, as well as the minor systems within it, is bounded by spurs from the great snowy range or transyerse ridges descending from them. If we
further examine the relations of the minor feeders of the threc great constituents of the Jumna system, we see that, as a rulc, they flow at right angles to their recipients, and that the affluents of these minor feeders obey a similar law. The ridge separating the 'lons from the Jumna gives off feeders on the west to the Tons and on the east to the Jumua, at right angles to its direction. From the western slopo the Dháragad, Binol, Shaula, and Manjgaon streams flow to the Tons, and from the eastern slope the Ralena, Kítni, and Silo seek the Jumma. Each of these minor feeders is separated from the other by lateral spurs, descending usually from some peak or knot of peaks, and all, as the veins on a leaf scek the midrib, flow towards the mid-depression and give it their moisture. The two great rivers that unite to form the Ganges are themselves the centres of subordinate systems. The Bhágirathi is divided from the Bhilang by a great ridge descending from the Gangotri group of peaks, whilst a second ridge having a similar origin separates the Bhilang from the Mandákini, an early affluent of the Alaknanda. The Bhágirathi unites with the Bhilang near Tirhi, and the two rivers drain a delta-shaped tract having its apex at Deoprayág. The Síraswati and Dhauli, which form the head-waters of the Alaknandi, are separated from each other by a ridge of snowy peaks, and its more southern affluents, the Nandákini and the Pindar, are divided from each other by a great ridge descending from Trisúl. The entire basin of the Alaknanda to its junction with the Bhágirathi at Deoprayág is thus a great delta-shaped tract, ent up by the minor feeders into subordinate systems that are bounded by great ridges descending from the snowy range. Between Deoprayág and Hardwar, the Ganges receives from the east the Nayar and the Himal, and from the west the Súswa that drains the Dehra Dún. All unite within the Siwaliks to form the Ganges of the plains.

We shall now take up the compact system of the Nayár in
The Nayár. southern Garhwál, which at first sight would appear to be an exception to the general rules. We find that the boundary ridge that marks its exent is a continuation of the great ridge that, descending from the snowy peak of Nandakot, runs along the left bank of the Pindar to the head of the Lohba valley. Here, as already noticed, this ridge bifurcates; one branch procceding in the normal direction along
the left bank of the Alaknanda to Deoprayág, whilst the second branch passes south to Gujargarh and then west to the Ganges at Kharak. These two branches mark the axis of highest elevation in the tract through which they pass. Following the western branch, we have the Dubri peak, 9,862 feet; Dobri peak, 9,862 feet; Gandkhola, 7,553 feet; Devidatta, 7,034 feet; Kankwala, 6,651 feet; Gurdari, 5,893 feet; Jhangarl, 5,878 feet; and a peak about two miles from Deoprayíg, 5,030 feet. Following the southern branch through Gujargarh, we find the second, Duda-ka-toli peak with an elevation of 10,180 feet above the level of the sea ; Barmadúngi, 9,190 feet ; Nandatopa, 8,086 feet; Khamek, 7,152 feet; Gujargarh, 7,969 feet; Khatti, 8,270 feet; Utain, 6,901 feet; Bukrari, 6,267 feet; and Naugarh, about a milc above Kharak, 6,065 feet. Close to the point of bifurcation, the boundary ridge sends a lateral spur southwards, that divides the basin of the Nayar into two parts, that drained by the western Nayár or Chhiphalghát river, and that drained by the eastern Nayár or Kainyúr stream. This great spur preserves the supcrior elevation of the boundary ridge, and is marked by the following peaks :-Barári, 8,499 feet; Bandani, 8,278 feet; Panjing, 8,810 feet; Devitank, 8,849 feet; Matikhal, 7,688 feet; and Chhatargah, 6,790 feet, when it is lost in the valley of the eastern Nayár ncar Kandui. Short ramifications from this spur or the boundary ridge itself determine the course of the minor feeders of the two great ehamels of the Nayar system. Thus a transverse ridge from Dubri, marked by the Tara-ka-kand (9,000 feet) and Banjkot (8,203 feet) peaks, divides the Chhiphalghát river near its source from its feeder at Paitháni on the left bank, whilst other ridges from Gandkhola, Devidatta, and other peaks, separate the other feeders the one from the other. A similar rule obtains along the course of the eastern branch, and we thus see that there is no real difference in principle between the arrangement of the drainage system of this apparently abnormal minor basin and that of the other greater systems already noticed.

In the system of the western Ránganga, however, we have an arrangement for which we find an analogue

[^61] in that of the Bágmati in Nepál. As we have already seen, the basin of the Ramganga is in shape a great
oltuse-angled triangle, with its apex towards the snowy range and its base towards the plains, thus filling up the gap between those systems that have their apices towards the plains and their hases towards the snowy range. Of its affluents, the Kosi alone has a considerable course within the hills, the remainder having their origin in or close above the elevated tract lying along the foot of the hills, and joining the Rámganga at some distance southwards in the plains. Here, although the main boundary ridges are still the spurs descending from the snowy range, the several streams do not unite within the outer range, but, like the Bágmati and its affluents, well beyoud it in the plains. The Káli is known as the Yánkti near its source, as the Káli during the greater portion of

Kúli. its coursc through the hills, as the Chauka or Sárda in the Bhábar and Tarái, and as the Sarju and Ghogra in Oudh to its junction with the Ganges, to the south of the Ghazipur district. The Káli basin is bounded on the west by that of the Ganges, and on the south-west by that of the western Rámganga. It receives from the west the Gori, Sarju, and Ladhiya, and from the east some small streams from Nepál, all of which unite within the hills to form the Sárda at Barmdeo. The Sarju is divided from its affluents, the eastern Rámganga, by a great meridional ridge, extending from their sources to their junction, whilst a second ridge, running in a south-easterly direction from the same group of peaks to Askot, separates the latter river from the Gori. The great Pancha-chuli range, running south-cast from the line of water-parting, divides the basin of the Gori from that of the Dárma Yánkti, and a similar snowy range having a like origin separates the Dárma Yánkti from the Kuthi Yánkti. The great mass of peaks comprising Trisúl, Nanda Devi, and Nanda-kot thus send forth great boundary ridges from their entire southern face to the west between the Riniganga and Nandákini : to the south-west between the Nandákini and the Pindar, and between the Pindar and the Sarju; to the south between the Sarju and the eastern Rámganga; and to the south-east between the last river and the Gori. These indications are sufficient to mark the salient features of this portion of the Himálaya, and we reserve the cletails for the Gazetteer articles of this notice.

The mountain system lying between the snowy range and the

> The snowy range. plains may therefore be said to consist of an outer range parallel to the snowy range and connected with it at wide intervals where it meets the great ridges descending therefrom. These latter bound the river basins, and the ramifications from them determine the courso of the minor feeders of cach system. We have now to consider the snowy range itself, and in these provinces at least it is a well-marked feature, lying from ten to twenty miles to the south of the Indian waterparting. The line of snowy peaks seen from Naini Tál and Masúri all lie to the south of the passes by which travellers cross into 'Tibet. The route by Nilang in foreign Garhwil throngh the Jádh valley crosses north of the Jamnotri group ; that by Mana in British Garhwál lies to the north of the Kedarnath group ; that by Milam in Kumaon behind the Nanda Devi group ; and that by the Lampiya-dhúra, also in Kumaon, behind the Panchachúli group. The Jádh Ganga runs in a valley parallel to the snowy range and the line of water-parting, at an clevation of 15,000 feet above the level of the sen, near its source at Sumla, but gradually falling to below 9,000 feet at its junction with the Bhágirathi, near Bhairongháti. The horizontal distance between these two points is a little over 17 miles, and the fall is therefore over 350 feet in a milc. The Vishnuganga or Śriraswati descends from the Mína Pass at 18,000 feet above the level of the sea to Vishnuprayag, a distance of some 35 miles, where it is little over 5,000 feet. Here we have an average fall of about 370 fect in the mile. The increase in elevation from the place where the river valleys enter the area of greatest clevation is equally marked in the valleys of the Dhauli, the Gori, and the Dárma river. Dhárchúla on the Káli, before the line of snowy peaks is reached, is only 2,750 feet above the level of the sea ; whilst Golam La, to the north and above that line, and about 1,500 to 2,000 feet above the bed of the Kali, is 8,000 feet above the level of the sea. The bed of the Kali at Changru is 10,000 feet, and in the twenty-five miles between it and the Lanpiya-dhúra Pass the fall is over 8,000 feet, giving an average fall of 400 feet to the mile. These facts well illustrate the law that the river beds ${ }^{1}$ to within a distance of ten miles in a direct line from the snowy peaks seldom
exhibit a rise of more than four or five thousand feet; but when we cross the line on which the grent peaks are situated, the ascent very rapidly increases, and a very few miles carries the river-bed up to an altitude of nine or ten thousand feet, thus showing that the sudden increase of height of the mountains along this line is not confined to the peaks alone, but is a general elevation of the whole surface.

This sudden and steady rise in elevation when the line of snowy Axis of highest cleva-
tion. speaks is reached appears to be a well- marked feature of the entire Himáliyan range. The snowy peaks, however, do not occur in a continuons ridge, but in masses separated the one from the other by decp depressions that form the line of drainage for all the surplus moisture of the tract between the snowy range and the line of water-parting to the north. These depressions are, so far as we know, a more distinctive feature of the Indian than of the Turkish slope of the HimálayaTibetan mass, a fuct doubtless due to the greater rainfall received by the former. The influence of the monsoon on the southern slope is shown in its supporting a more dense and varied vegetation, and even on individual ranges and hills the southern exposure is similarly strongly marked in Kumaon. It is the ceaseless action of water that has furrowed out these valleys from the great mass, and naturally this has been accomplished on a greater scale and with more results along the southern slope that receives the full force of the periodical rains. The mass of peaks known as the Giongotri, Kedárnáth, and Badrináth groups, are separated from the next group to the east by the valley of the Sáraswati, and this group again from the Nanda Devi mass by the Dhauli river. The last is again divided from the Panchachúli group by the valley of the Gori, and the latter from the succeeding group by the Díma valley. All these valleys are inhabited and cultivated during the summer and rains, and some of them are comparatively of considerable extent. The masses of snowy peaks are more like the terminal ends of huge spurs desconding from the line of water-parting than a continuous ridge. They, however, occur in regular sequence along the entire line of the Himálaya, and, as seen from the plains, have the appearance of a connected chain. The following talle, showing the principal peaks that occur thronghout some eleven degrees of longitude, will give some idea of their number and importance.

Points on the Himalaya mountains arranged in order of longitude by
Mr. Trelawny Saunders, from the records of the G. T. S.

Number.	Name of peak.			Latitude.			Longitude.			Altitude,
I.	Chumalari		.	27°	49^{\prime}	$37{ }^{\prime \prime}$	89°		43"	23,944
II.	Gipmochi		...	27	16	23	88	50	37	14,218
III.	Pathtunri (Donl		\ldots	27	56	52	88	53	5	23,186
IV.	Chumunkn (Cho	27	27	28	88	49	38	17,325
V.	Black rock (Gut)	...	27	3.	7	88	48	39	17,572
VI.	Narsing...	\cdots	.	27	30	36 34	88	19	28	19,146 22,017
VIIII.	Pandim...	\ldots	\cdots	27	41	34 26	88	15	35	22,017 27,815
IX.	Ranchaujinga	...		27	42	5	88	11	26	28,156
X.	Kabru		\cdots	27	36	26	88	9	15	24,015
XI.	Jammu	\ldots	\cdots	27	40	02	88	5	13	25,304
XII.		27	39	55	87	7	56	
XIII.	Sihsur	\ldots	...	27	53	18	87	7	54	27,799
XIV.	Chamlang E.	27	46	27	87	1	21	24,020
XV.	Mount Everest	...	\cdots	27	59	12	86	58	6	29,002
XVI.	Chamlaug W.		\cdots	27	15	10	86	51	50	22,215
XVII.	Saukosi	\ldots	...	27	45	11	86	36	57	22,826
XVIII.		27	52	16	86	31	57	21,087
XIX.	"	27	58	13	86	28	32	23,570
XX.	",	\cdots	...	27	57	48	86	22	42	23,447
XXI.	"	\ldots		27	57	2.1	86	9	8	19,560
XXTI.	Jabjubiya	\ldots	...	28	7	30	85	54	42	21,853
XXIII.	Jalibia	...	\ldots	28	21	3	85	49	21	26,305
XXIV.	$\stackrel{\square}{\prime \prime}$	28	10	20	S5	48	17	22,891
XXV.	Daynbang	...	\cdots	28	15	17	85	33	35	23,762
XXVI.	Akn	\ldots	...	28	23	25	85	10	12	24,313
XXVII.		\ldots	...	28	20	38	85	7	2.	23,313
XXVIII.	Yasma		...	28	25	58	84	41	0	25,818
XXIX.	Kan	\cdots	...	28	30	7	84	36	34	25,729
XXX.	"	\ldots	\ldots	28	32	55	84	36	9	26,680
XXXI.	"		...	28	39	39	84	21	50	,
XXXII.			\cdots	28	39	21	8.1	20	32	
XXXIII.	Barathor	\ldots	...	28	29	18	84	13	-6	22,947
XXXIV.	"		...	28	32	0	84	9	52	26,069
XXXV.	"	\ldots	...	28	32		84	7	32	24,718
XXXV「.	Morshiadi	...	\cdots	28	34	58	84	1	57	24,780
XXXVII.		\ldots	...	28	29	37	83	59	22	22,964
XXXVIII.	"	\ldots	...	28	29	48	83	59	20	22,986
XXXIX.	"	...	\cdots	28	35	38	33	51	46	20,522
XIs.	"	\cdots	...	28	30	59	83	50	55	23,641
XLI.	"	\ldots	...	28	39	11	83	46	22	22,471
XLIII,	Dhanlagiri	\ldots	\ldots	28	41	43	83	32	9	26,826
XLIII.	Kárâyaxi	\ldots	\ldots	28	45	39	83	25	52	25,456
XLIV.	佰	\ldots	\ldots	28	45		83	25	12	25, 299
XLVI.	"	\ldots		28	43	56	83	24	18	24,912 $\mathbf{2 5 , 0 9 5}$
XLVII.	"	\ldots	.	28	40	21	83	19		23,565
XLVIII.	"	\cdots	.	28	43	49	83	15	9	24,181
XLIX.				28	44	47	83	11	18	23,779
J .			\ldots	28	44	30	83	9	29	21,727
LI.	"		\cdots	28	45	53	83	8	27	21,472
Lli.	Chanbisi	\ldots	\cdots	28	49	33	82	39	33	19,415
= LIII.	Api	\ldots	...	29	59	7	80	56	22	
LIV.	Padchachúli	30	12	51	80	28	9	22,673
LV.	:	\ldots	...	30.	15	12	80	25	5	21,471

Points on the ITimalaya monntains arranyet in order of longitude ly Mr. Trelauny Stunder's from the records of the G. T. S.(concluded.)

Number.	Name of peak.			Latitude.			Longitude.			Altitude.
I,VT.	Nandakot	. 0	\cdots	30°	10^{\prime}	$51{ }^{1 /}$	80°	6^{\prime}		22,238
I, VII.	Nanda Devi	...	\ldots	30	21	68	80	2	21	24,417
LVIIL.	Nanda Devi	...	\cdots	30	22	31	80	0	50	25,661
LIX.	Do.	-•		30	22	35	80	0	46	25,087
T.X.	East 'l'risul	.-.		30	16	14	79	54	51	22,342
I.XI.	Do.	...		30	30	5	79	$5 \cdot 1$	31	23,092
LX II.	West Trisul	...	-.	30	18	43	79	19	7	23,382
LXIII.	Nandákna	...	\cdots	30	$2 \underline{1}$	9	79	45	40	19,916
TXIV.	1)o.	**	\ldots	30	20	50	79	15	36	20,722
IS X .	Do.	-		30	20	57	79	45	$3 \overline{5}$	20.773
J.XVI.	Do.	. ${ }^{\text {a }}$	\cdots	30	11	(79)	$4 \cdot 1$	53	22,093
I.XVII.	Kamet (Ibn Gam		\ldots	30	59	13	79	38	4	25,373
LXVIII.	Nilakánta	...		30	13	52	79	26	50	21,601
IXIX.	Badrinuth	...	\ldots	30	14	16	79	19	20	23.210
LXX.	Do.	30	+3	$\underline{2}$	79	17	52	9,2,511
I.XXI	IMo	...	\cdots	30	46	44	79	16	5s	29,347
LXXII.	Kerlínrnáth	30	47	33	79	6	34	22,790
IXXIII.	'Tharlasígar	30	5	40	79	2	$1 \pm$	29,582
LXXIV.	Do.4.	30	51	41	79	2	13	22,628
LXXV.	Jaonli	30	51	18	78	53	53	21,672
LXXVI.	Bas or Sríkínta	30	57	22	78	50	50	20,149
LXXVII.	Baudarponcha	31	0	12	78	35	45	20,758
IXXVITI.	Jamnotri.	-••		$\cdot 31$	0	25	78	34	6	20,038
IXXIX.	Swargaruini	31	0	8	78		32	20, 105

After crossing the line of water-parting which, as we have seen, lies at the valley heads to the north of the line of snowy peaks, wo come upon the great Tibetan plateau which has a mean elevation of from 13,000 to 17,000 feet above the level of the sea. Puling on the platean by the Nilang route is 13,800 feet, Chiurkung on the Mána route to Totling is 15,700 feet, Chitung-dhár on the Unta Dhúra route to the Satlaj is 15,810 feet, and Buljuing near the head-waters of the Karnáli is 15,850 feet. Rabgyaling is 14,000 ; Gartokh, 14,240 feet; Tirthapuri, 14,820 feet; and lake Rákas Tál over 15,000 feet abore the level of the sea. Captain H. Strachey has described ${ }^{1}$ the Tibetan tableland lying between the Indian and Turkish water-partings "as the flat top of a great embankment exhibited in all its thickness in the scarp of the Indian Himalaya: the summit, though deeply corrugated with valleys and mountaina in detail, being in its general relief laid out horizontally at a ${ }^{2}$ On the plysical geography of Western Tibet : Londou, 1854:
height little inferior to that of its southern scarp." Althongh the highest summits yet known and measured lie along the Indian slope, very lofty peaks have been seen in all parts of the interior, "and the passes which must be crosscd to get from one Tibetan valley to another, even in the very central axis of drainage, generally equal those by which Tibet is reached from India:" so that, on the whole, Captain Strachey was of opinion that the medial depression is but faintly marked in the beds of the great rivers without much affecting the mean elevation of the mass. His description of the mountain system of that portion of Tibet lying to the north and west of Kumaon is the best that we possess, and will usefully conclude our brief revicw of the features of this portion of the Himálaya-Tibetan mass. "The mountains that compose the bulk of West Nári are not easily understood or defined. On ascending the highest passes we can seldom see anything but a contracted view of mountain tops on all sides, looking very like chaos: no general view of ranges under our foet is ever obtainable as the passes naturally select the ravine-heads and lowest points of the ridge which are not only flanked but often almost surrounded by the higher summits; and the valleys are commonly so steep and narrow, especially in the Rong country, that the view can hardly ever penetrate to an alluvial bottom and the sight of any inhabited place from a pass top is most unusual. When travelling along the bottoms of the valleys, we generally see nothing but a narrow tortuous passage between strop rocky walls, shutting out all extended view, and rather concealing than exhibiting the mountain ranges of which they form but the lowest outworks; consequently it is only by an extended scrics of observations and inferences, joined and assisted by maps, that any regular arrangement of these mountains can be distinctly established, and my account of them is liable to error in proportion to the defects of my own map. The general plan of the mountain system appears to me to consist of a series of parallel ranges running right across the breadth of the tableland in a direction so extremely oblique to the general extension of the whole as often to confound the one with the other, or to convert the transverse direction to a longitudinal one. The annexed figure may help to explain this. Short transverse necks connecting the main ranges in some parts, and cross fissures cutting through
them in others, together with projecting spurs of a secondary order, will suffice to convert the supposed primary arrangements into all the oxisting varicties of valley and
 drainage.
Such connecting neeks, when alove 18,000 fect, become more or less confounded with the main ranges, and, if not above 17,000 leet, often appear as low watersheds, just dividing the heads of two valleys lying in one line, but draining opposite ways. Secondary spurs also may be so high and so obliquely joined to the primary ranges as to make it difficult to distinguish between the two ; and the cross fissures may sometimes admit a main river to pass through a main mountain mass, in which case the continuity of the range is often evidenced by the extreme narrowness of the rocky gorge or height steepness, and geological correspondence of its sides. Much of the Indian watershed seems to be formed in this way, the great snowy peaks lying mostly on the terminal butt-ends of the primary ranges, sometimes widened by lateral spurs, and the Tibetan passes crossing the low connecting links, whoso alignment forms the main watershed, but not the main mountain crest."

It seems strange that so late as the year 1847 the occurrence of glaciers in the IIimálaya was considered a matter of doubt by the learned in Europe. There is now no fact more widely attested Glaciers. and more thoroughly established than the existence of glaciers at the head of almost every valley that descends from the ranges covered with perpetual snow. In size and importance they also fitly compare with those stupendons peaks around them that have placed the Himalaya in thre foremost rank of all the mountains of the earth. Colonel Gordon gives ns illustrations and descriptions of the great glaciers ${ }^{1}$ Roof of the World, 17.
met by the Yarkand Mission on the journey between Leh and the Kárakorum pass. He mentions the lower Kumdan glacier that comes from the high peaks to the north-west, and continues down the right lauk of the strean for over two miles, "forming a perfect wall of ice, rising from the water about 120 fect, and showing a surface covered with countless pinnacles and points." The Remu glacier, also seen by Colonel Gordon, rises amongst peaks and ridges from 19,000 to 24,000 fect high. "It is about 21 miles in length and from one to one and three-quarters mile broad, terminating at an elevation of 15,800 feet above the level of the sea, with a width of about three miles of gigantic cliffs of icc fully 250 fect high." He adds :-" the glaciers of the western Himálaya are twice as extensive as those of the Alps, and are probably the largest in the world, or at all events larger than any others out of the polar regions. One in the Muztígh range is believed to be 34 miles long with fifteen distinct moraincs; while in its immediate vicinity is another, 31 miles in length, which may be said to join with it in making 65 miles of continuous icc." Other glaciers have been described by travellers in the ranges between Ladák and Garhwál. In the tract with which we are nore immediately concerned we have glaciers at the head of the Jidh Ganga, the Bhágirathi, Vishnu Ganga, Dhauli, Kailganga, Sundardhúnga, Pindar, Kuphini, eastern Rám-ganga, Gori, and Dárma Yánkti. Lieutenant Woller ${ }^{1}$ in his visit to the source of the Gori near Milam, describes that river as coming "out in a small but impetuous stream at the foot of apparently a mass of dirt and gravel some 300 feet high, shaped like a halfmoon. This is in reality a mass of dark-coloured (hottle-green) ice, extending westward to a great distance, and covered with stones and fragments of rock which in fact form a succession of small hills." Here and there were circular and irregularly shaped craters (as it were) from 50 to 500 feet in diameter at top, and some of them 150 feot deep, and higher up these gave place to narrow fissures. This glacier is between seven and eight miles long, and terminates at an elevation of 11,600 feet above the sea. The glacier of the Pindar in Kumaon is the one, however, regarding which we have the most complete informatiom, and we shall confine oursolves, therefore, to its description in detail.

$$
{ }^{1} \text { J., A. S., Ben, XI., } 1166 .
$$

The Pindar river ${ }^{1}$ is an affluent of the Alaknanda, and has its rise in a glacier to the west of the Nandakot peak and its valley, where the glacier ends, is about a mile across between the precipitous mountains that bound it. From the foot of the rocks on either side the bottom of the valley slopes inwards with a moderate inclination, leaving in the middle a hollow about 300 yards wide and 250 fect deep, with very steep banks, at the bottom of which flows the river. This comparatively level space between the precipices on either side and the river bed is observable for a mile or more below the end of the glacier, though much cut up by watercourses. The glacier occupies about two-thirds of the whole breadth of the head of this valley, leaving between itself and the cliffs on the east an open grassy slope, which extends along the foot of the moraine for upwards of a mile and a half above the source of the river, and which seems to be a continuation of the level space before mentioned. The first appearance of the glacier is thus described :-"It scems to be a vast rounded mass of rocks and ground utterly devoid of any sign of vegetation, standing up out of a grassy valley. From the foot of its nearer extremity the river, even here unfordable, rushes in a turbid torrent out of a sort of cave; the top of which is but a fow feet above the surface of the water (May). The end, immediately over the source of the river, is very steep and of a dull black colour. It is considerably fissured, the rents appearing to arise from the lower parts, tearing themselves from the upper by their own weight. On a closer examination this abrupt end proves to be a surface of ice covered with sand and gravel and curiously striped by the channel made by the water that runs down it as it melts. Behind this, the glacier rises less steeply, like a bare gravel hill, to its full height, which is probably about 500 feet above the water of the river when it leaves the cave. In some places, however, are seen great fissures both vertical and horizontal, the latter evidently made by the separation of regularly stratificd layers."

The glacier is formed by the meeting of two ice streams from

> Feeders of the glacicr. gorges, one coming from the north-west and the other nearly from the east, and which

[^62]

J. A. S. BerkXVI. 786

meet about two miles above the sonce of the river, as shown in the accompanying sketch.

The feeder from the nortli-west is larger than that from the east, and its surface is at a considerably higher level for some hundred yards below their first junction. It descends with a great inclination, entirely filling the gorge, down which it comes in a cascade of ice. It assumes the gencral appearance of a confused mass of irregular steps, which are again broken up transversely into peaks of every shape. The west sido of this cascade continues nearly in its original direction after having passed the point below which the glacior bends sharply to the south-west, and in this way completely crosses the glacier. The steps in which it falls, however, also gradually change their direction so as to remain nearly perpendicular to the gencral current of ice. The transition to the regular level ice is very sudden, and begins much higher up on the west than on the east side. Near the foot of this ice-fall the steps were observed to have their tops considerably overhanging. Λ small tributary, also descending in cliffs of ice, joins the main glacier from a ravine on the east, not far above where it takes the sudden bend. The foeder from the east is formed by the union of two smaller glaciers, one from the north-east and the other from the south-east, which is the larger of the two. The north-eastern tributary appeared to have no very steep inclination, but was considerably broken up at its junction with theother. Another suall glacier joins the main one from the north-west, a short distance below the point where it bends southwards. Its inchation is xery great, but it perfectly maintains its continuity of structure to the bottom.

The lateral moraine of the west side of the northern branch of the glacier is first seen near the bend, where it shows itself as a black bund along the edge of the ice which in other parts of the fall is quite white. The moraine is small between the bend and the tributary glacier below it, but very rapidly increases, and in its lower parts is a chaos of desolation. This great addition to the size of the moraine is owing to the quantity of débris brought down by the small glacier. The ice below the junction is much broken up by crevasses, and rocks and gravel from the moraines on both sides of the tributary glacier are scattered over the space between them, and the moraines at
first sight seem to lose their distinct lorm. Although there is no clear ice between the moraine that originates on the cast of the tributary and the west side of the glacior, the identity of that morane is sufficiently marked by its colour and by the regular rise above the gencral surface of the glacier of its top, which remains tolerably even for some waly down, being boyond the limit of the disturbance caused by the crevasses along the edge of the glacier. About half way down to the lower end of the glacier, however, the full action of these crevasses reaches the whole of the moraine, and it is scattered or lost sight of in the gencral confusion of surface. An epoch of peculiar destructiveness to the mountains is marked in one part of this moraine by the accumulation of huge masses of rock from 20 to 30 feet square and as much as 15 feet high, and the stone found on it are generally larger than those on any of the other moraines. The true west lateral moraine, below the tributary glacier, is not very large, nor is its top much elevated above the bottom of the valley, exerpting quite at its end.

The latcral moraine of the south-eastorn side of the glacier is very large. Its top rises, on an average, probably 250 feet above the bottom of the valley. Along its foot runs a stream, gradually increasing in size, that collects the open drainage of the outer slopes of the moraine. The lower part of this slope is a mass of loose stones and earthy gravel which rolls down from above, as the face of the ice which is visible in the upper fifty or sixty feet of the slope melts and recedes, a process that is constantly going on. On the inner side the slope of the moraine is thirty or forty feet above the level of the clear ice of the glacier. The upper part of the moraine comes down nearly straight from the point where it meets the foot of the north moraine of the east glacier. The north branch glacier being considerably higher than the eastern, the moraine slopes down from the bed of the former to that of the latter, forming a deep angular depression where they meet, that gradually diminishes in depth up to the top of this glacier, which ishere entirely covered with débris, the moraines of its two sides being seattered all over it for some distance above its union with the north or main branch. The resulting appearance is that the northern branch runs over the eastern, or that the latter runs into the former and is absorbed by it. The eastern tributary brings

down moraines that spread over the whole of its breudth at its a oxtremity. Besides these lateral moraines there is a medial one that is first seen as a dirty stripe along the ice cliffs of the fall at the head of the north glacier. As it comes down the level ice it gradually begins to assume the decided appearance of a moraine, and increasing by degrees at last becomes very large. It continues in a well-defined form for some short distance beyond where the western moraine is dispersed, but there it also is scattered over the ice, and the two become blended together, and ultimately extend to mect the débris, which is similarly dispersed by the eastern moraine from the opposite site of the glacier. The whole of the moraines, in the middle of the length of the glacier where it is most regular, are very considerably raised above the general surface of the ice, which in some parts may be as much as one hundred feet below the tops of the western and medial moraines. It would appear that this great elevation is not so much due to the accumulation of débris as to the protection afforded by the superincumbent rubbish to the ice below which prevents its being melted. The clear ice beyond the moraine is constantly depressed where exposed, and on the very tops of the moraines puro ice was often seen hardly covered by stones. The protection afforded by the lateral moraines raises the sides of the glacier so much that a very considerable hollow is caused in its middle, which is a striking feature in the first appearance of its lower' extremity.
The ice of which the glacier is composed is perfectly pure and Crevasses ; glacier tables. clear, but where seen in considerable masses, stripes of a darker and lighter bluish green are distinctly visible. It is composed of bands of ice containing small air bubbles, alternating with others quite free from them. In many places the surface presents a striated appearance, arising from the different degrees of compactness of these differently coloured bands and their consequently different rates of melting. The direction of these coloured views as seen in crevasses showed a dip inwards or towards the longitudinal axis and a dip upwards or towards the origin of the glacier in every part, the stratification being more perpendicular towards the head and more nearly horizontal in the lower parts. The direction of the strata in place was also very clearly marked in many parts of the ice, and was placed in
curves, having their branches nearly parallel to the sides of the glacier and their apices directed downwards, the curvature in the centre not being at all sudden. No dirt bands were observed. The crevasses were neither very numerous nor very formidable. They are developed across the direction of the glacier's length on both of its sides, commencing from the small tributary on the west side and from the union of the eastern glacier on the other, and continuing almost to the end, those on the west side being, perhaps, the larger. They are generally wider towards the edges of the glacier, closing up as they approach the centre. They are nearly vertical, and are directed from the sides upwards or towards the hoad of the glacier, those on the west bearing nearly east and west, and those on the cast bearing nearly north and south, thus forming angles of about 45° with the axis of the glacier. Many pools of water (baignoirs) were seen on the surface of the ice; some of the largest were said by the guides, who are in the habit of visiting the glacier, to be found in the same place cvery year. The clear surface of the ice everywhere assumes a more or less undulating appearance from the action of the water that drains from it as it melts and the small streams, into which the drainage collects, end by falling into some of tho crevasses. The remains of the last winter's snow was hardly perceptible on any part of the glacier. The occurrence of stones standing up on bases of ice (glacier tables) above the general surface of the glacier is common, but those seen were small. The rocks below the bend in the north-western glacier were covered with grooves or scratches, sloping in about the same direction as the surface of the ice at the spot. These grooves extend to twenty or thirty feet above the present level of the glacier. Almost in every place a space was left between the rock and ice, the latter appearing to shrink from coutact with the former, clue doubtless to the heat of the rock melting the ice.

The Kuphini river, that rises on the side of the Nanda-kot Glacier of the Kuphini. peak, opposite to the Pindar river, has also its source in a glacier. Both rivers unite at Dwáli, about eight miles from the end of the Pindar glacier and about six miles from the end of that of the Kuphini. General Strachey examined the Kuphini glacier also, and describes the valley for a mile or two helow the cod of the glacier as having
very much the same general character as that of the Pindar, but somowhat more rugged and desolate in appearance. The glacier commences about two miles above the source of the river and fills the whole breadth of the valley, which is about three-quarters of a mile broad in its upper part. The glacier begins in a procipitoüs fall of ice some sixty or seventy feet high, which, however, still exhibits the ribhon-like structure. From the foot of the fall tho surfice was very even, though the slope was still considerable. The main glacier of the Kuphini is joined by two small tributarios on the east and by one on tho west, all of which aro highly inclined and bring down considerable quantities of debris. The moraines are confined to the sides of the glacier, though many small stones are senttered over every part of the ice. As was observed on the Pindar, the protection given by the lateral moraines to the underlying ice leads to the promotion of a medial depression in the glacier at its end. The crevasses here, too, are most strongly marked near the sides and are inclined at an angle of about 45° from the longitudinal axis downwards. The structure of the ice was in all respects similar to that found on the Pindar. On the interesting question of the extension of glaciers at a remote period the inquiries of Generat Strachey pive no precuso information. He, however, considers that "some very decided change in the state of things is certainly indicated by the long plataus before mentioned running for a mile or two below the present terminations of both glaciers nearly parallel to the rivers, but several hundred feet above them." • He considers it "impossible that theso level banks above the rivers have been caused by deposits from tho ravines in the sides of the valleys, for such deposits would have haul very irregular surfaces, and indecd their present effect in destroying the regularity of the platenns is everywhere visible. Had the same appearance been noticed in any other part of the river's course, it would at once have been attributed to the action of water at some former period, and it would have been supposed that the bed had afterwards been excavated to its prosent depth. If this was the case, the glaciers which the plateau was forming must eithor have terminated considurably higher up the valleys or have stood altogether at a much higher level. In cither of these waye the water could have bew delivered at a level sufficiently high to
form the plateau. But it may admit of doubt whether the quantity of water in the rivers, as they are at prosent, is sufficient to account for such an extent of level deposit or for such a depth of erosion of their beds; for at this great elevation they are not subject to those violent floods that occur lower down, and for nearly half the year too they are inert. The only other way of accounting for the appearance is that it has been occasioned by an exteusion of the glacier, and that the level top of the plateau shows the limit to which the tops of the moraines reached, as the glacier gradually rcceded." We have referred on a previous page ${ }^{1}$ to the existence of evidence of glacial action far below the present limits of glaciers, and to those who wish to pursue the subject further we commend the records of the Geological Survey and the summary ${ }^{2}$ in the recently published 'Manual of the Geology of India.'

General Strachey has rendered us another important service in

Motion of the Pinclar glacier.

his observations on the motion of the Pin-
dari glacier recorded in May, 1848. His procedure is thus stated. About 200 yards below the small tributary that enters the main glacier from the north-west a moraine was found heaped up against an almost perpendicular wall of rock, and sufficiently high to command a view of the greater part of the surface of the glacier along the line on which observations were to be made. This line, which is nearly perpendicular to the gencral direction of the glacier, was marked by two crosses painted white, one on the rock in contact with the old moraine and one on a cliff on the opposite side of the valley. A stake was driven into the moraine at its highest point, close to the rock, on the line between the two crosses, and a theodolite was set up over it. Five other marks were also made on the glacier at intervals along the same line by fixing stakes in holes driven in the ice with a jumper. These marks, which were all carefully placed on the exact line between the crosses by means of the theodolite, were completed at about 0 h .30 m . P. M. on the 21 st May. On the following day the theodolite was again set up on the same place as before, and being properly adjusted, the cross-wires of the telescope were directed to the cross on the cliff on the opposite side of the glacier. A stick was then set up near the first of the five marks that had been made the

$$
{ }^{1} \mathrm{P} . \quad \quad \quad-2 \mathrm{Pp} . \operatorname{lxx} ., 372,373,586,689
$$

previous day，and was，by means of signals，moved up or down the glacier，till it appeared to coincide exactly with the cross－wires of the telescope，and consequently to be exactly on the line between the two crosses painted on the cliffs．The distance between the centre of the stick and that of the fixed mark was then measured，which cvidently showed the downward progress of the ice at that point of the glacier，since the marks were made the day before．The same procedure was followed at each of the marks．The results were as follows ：－

Time of obscrvation．	Distances of fixed maiks from standard line．				
	On the west moraine．	On the me－ dial mo－ raine．	At east foot of me－ dial mo－ rainc．	Near the middle of the clear icc．	On the enstern moraine
h．m．	ft．in．	ft．in．	ft．in．	ft．in．	ft．in．
21st May 22nd	0 512	$10_{0 \frac{1}{4}}$		1 0t	$0{ }^{\bullet \cdots}{ }_{6 \frac{8}{4}}$
25th＂ 88	$1{ }^{1} \quad 9{ }_{2}^{1}$	$2{ }^{1} \quad 9{ }^{\frac{4}{4}}$	$2{ }^{1} 11{ }^{13}$	31	$1{ }^{5 \frac{1}{2}}$

The motion in 24 hours of the several marks will also be found to be－

Date．		Mean motion（in inches）of ice in 24 hours．					
21st to 22nd May 22nd ，，25th＂	\ldots	$5 \cdot 3$ $5 \cdot 7$	11.9 7.6	11.6 8.4	11.9 8.8	6% 3.8	$\begin{aligned} & 43^{\circ} \mathrm{F} . \\ & 38^{\circ} \mathrm{F} \end{aligned}$
Gencral mean	－	$5 \cdot 5$	$9 \cdot 7$	10.0	$10 \cdot 3$	$5 \cdot 1$	．．．

The progress of the lower extremity of the glacier was likewise approximately measured by observing the apparent angular motion of a pole fixed on the top of the eastcrn moraine，and of a conspicuous
rock lying not far from the middle of the glacier. The results of these observations were-

Date.			Mean motion (in inches) of ice in $2 \pm$ hours.	
			On the moraine.	Near middle of the glacier.
19th to 20th May		...	$3 \cdot 0$	
20hh ", 23rcl ",		...	$6 \cdot 2$	8.1
23rd \#25th $\#$...	$5 \cdot 3$	$10 \cdot 8$
General mean	...	\cdots	4.8	$9 \cdot 4$

A comparison of the motion of the upper and lower parts of the glacier gave on the lateral moraines 4.8 inches as the mean motion of the ice in 24 hours in the lower part of the glacier, and $5 \cdot 3$ inches in the upper part, and in the middle of the glacier $9 \cdot 4$ inches as the mean motion for the lower part, and 10 inches for the upper part of the glacier. The elevation of the foot of the glacier at the source of the Pindar is 11,929 feet, and of the theodolite station, where these observations were made, was 12,946 feet above the sca.

We have made mention of the snow-line or limit of perpetual Snow-line. snow, ${ }^{1}$ which has, at times, given rise to considerable discussion. The height at which precipitations of vapour fall to the earth's surface as snow varies with the temperature of each particular place, and with the annual or even diurnal oscillations of the temperature. In Bhután and Sikkim the ordinary winter limit of snow is about 6,000 feet, and it is rare, salys Dr. Hooker, for even three inches to remain on the ground as many days at 7,000 feet. ${ }^{2}$ According to Gencral Strichey, the height at which snow is certain to fall in Kumaon is about 6,500 feet, and at an clevation of 5,000 feet it will not fail more than one year out of ten. The lowest level to which sporadic falls of snow are here known to deseend is about 2,500 feet, of which there are two authentic instances on record since the British occupation, the first in 1817 and the second in 1847. In the valley of Kashmir, at an clevation of 5,500 fect, the snow falls every year, ${ }^{3}$

[^63]and further west as low as 4,000 feet, whilst at least one fall of snow is recorded at Peshawar, which has an elevation of only 1,250 fect above the level of the sea. ${ }^{1}$ Campaigning experiences during the late war show that the winter snows descend to a very low elevation in the valley of the Kábul river and at Kandahár. If we follow the lower boundary of the winter snow on a mountain as it melts with the advance of summer, we at length ascend to a height at which the summer influence is insufficient to entirely molt the snow, and from which, as the season advances towards winter, we have greadually to descend in order to follow the line of snow. The line to which the snow rocedes, and from which it again advances in one complete revolution of the scasons, is called the snow-line. The snow above that line is called perpetual snow, not as obscrved by Profossor Forbes, that the continuance of snow at any spot implies that it never melts there, but only that some always remains ummelted.

According to our best authorities, the height of the snow-line

> Obscrvations in the enstern Himálaya.
on the most southern exposures of the Himálayan slope that carry perpetual snow ranges from 15,000 to 16,000 feet all along that part of the chain that lies between Sikkim and the Indus, whilst to the north towards Tibet it has a considerably higher clevation. Before proceeding further we may obscrve, with General Strachey, that "all estimates of the snow-line are, in the very nature of things, subject to no little uncertainty; for, independently of the variations of the seasons from year to year there are naturally considerable differences in the level at which the snow lics on steep or slight slopes and on north or south exposures, between the latter of which a difference of as much as a thousand feet may at times be observed. Besides this, too, there is some practical difficulty in the actual observation of the snow-line, for the process of judging by the eye whether the snow upon one's path and still more on contiguous mountain sides begins to exceed the bare spaces is neither easy nor susceptible of much precision. Hence the errors and uncertainty to be looked for in all our conclusions must be considerable, amounting no doubt to several handred ${ }^{2}$ feet." Dr. Hooker estimated the height of the snow-line on the most southern spurs of the snowy mountains in Sikkim to be at about 15,500

[^64]fect. ${ }^{1}$ Of the peaks covered by perpetual snow, the elevation of which is noted in Dr. Hooker's map, Chola, on the boundary between Sikkim and Bhatin, is the lowest, (17,300 feet), and at the same time the most southern and the Chola Pass immediately to the south of the peak, and rising to 14,900 feet, he found to be free from snow at the beginning of November. Somewhat further to the north, near Youngbong, the lower limit of perpetual snow was directly measured in September and found to be nearly 16,000 feet. To the west of Kanchanjinga in oastern Nepál, the south-eastern descent from the Kambache pass was found to be free from snow, a little from the summit, at the beginning of December, and on the northern approach the snow was supposed to become perpetual at about 15,000 feet, though the fresh falls of the previous October forced Dr. Hooker to be in some measure guided by the people of the country in this estimate. On the ascent to the Wallanchun or Wallungsum pass the snow-line was again estimated, though under similar circumstances of doubt, to be at 15,000 feet. The Pandit crossing the same pass, his Tiptala, on the 16th August, 1871, found it covered with snow, ${ }^{4}$ and Dr. Hooker on December ${ }^{3}$ 31st, 1848, crossed " with snow on both sides up to the shoulder."

The following are the results of trigonometrical measurements Observations in Kumaon. of the elevation of the inferior edge of the snow observed on spurs of the Trisúl and Nanda Devi groups of peaks, made by General R. Strachey before the winter snow had commenced in 1841 :-

Point observed.	Freight of snow-line.		Mean.	Remarks.
	On south exposure.	On west exposure.		
No $\begin{array}{rrr}1 & \ldots \\ 2 & \cdots \\ & 3 & \cdots \\ & \\ 4 & \cdots \\ & & \end{array}$	$\begin{aligned} & 16,705 \\ & 17,007 \\ & 17,005 \\ & 15,347 \end{aligned}$	$\begin{gathered} 15,892 \\ 14,898 \\ \ldots \end{gathered}$	$\begin{gathered} 16,298 \\ 1 \dddot{6,051} \\ \ldots \end{gathered}$	These heights were calculated from observations made with the theodolite at Almora and Binsar. The distance of these two places, which served as a base, was obtained by measurement from a map of points fixed by the G. T. Survey. The elevations of the two places were taken from Captain Welb's trigonometrical surves.
Mean ...	15,566	15,395	$\left\{\begin{array}{l}16,174 \\ 15,980\end{array}\right.$	

[^65]The points 1,2 and 3 are on ridges that run prominently out in a south-westerly direction from the great peaks of Trisúl G. (G. T. S.) same as Webb's No. XI. and H. (G. T. S.), same as Weblb's No. XII. The dip of the strata being to the north-east, the faces exposed to view from the south are for the most part very abrupt and snow never accumulates on them to any great extent. This will explain the difference betweon the heights at which snow was observed on the southern and western exposures, the ground having been less steep on the lattor and better able to retain the snow; but in these places it was in very small quantities, and had probably fallen lately, so that its height may probally indicate the elevation below which the light autumnal falls were incapable of lying rather than the inferior edge of the perpetual snow. It is further to be understood that below this level of 15,000 foet the momtains were absolutely free from snow, excepting those isolated patches that are to be seen in ravines or at the head of glaciers, which do not affect such calculations as thesc. The point No. 4 was selected as being in a much more retired position than the others, and is situated not far from the head of the Pindar river, between the peaks of Nanda Devi, I. (G. T. S.), same as No. XIV. of Webb, and of Trisúl H. (G. T. S.) It was quite free from snow at 15,300 feet. On the whole, thereforc, General Strachey is inclined to consider that 16,000 feet may be given as a close approximation to the maximum height to which the snow recedes every year on the most southern and external ranges in Kumaon.

This result appears to accord well with what has been observed
Bisalr. by Dr. Gerard in a visit made by him to the Shatúl pass in the Bisahr range expressly for the purpose of determining the height of the suow-line. ${ }^{1}$ He reached the pass, the elevation of which is 15,000 feet, on the 9 th of August, 1822, and remained there till the 15 th of that month. The southern slope of the range was generally free from snow, and he says that it is sometimes left without any whatever. On the top of the pass there was no snow, but on the northern slope of the mountain it lay as far down as 14,000 feet. On his arrival rain was falling, and out of the four days he was there, it rained and snowed for the greater part of threc. The fresh snow

[^66]that fell did not lie below 16,000 fect, and some of the moro precipitous rocks remained clear even up to 17,000 feet. Dr. Gerard concludes that 15,000 feet is about the hoight of the snowline on this range, but it will be seen that Dr. Gerard was there rather early in the year, and General Strachey, from what he heard from others who crossed the range later in the season, thinks that 15,500 feet will probably be a better estimate, even if it should not be carried still higher. At the beginning of the month of July, Captain Gerard found heavy snow on the northern face of this Bisahr range at about 15,000 feet, and the Kunlia pass, the elevation of which he states to be 17,000 feet appears never to be free from snow ${ }^{1}$ Dr. Thomson ${ }^{2}$ agrees that the estimate formerly made by General Strachey of 15,500 fect, which his subsequent researches led him to believe was a little too low for Kumaon, is as nearly as possible correct for the Bisahr range. He adds" Captain Herbert, in his geological report, had fixed upon 15,000 feet, which is a little too low even in the district of Bisahr, to which his estimate, I believe, refers. In the trans-Satlaj Himálaya, from the diminished amount of summer cloudy weather, the snow-level is probably a little higher." The Chamba range and the Pir Panjal, south of Kashmir, both of which rise immediately from the low external sandstone hills, just enter, he tells us, the region of perpetual snow. The highest peaks of the former are about 16,700 feet, and its mean height about 15,000 fect above the sea, and its snow-line will consequently be not far from 16,000 feet. Major A. Cunningham also places the snow-line on the most southern ranges of the Himálaya to the west of the Ganges at about 16,000 feet. ${ }^{3}$

When, however, we advance into the interior of the chain,

Across the snowy
range. range. after having once passed over any range of of perpetual snow, we invariably find that there is less snow on all such ridges of similar altitudes so that when we arrive at the Indian watershed, the snow-line has risen to about 18,500 feet, and on the summit of the tableland it raches to an elevation of 20,000 fect. Dr. Hooker observed this phenomenon in Sikkim, and bears testimony to the gradual rise of the snow line as we enter among

[^67]the peaks covered with perpetual snow. Near Zemu, twenty miles north-east from Kanchanjinga, he found little snow on south exposures at the beginning of July. A little further in, above Phalung, in the middle of the same month, the snow-line was supposed to be about 16,500 feet, and at the end of the month many plants were obtained at 17,000 feet. Another ascent in the same vicinity about the same time did not carry our traveller to perpetual snow at 16,800 feet. On the flanks of the Kanchan-jhao broad summits were seen quite bare of snow at 18,000 feet. Dr. Campbell ${ }^{1}$ who accompanicd Dr. Hooker on his return journey in September, notes that vegetation ceased at the foot of the Dankia pass at 18,000 feet, and there was no trace of it within 500 feet of the summit on cither side. There was no snow on the road as he ascended the north face nor as he descended the south face, but it lay in patches amongst the rocks all the way on both sides. On the mountain to the west of the pass snow lay deep in hollow places, but these may have had glacial ice in them though the surface of the snow was then smooth. The line of snow would here be 19,800 feet, and further north in Tibet it rose to 20,000 feet. Bhorutso, on the 18th October, had not a particle of snow on it at 18 or 18,500 feet, whilst in the Lachung valley in Sikkim to the south snow was lying at about 15,000 fcet. Dr. Campbell adds:"South of the Himálaya, the quantity of snow that falls is vory much greater than in Tibct, and from the greater moisture of the air and cloudiness of the sky, it is not carricd off with the rapidity of evaporation which obtains in Tibet, where you do not find even a rill of water from the melting snow. Besides in Tibet the snow falls in light, feathery skiffs, and not in flakes. I believe that the lowest snow-line we saw on the mountains to the north of us in Tibet must have been upwards of 22,000 feet. On the Kambajang range, which, comparing them with Bhorutso, must be 20,000 feet at least, there was not a particle of snow."

We have tho results of General Strachey's experience for Kumaon and Garhwal. Towards the end of Augnst, 1848, he crossed the Barjikáng Kumaon. pass leading from Rálam to Juhír on a subordinate ridge between the Nandakot and Panchachúli peaks. Although this pass has an

[^68]elevation of about 15,400 feet, not a vestige of snow was met with on the ascent from the south-east, and only a very small patch remained on the north-western face, and indeed, in no considerable quantity, up to 17,000 feet. The vegetation on the very summit of the pass was far from scanty, though it had already begun to break up into tufts, and had lost the character of continuity it had maintained to within 500 or 600 feet of the top; but many species of flowering plants, all evidently flourishing in a congenial clinate, showed that the limits of vegetation and regions of perpetual snow were still far distant. This place is within ten to fifteen miles of the most southern border of perpetual snow. The Unta-dhúra pass has an elevation of about 17,300 feet, and lies to the north of the great penks nearly at the crest of the watershed. There was no snow along the southern ascent to this pass, at the top of which General Strachey arrived in September, 1848, in a little drizzle of rain that at last turned into snow. The ground was quite free from snow, being worked up into a deep black mud by the feet of the cattle that, had crossed it. There was, however, on the north side of the pass an accumulation of snow some little way down, extending perhaps 200 feet, apparently the effect of the drift through the gap in which the pass lies. No snow was seen on the hills on either side within some few hundred feet, and the snow-line was certainly above 18,000 feet. Vegetation reached to within 300 or 400 feet of the summit.

The Chor-hoti pass (18,000 feet) and the Marshak pass, $(18,400$
Garluwál.
feet), both to the north of Niti, have a position relative to the great snowy masses nearly similar to Unta-dhúra. The Marshak pass was crossed in July by General Strachey, a time rather too carly to judge fairly of the snow-line, which is also obscured by the presence of a glacier that fills up the valley by which the pass is approached. ${ }^{1}$ On the Chorhoti pass in September there was not a vestige of snow on any part of the southern face of the ridge that the route crosses, but on the north face was a patch that was plainly perpetual, descending some hundred feet to a glacier which was connected with that just montioned to have been crossed at Marshak or Balchak. The snow-line was, therefore, here no doult near 18,500 fect. The Kyungar and

[^69]Balchha passes, each about 17,500 fect in elevation, and both lying to the north of the Unta-dhura pass, were equally free from snow on their southern faces in Scptember, small quantities only being found on the northern aspects. The highest points on the ridge, over which the latter of these passes leads, only just exceed 18,000 feet in clevation, and in fact it does not come within the limits of perpetual snow, nor does it appear snowy when viewed from the Tibetan plain to the north of it. The vegetation on all these passes reaches to about 17,500 feet. Lieutenant Weller visited the Balchha pass ${ }^{1}$ on the 1st June, 1842, and found "towards the top of the ascent a tolerable quantity of snow, but in detached portions." The Lálhar pass also, to the north of Unti-dhurra, was crossed by General Strachey in September. It has an elevation of about 18,200 feet, and was found free from snow on both sides, as well as the Jainti ridge some 200 feet higher. This latter is, however, a somewhat detached spur, and the snow-line was manifestly near, for unbroken snow could be seen in more sheltered places considerably below this elevation. Gencral Strachey thinks that, on the whole, 18,500 feet may be considered a fair average height of the snow-line in this ' loculity. Licutenant Weller crossed the Until-dhurra pass at the end of May, and found more soil than snow visiblc, whilst snow was scattered thinly on either side, but the northern slope presented one mulroken sheet of steep snow. ${ }^{2}$ In Soptember (28th) Captain Manson found the last ascent to this pass quite free from snow. Λ detached peak, Lanjar, a little to the north of the Níti pass, and having an elcvation of 18,400 feet, was found by General Strachey nearly quite free of snow having only a patch lying in a ravine on the north side of the hill. Two other peaks near the Balchha pass, seen from Lanjar, having an altitude of 18,100 and 18,200 feet respectively, were also quite free from snow, so far as could be ascertained at the distance. Mr. J. H. Batten, who visited the Niti Pass in 1837, found it free from snow, of which the first heavy fall did not occur till the 11th of October. ${ }^{3}$

In the more western part of the mountains the authority of the Gerards, of Dr. Thomson and of Major A. Cunningham coincide in fixing the snow-line at much about the same level as that just assigned to Kumaon. Captain J. D. Cumningham also accepts
1 J., A. S., Ben., XII., 97.
${ }^{2}$ Ibild., XII., 87.
${ }^{3}$ Ibid., VII., 316.
the results of General Strachey's observations. In upper Kunaor Captain Gerard ${ }^{1}$ found a little snow on either side of the Kyu-

Kunaor. brang pass (18,300 feet) in July, but none on its summit, and the summits in the neighbourhood, though attaining a height of 18,000 or 19,000 feet, were only just tipped with snow. ${ }^{1}$ The Gangtang pass, also 18,300 feet and lying a little farther to the west, was snowy for the last few hundred feet at the end of the same month. The Kyubrang pass is on the Indian waterparting, and the Gangtang pass a little within it, but both the observations were made before the snow-line had attained its maximum elevation. The gradual descent of the snow-line as we advance southwards is shown by the fact of the Charang pass having an altitude of only 17,400 feet, and lying between the passes above named and the Bisahr range, being said to be never free from snow, though early in July it had already melted up to 16,300 fect. North of the Satlaj, under the peak Leo Porgyul, the surface was found to be free from snow in October up to 19,000 feet or even higher, while wost of that river on the Manirang or Rupak pass, having an elevation of 18,600 fcet, the summit was covered with newly fallen snow at the end of August, showing that the level of perpetual snow was nearly at its maximum. Snow was, however, met with on the road to the pass, but this was due to avalanches and drifts and to the fact of the road lying in a deep glen. Dr. Thomson, who visited the Kárakoram pass in August, 1848, estimated the snow-line on the journey back to Sáser at 17,500 to 18,000 feet but to the northward and eastward it was much higher, probably not less than 20,000 feet. ${ }^{2}$ Trotter ${ }^{3}$ also notes that the Karakoran pass (18,550 feet) is always free from snow in summer, whilst the Síser further south is seldom, if ever, free from snow.

Regarding the height of perpetual snow on the tableland of western Tibet Captain H. Strachey is still the best authority. He writes:-"from a series of minute observations on the snow-level, made during two years, in the course of which I crossed twenty-five passes elevated from 15,000 to 19,000 feet at various seasons between the end of

[^70]April and the beginning of November, I have arrived at the following conclusions. The snow-line in the central and northern parts of west Nári attains an extreme height of nearly 20,000 feet. It lowers on approaching the Indian Himálaya, and on the southernmost parts of the Indian watershed descends perhaps as low as 18,000 feet." The mountains under 20,000 fcet in height in the northern and more open parts of the tableland will, he adds, be almost entirely denuded of snow during the latter part of the summer. General Strachey, during his visit to the tableland north of Garhwál during September, 1848, found snow only in patches in sheltered ravines, but the highest summits in the district through which he passed were only 18,400 feet. Perpetual snow was not found on any of the hills between the Indian water-parting and the Satlaj. The height of the snow-line on the south face of the peak of Kailás was observed in the month of September by means of a theodolite, and found to have an elevation of nearly 20,500 feet, and the altitude of a peak on the ridge between the Satlaj and the Indus which was only tipped with snow in August was in like manner determined to be 20,500 feet above the sea: so that, making a fair allowance for the difference between the northern and southern ${ }^{-}$exposures, the mean snow-line was in both cases about the same. The limit of snow on the Pámír is reported to be between 16,000 and 17,000 feet and on the Alái Pámír about 14,000 feet.

Throughout Kumaon and Garhwal there are several lakes, but
Lakes. the chief in size and beauty occur in pargana Chhakháta, the Westmoreland of Kumaon. These are known as Naini, Bhím, Sát, Naukuchiya, Malwa, Khurpa, Sukha, Sariya, Khuriya, \&c., with the affix ' b ál' or 'lake' attached. The following table gives some information regarding the principal lakes:-

Name.	Height above sea-level.	Greatest length.	Greatest breadth.	Greatcst depth.	$\left\lvert\, \begin{gathered} \text { Approximate } \\ \text { area. } \end{gathered}\right.$ ave.
	Feet.	Fect.	Feet.	Feet.	Square fset,
Naini Tál	6,407	4,733	1,518	93	5,149,000
Bhím Tál ...	4,500 ${ }^{1}$	5,680	1,490	87	4,900,000
Naukuchiya Tál...	4,000 ${ }^{1}$	3,120	2,270	132	4,849,500
Malwa Tál ...	3,400 ${ }^{1}$	4,480	1,833	127	4,909,600

${ }^{1}$ Approximate measurements.

It has been suggested that these lakes were formed by glacial action, but Mr. Ball in a recent paper combats this view, and assigns their existence to landslips which closed up the vallcys in which they occur. Be this as it may, they form one of the most remarkable and leantiful features of the Lower Himalaya in Kumaon. The lake of Naini lies in a valley which runs abont north-west and south-east, and is surrounded on all sides except the east by lofty ridges, Sher-ka-danda, Chína (8,568 feet), Deoprátha (7,989 feet), and Ayárrétha (7,721 fect). Blím Tál lies in a comparatively open valley with a hill to the south of the lake rising some 1,300 feet above its level. Further east in the same valley is Naukúchiya Tál, occupying a hollow in the slope, and without any remarkable hills around it. The Sát Tál or seven lakes, lio within a circle of hills between Blím Tall and the valley of the Naini Tál river, and Malwa Tál lies to the north of Bhím Tál in a deep valley, the sides of which rise up alruptly from the level of the lake. The only lakes of importance in Garhwill are the Gadiyar Tál in patti Dasauli Malli and Diuri Tíl in patti Kálíphít Malla, neither of which can compare with the Kumaon lakes in size or beauty.
${ }^{1}$ Rec., Geo. Sur., XI, 2, p. 174.

UII A P TER V.

Meteorology. ${ }^{1}$

CONTENTS.

Preliminary skeleh of elimate. Contrast between the castern and western parts of the plain and the Himalaya. Radiation, solar and nocturnal. 'Temperature :-Dinumal and annual ranges,-Vertical decrement,-Height of snow-line, Pressure and winds :- Parometric tides,-Monntain winds,-Annual variation of pressure,-Mousoons. Humidity :-Vertical distributiou of vapour;-Relative hu-midity,-Clourl. Rainfall :-Distribution on plains and on the Himálayan slope,Annual variation,-'lhe winter mins, -The monsoon rains.

Tres climatological conditions of these hill districts are a most important element in their physical geography, and will therefore require to be treated at considerable length. An exhaustive discussion of the meteorology cannot yet be attempted, but sufficient data have already been collected to serve as a basis for a general description of the climate, and at the same time to throw some light on several of the more interesting problems of meteorology. In this latter respect the Himálaya, on account of its less distance from the equator and its greater elevation, presents many points of advantage as compared with the Alps and other European mountain systems; and already some important general conclusions regarding the physics of the atmosphere have been drawn from the olservations that have been made in it. The mere statement of the fact that nearly all the snowy peaks and most of the passos over the Indian watershed stand above the lower half of the atmosphere, and thus completely cut off all communication between India and Central Asia, except in the upper strata, indicates how much regarding the general movements of the atmosphere may be learnt from observations taken in India and the Himálaya.

Of late years, a good deal has been done in the way of collecting trustworthy meteorological data for the mountain zone by the establishment of Government observatories at certain points. The places where observations are made at the public expense must

[^71]always, however, be few, and it is clesirable that more should be done in the way of enlisting the services of volunteer observers. Temperature and rainfall observations are now made at many teagardens in Kumaon; but, as a rule, so little attention is paid to the hours of reading, the exposure of the instruments, and the continuity of the registers, that the results are of no value for scientific discussion and comparison. By far the most important of the observations taken in the north-west Himalaya, prior to the extablishment of regular observatories, were those collected by Licutenant (now (Gencral) R. Strachey, of the Bengal Engineers, in 1848 and 1849. Some of General Strachey's deductions from them have been given to the world in the Proceedings of the Royal Society and the Journal of the Asiatic Society of Bengal; but others have not yet been published, though they were long ago embodied in a work on the "Physical Geography of the Himálaya" that has been placed at the disposal of the compiler of this volume. Considering the scanty nature of the materials (enemeral Strachey had to work with, the conclusions arrived at were wonderfully accurate; and though some of them were opposed to the generally received opinions of the European meteorologists of the day, they have been confirmed in almost every respect by the more extensive data subsequently obtained from the Himalayan observatorics.

In the following pages a somewhat detailed discussion of all the data available for meteorological inquiry will be given after a brief general sketch of the climate. The several elements of meteorological observation will be taken in the natural order of cause and effect, commencing with solar radiation and afterwards passing on to temperature, barometric pressure and winds, and the distribution of vapour and rain.

The order of the three seasons on the plains of Upper India-

[^72] the cold, the hot, and the rainy-is now well known even in Durope. After the close of the rains at the end of September or begiming of October the sky is serene and the atmosphere transparent. Owing to the absence of cloud and the rapidly diminishing proportion of water vapour, the air is also very diathermanous; that is, it permits the free passage of heat from the sun to the earth in the daytime, and in the calm nights that prevail at this season the radiation of
heat into space goes on so ralpidly that the earth's surface and the air resting on it become very cold before morning. The months of October and November are thus characterized, not only by clear skies and calms, but by a great temperature range and heavy dews at night. These conditions prevail through the greater part of December, and towards the end of that month and in the begimning of January, the exposed thermometer sometimes falls 10 degrees below freezing at places as far down the plain as Allahabad and Benares. In the Panjáb it is much colder, and there the shaded thermometer sometimes reaches the freezing point.

About, the end of December and in January and February, howerer, clouds often interfere with the free radiation of heat at night, and the daily range of temperature for these months is less, on the average, than that of November. Some rain usually falls at this time of the year, especially in the Panjab and the higher districts of the North-Western Provinces. In March and April the temperature rises rapidly, especially at a distance from the mountains, and the air becomes extremely dry. Hot winds from the west or north-west blow down the valley of the Ganges and rapidly change the appearance of the whole country from that of a highly cultivated plain to a parched and sandy desert, almost the only green things left being the grores of mango trees. In April, the daily range of temperature over the plains is at a maximum, cxceeding 30 degrees in most parts of the North-Western Provinces and the Panjab. The nights are still tolerably cool, though in the daytime the thermometer ranges as high as $110^{\prime} \mathrm{F}$. or even higher sometimes.

During May and the first half of June the temperature continues to increase, though much less rapidly than in March and April, mutil by the 15th or 20 th of Junc, if the periodical rains have not commenced, the temperature is probably higher in North-Western India than anywhere else in the world. In the North-W estern Provinces the shaded themometer has only been known to risc once or twice above $120^{\circ} \mathrm{F}$., but in the Panjab temperatures as high as 123° or 124° have been recorded. The days in June are thus only a few degrees hotter than those of April ; but, as the rainy season approaches, the range of temperature diminishes and the nights become insulferally hot and close.

Rain seldom falls in the hot weather, the falls that do oseur generally taking place during thunderstorms. Ahout the middle of May, however, the quantity of water vapour in the air begins to increase rapidly, betokening the approach of the rainy scason. This vapour is probably brought by the prevailing south-west upper current of the atmosphere which seems to descend gradually until it merges with the surface sea winds of the Bay of Bengal and forms "the south-west monsoon" or prevailing wind of the rainy seasou. In Northern India the lowest strata of the sea winds are deflected from their normal course by the mountains and directed towards the seat of highest temperature in the Panjib, thus appearing as cast or south-cast and not as south-west winds. Along the foot of the hills these easterly winds are felt occasionally by the middle of May, when the quantity of vapour in the air first bergins to slow signs of a rapid increase.

During the latter half of June the sea winds increase in strength and gradually advarce along the foot of the Himilaya, until, by the beginning of July, the rains have usually set in all over Northern India. In ordinary jears rain continues to fall, not steadily but, with frequent intermissions or "breaks," until about the end of September, when the easterly winds cease, except close to the hills, where they last a nonth longer, and are succeeded by calms or feeble currents from the west. In the Panjab the rains begin later, are lighter and more intermittent, and end sooner than in the NorthWestern Provinces, and the length and intensity of the rainy season increase regularly as we approach the sea in Bengal. During the rains the temperature averages about 85° over the greater part, of Northern India. The daily range at this time varies from 8 to 12 degrees, being greatest in the driest districts.

The extremes of heat and cold are moch greater in the Panjáal) and the upper part of the North-Westem Provinces than in Bengal, for two reasons-the greater distance from the soa and the higher latitude. On account of its proximity to the sea and its hoavy rainfall, Bengal is moist and cloudy at all seasons compared to the Parjáb. This condition of the atmosphere, by retarding the matiation of heat, renders the climate of Bengal more equable than that of the Panjáb, just as an insular climate is more equable tham a continental one. Again, the latitude of
the Paljiilb, which is 7 or 8 degrees higher than that of Bengal, causes its winters to be much colder and its summers much hotter. At first sight it secms anomalous that a place should be the hotter the more distant it is from the equator, at any season of the year ; but when it is borne in mind that the quantity of heat received from the sun is directly dependent upon the length of the day as well as on the elevation of the sum above the horizon, the anomaly disappears. Various mathematical physicists from Halley downwards, including Poisson ${ }^{1}$ and more recently Meech, ${ }^{2}$ have calculated the total heating effect of the sun in different latitudes during a day or other given period of time. The latest investigation of this kind has been made by Wiener ${ }^{3}$ of Carlsruhe, who finds that while the maximum of heat for the whole year falls on the equator, the maximum for the 21 st of June is at the north pole, where the sum remains abore the horizon for twenty-four hours, and has an altitude of nearly $23 \frac{1}{2}$ degrees for the whole of that time. In the summer half year, from equinox to equinox, most heat falls on a zone about $25 \frac{1}{2}^{\circ}$ north of the equator, and during the three months nearest to the summer solstice-that is, from the 7 th of May to the 6th or 7 th of Angust, the zone of greatest heat lies about $41^{\circ} \mathrm{N}$. The total heat received during these three months by an area in latitude 40° or $41^{\circ} \mathrm{N}$. is more than a fifth greater than that which falls on an equal area at the equator. The actual increase of temperature produced is much more than this, for the mean temperature is determined by the balance between the gain of heat during the day and the loss at night. When the gain of heat from the sun at any place is greater tham at the equator, on account of the length of the day, the loss at night must be correspondingly less.

This excess of solar heat in summer, together with the dryness of the air and the absence of clond, seems to a soont for the execssively high temperature of June and July in the extreme north of the Panjab and on the plains of Yarkand and Kashgar still farther north. In the moister zone of the mountains, the direct action of the sun is less observable ; but beyond the Indian watershed it is by far the most important factor in determining the character of the seasons.

[^73]Regarding the succession of the seasons in the mountain zone, Genoral Strachey says:-
"The same general sequence of the scasons takes place in the mountains as in the plains. Here, however, every altitude has its own special temperature, from the lower ralleys where the heat is still overpoweringly great, to the regions of cternal frost ; but at all elevations in summer the force of the sun's rays is excessive. The summer rains, too, gradually diminish in strength as we move along the chain from east to west, being at their maxinum in Sikkim, but still being felt slightly on the ranges north of Peshíwar. The heariest falls invariably take place on those portions of the chain most exposed to the south; inereasing in amount up to a certain height [not very exactly determined, but probably about 4,000 fect]; at the same time every high and continuons ridge most sensibly diminishes the supply of rain that falls on the country to the north of it, and we find, as we approach the Indiam watershed, that the quantity is very small, and that the monsoon only just drops a few partial showers on the southern border of Tibet. The winter, as may be supposed, is extremely rigorous on the summit of the table-land; and at this scason, or in spring, the only important precipitations of moisture take place in the form of snow, but they are exceedingly small in quantity."

The reason why every altitude has its own special temperature is that the air is warmed chiefly by contact with the hot ground on which it rests, and but little by direct absorption of the solar rays. The air in contact with the ground, expanding and becoming less dense, rises up, but in doing so its heat is rapidly converted into the work of expansion ; the result being that the temperature on the upper stratia can never rise so high, on the average, as that of the air near the ground. Dry air, if heated only at the bottom, would lose 1 degree Pahrenheit for every 183 or 184 feet of ascent. In moist air that is preeipitating rain, and thas being warmed by the latent heat of the condensed vapour, the rate of decrease is much less. The rate actually observed, buth in balloon ascents and on mountain sides, is less than that calculated theoretically ; because even dry air is to some extent warmed directly by the sun's rays, while air saturated with moisture has a very considerable absorbing
power．On mountain slopes also the temperature falls less rapidly than in the free air over the plains－at all events for the first nine or ten thousand feet of ascent，the reason being that the air is heated by contact with the mountain sides．

No data at present exist from which the average intensity of Radiation． solar radiation，and its variations from time to time，can be estimated with any approach to exactness．Any deductions made by passing from radiation to other meteorological phenomena must therefore to a great extent be based on theoretical considerations．

The instrument hitherto used to measure the intensity of the sun＇s heat has been a maximum thermometer with a blackened bulb surrounded by a thin glass case more or less completely exhausted of air．If the exhaustion were perfect，the temperature of the instrument would be determined by radiation to and from surround－ ing objects ；including under these the glass case of the instrument which is in contact with the air，the sun，the ground，the clonds， and the open sky．Wero solar thermometers all made exactly alike and exposed under absolutely identical conditions，the excess temper－ ature of the instrument above the contemporanoous temperature of the air would be a measure of the excess of radiant heat falling on it from objects above the horizon over that which passes away from it in an upward direction．The following table gives the average value of this difference for each month at six stations．Corrections have been applied as far as possible for differences of instrument and exposure，except at Dchra，for which the corrections are not known ：－
I．－Monthly mean excess temperature of the solar thermometer above the maximum in shade．

Stations．					家	害	䨐	产	実		家	首		官
		－	－	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc		－		
Leh	11，538	$49 \cdot 9$	63.1	$62 \cdot 3$	（33．2	$58 \cdot 7$	$58 \cdot 1$	54•1	$62 \cdot 8$	$63 \cdot 8$	63.9	$54 \cdot 1$	；0．9	58．7
Chakráta，	7，052	$71 \cdot 1$	$67 \cdot 1$	69－4	$69: 5$	69－1	$66 \cdot 3$	1930	$61 \cdot 5$	$70 \cdot 3$	6998	69•4	63：5	$67 \cdot 9$
Ránikhet，	6，069	$61^{\cdot 1}$	$60 \cdot 6$	$62 \cdot 6$	$60^{\circ} 4$	$60 \cdot 3$	$57 \cdot 1$	$50 \cdot 8$	：22－1	59•8	57：3	52．7	55.7	57\％
Dehra ．．．	2，232	$51^{1} 0$	22.2	$37 \cdot 6$	n7－1	$56 \cdot 8$	$5 \cdot 1 \cdot 2$	53．6	$52 \cdot 1$	57．7	58.5	55．6	$51 \cdot 8$	54．9
Roorkee．．．	887	$52 \cdot 2$	21：5	559	\％ $5 \cdot 6$	a3• 7	年1．2	$51 \cdot 9$	$51 \cdot 8$	545	$5 \cdot 5$	1201	52：5	53．3
Bareilly ．．．	568	50.0	$52 \cdot 6$	5t－1	－ 4 － 1	55：3	it 2	：0．7	50．1	49－3	52.0	$32 \cdot 4$	$48 \cdot 9$	52－0

If the air were alsolutely diathermanous，the altitude of the sun above the horizon and the vertical thickncss of the atmosphere above the place of observation should have no effect upon the temperature differences in the table，which shonld therefore be the same for all the stations and for every month of the year．But the air having some absorbing power，the differences should be greatest when there is least air lor the sun＇s rays to pass through ；that is， at the highest stations and in the summer months．Up to Chakritat the excess temperature of the solar thermometer does increase with a fair degree of regularity ；but it appears to be less at Leh than at Chakrita，contrary to all theory．There is also no regular increase apparent in the heating power of the sum as the season changes from winter to summer．The truth is that the indications of the black－ bulb thermometer are affected by so many disturbing causes，that after all possible corrections they are of little or no value for inter－ comparison ；though with the same thermometer，at the same place， and under absolutely constant conditions of exposure，the figures for one year may be to some extent comparable with those for another．

The results of observations with the nocturnal radiation thermo－ meter are even more unsatisfactory，owing to differences in the height of the instrument above the ground and in the nature of the ground surface itself，whether grassy or bare．
II．－Monthly mean depression of the grass thermometer below the minimum in shade．

Stations．			砍	怱	宝	寻	$\stackrel{\circ}{\square}$	范	家	＋			水
	－	－	－	－	－	\bigcirc	－	－	－	。	。	－	。
Chakrata，	9－5	6.5	7.2	75	6.3	6.0	$3 \cdot 1$	$4 \cdot 3$	$5 \cdot \varepsilon$	8.8	9.8	$11 \cdot 0$	7.2
Ranikuet．	$14 \cdot 5$	$13 \cdot 6$	13.9	$13 \cdot 3$	$12 \cdot 0$	$9 \cdot 0$	$5 \cdot 3$	6．0	$8 \cdot 9$	135	17－2	$19 \cdot 1$	$12 \cdot 2$
Delira ．．．	$4 \cdot 4$	$4 \cdot 4$	4.2	4.7	$4 \cdot 8$	$3 \cdot 6$	$2 \cdot 2$	1%	$2 \cdot 3$	35	$4 \cdot 8$	$4 \cdot 6$	$3 \cdot 8$
Hoorkee．．．	$6 \cdot 3$	$5 \cdot 8$	6.4	$6 \cdot 3$	$5 \cdot 0$	3.5	$2 \cdot 4$	$2 \cdot 9$	$3 \cdot 9$	$6 \cdot 3$	$7 \cdot 3$	$6 \cdot 3$	$5 \cdot 2$
Barcilly．．．	$7 \cdot 0$	7－5	8.0	$10 \cdot 0$	$10 \cdot 5$	8.8	$4 \cdot 3$	$3 \cdot 3$	$3 \cdot 4$	$6 \cdot 4$	8.2	8.0	$7 \cdot 1$

The figures in table II．serve to show that the depression of the nocturnal radiation thermometer below the minimum in shade is less in the rainy season than in the dry，and that both at the hill stations and on the open plain the refirigeration of the earth＇s surface during
the night is probally greater than at Dehra, where the observatory is situated in a well-wooded park. They do not throw any light on the question whether the ground surface cools more rapidly at night on mountain tops or on the plains; though it is probable that in the clear, calm nights of the cold weather the difference, if any, is in favour of the plains ; since there the air cooled by contact with the ground remains in contact with it, whereas on the mountains the cooled air constantly drains away, and is replaced by warmer air from the surrounding free atmosphere.

It has been already stated that, in the western Limálaya, every elevation has its characteristic mean annual temperature. Each elevation has probably also a distinctive form of variation of temperature during the year, and the daily variation is different at different altitudes, in range if not in general form.

For a proper discussion of the distribution of temperature in a hilly country a very large number of observations would in most cases be required; and these should be made at places chosen so as to be at nearly equal distances from cach other vertically, and at the same time fairly distributed in latitude and longitude. On the southern slope of the Himálaya it fortunately happens that differences of latitude and longitude make but little difference in the mean annual temperature. The sea-level values of the mean temperature at the Sub-Himálayan stations from Lower Λ sám to Ambála all lie between 76 and 78 degrees Fahrenheit, and the temperatures of places at about 7,000 feet elevation along the whole range from Darjiling to Marri in the north of the Panjab do not differ more than 2 or 3 degrees.

Both along the plains and at the level of the hill sanitaria the highest mean temperatures are found to characterize the regions lying between the Kili and Satlaj rivers. The chief reason for the great uniformity of mean temperature at the same elevation that prevails over the whole Himálayan regionthat is to say, through more than 7 degrees of latitude and 17 of longitude-is the greatly increased heat of summer in the northwest as compared to the east. In Bengal and Sikkim the sun's rays when most intense are to a great extent cut off by cloud, whereas
in the Panjab and the north-west Himilaya the winter is almost if not quite as cloudy as the summer. For these reasons Darjiling has very nearly the sime temperature in January as Simla, Chakráta, or Mussooree, while in May and June it is seven or eight degrees cooler. The comparatively low temperature of the summer at Darjiling renders the mean for the year nearly two degrees lower than that of Marri in the extreme north-west, though the effect of latitude is apparent in the low temperature of Marri in January.

On account of this uniformity of temperature a small number of observations, at places chosen specially with reference to height above the sea, will enable us to ascertain the most important features of temperature distribution in the Fimálayan districts of the North-Western Provinces. The following table gives the mean monthly temperatures of twenty-one places, including the two stations on the plains that were given in the previous tables. All the other places except Dharmsala lie in oue or other of the three districts of Kumaon, Garhwál, and Dehra Dín, or in parts of Kunáwar, Lahúl, and Ladák to the north of Dehra Dún. The monthly means from a Government observatory at Dharmsála in the Paujáb have been inserted, thought this station lies nearly two degrees west of Dehra Dán, because it was considered desirable to have some trustworthy figures for places about 4,000 feet above the sea; and the only other station near that altitude is ITáwalbágh in Kumaon, for which we have but one year's observations.
－田 oputisuor

11．－Mean montriy and annual temperatures of places in Kumaon，Gar7atal，Dehoa Dín，and adjacent diatrits

＊saeer jo requun	
$\cdot \mathrm{dea}$ 人	
＇лаящəəəの	
冫aquanon	
：1090ұ00	
\％suinv	乌ー
－Sur	
＇gunc	
－Sun	
－！！．．17V	
rosent	
$\underset{\text { ancman }}{ } \times$	
－ －imuer	黾に
วoay u！uой	
过	

${ }^{2}$ uthorities for the above Lable.
Parbilly: Registers of the Government Meteorological Observatory, 1869 to 1879

Roonkee:	Ditto,	clitto,	1863
Dharmsila :	Ditto,	clitto,	1871
Rántighet :	Ditto.	ditto,	1871
Chakráta :	Ditto,	ditto,	1869
Leh :	Ditto,	clitto,	1871

Dehra: Registers of the Observatory at the G. T. Survey Office, 1868,1879
Naini Tal: Registers of Govermment, Observatory, 1853 to 1869 ; and observations by Dr. Payue in 1851-5t, given at page 496 of the third volume of the Results of a Scientific Misoion to India and Migh dsia, by the brothers schlagintweit.

Mussoorese (1): Records of an observatory at Saint Fidelis's School for 1877-80; somewhat fragmentary.
(2) : November to April, Sir A. Waugh's and Mr. Mackinnon's observations in 1San-jeg, also one year's olservations from Dove's tables; May to October, observaliuns at the Survey Office for 1866-79, furnished by Mr. Hemessey, F.R.S.

Landaner: Registers kept at the Convalescent Hospital in 18.52-51, and 1866-67. Observations for the three Jears 1877-79 have been communicated by the medical officer in charge, but the means deluced from them appear to be 4 or is elegrees too high.

KAlsi : Pigot—Calcutia Journal of Natural Mistory, Vol. VI., 1837-38.
Almora: Obsorvations at the Regimental Hospital, 1852-jt and 1866-69.
Háwnleácil : Schlagintweit, page 191, on authority of Mr. Batten; year unknown.
Loffucirita : Clelland's Geolngy of Kumaon, page 179: parts of 1830, 1831, 1834, and 1835.

Kardong: Schlagintweit, page 513; 18ā-5.5.
Kanam: Cunningham's Lulak, page 18t;' 1827-28.
Spiti Valley: Ditto, page $183 ;{ }^{2} 1816$.
Srinagar:
pauri:
Niti :
Mannseript olservations by General Strachey ancl his brothers, 1817-49.

The figures for the regular meteorological olservatories (printed in small capitals in table III.) aud those lor the observatory at
'Recompuled from the maxima and minima and eorrectel ly means of the observations of Chakralit and Leh. ${ }^{2}$ becomputed and corrected by the Lels ubservations.
the Survey Office, Mussooree, are either directly calculated from observations at 4 A. m., 10 ィ. m., 4 f. m., and 10 P. M., or hatve been corrected to represent the means of observations taken at. these hours. They probably differ very little from true daily means. The mean temperatures for the other places have been calenlated in various ways, and many of them are open to considerable doult.

The mean ammal temperature diminishes pretty regularly as height increases. In the talle there are only two exceptions to the rule that the higher a place is the cooler it is. It will be seen also on comparing places of nearly equal altitude and not very far apart that the highest temperatures belong to those which, lying bechind the outermost high ridge, are sulject to a much smaller rainfall than stations situated on the ridge or in valleys opening out to the south and exposed to the foll force of the rainy winds. Thus Ránikhet and Almomare too hot in comparison with Naini lál. The difference in temperature as well as in humidity between places situated at equal heights on the outer and inner ranges of Kumaon is sufficiently great to le casily recognizable withont the aid of instruments, and is well known to all who have ever resided in the hills. The variation of temperature between the hottest and coldest months and the daily ramge of the thermometer are also greater, as a rule, in the interior than on the outer hills, owing to the larger proportion of cloudy sky and greater humidity of the air in the latter region.

Both the diurnal and the amnual range of temperature decrease on ascending from the plains up to a height of 6,000 or 7,000 feet, and beyond that they again increase, their greatest values being attained at the highest stations where observations have been made. These places, however, lie to the north of the Indian watershed, where the humidity is donbtless less than on the southern side, and the observed ranges of temperature are probably higher than they would be at equal altitudes on this side of the snowy range. Moreover, the amual range in Tibet and Ladák is greater than on the Indian side of the chain on account of the difference of latitude, as has alreidy been pointed out. In table IV. the daily and yearly ranges of temperature at twelve places are compared, and from it these relations will be readily seen.
IV.-Mean diurnal and annual ranges of temperatiore at places in the Ifmilaya.

The table shows clearly that the minimum range for both day and year is reached at Ránikhet and the lower Mussooree stationthat is, about 6,000 feet above the sea. The dependence of the diurnal range upon the humidity of the air and the proportion of cloud at each station is distinctly brought out in the variations from month to month. At all the stations but Leh and the Spiti valley, which lie beyond the snowy mountains, the months of the year which are driest in India-April and May-have the largest daily thermometric range, and the most humid months-July and August-have the smallest. There is a scoondary minimum of temperature range coinciding with a maximum of humidity in January, and a secondary maximum in the dry and cloudless month of November. At Leh, where the most frequent precipitation of moisture during the year takes place in winter, the range is somewhat greater in the summer than in the winter months.

Owing to the greater annual range of temperature on the plains than on the hills, the diminution of temperature in the first 6,000 feet of ascent is most rapid in the hottest months and least so in the cold season. Between Roorkce and Chakráta the difference is less than 11 degrees in December and more than 23 in May. In the clear still nights of the cold weather, especially in November and December, before the winter rails; and snows set in, the nocturnal
loss of heat goes on almost as freely on the plains as on momtain peaks. It is thus not unusual to find the temperature of the exposed thermometer at Roorkee nearly as low as at Chakríta, and it very frequently falls lower at Roorkee than at Dehra, where the observatory is surrounded by trees. In December the mean temperature diminishes letween Roorkee and Dehra at the rate of only one degree in 1,034 feet, while in May and June it falls one degree in 230 feet.

The low temperature of the plains in the winter season, especially in the morning, is doubtless due in part to the draining down of cold air from the mountain slopes through the river gorges. This, however, cannot appreciably affect the temperature of places at a long distunce from the mountains, though it may have a very considerable effect on that of hoorkee, close to the foot of the Siwáliks. The minimum temperature of the day is thus one or two degrees lower on the average at Roorkee than at Dehra in the months of November and December, and in January the minimum temperatures of the two places are equal. In the mountain country itself it often happens for the same reason that the temperature of the air at the bottom of a valley is distinctly lower than on the adjacent ridges. Λ similar inversion of the normal variation of temperature with height has been noticed in Europe during calm weather in winter.

From March to Jume the absorption of heat in melting and cvaporating the snow on the outer hills, and in evaporating the rain that falls there in frequent showers when no rain falls over the plains, keeps down the temperature ; so that in May and the first half of June, when the plains are at their hottest, the decrease of temperature on ascending through 6,000 or 7,000 feet is more than twice as great as in December.

In the Panjíh, where the latitude is higher and the humidity of the air over the plains is never great, the annual range of temperature at places on the plains is higher than in the NorthWestern Provincos, while in the hills there is much less difference. The annual variation in the decrease of temperature with height is accordingly much more distinctly marked in the extreme west of the Himálaya than it is in Dehra Dún. The difference of
temperature between Rawal Pindi and Marri is $19 \cdot 5$ degrees in July and only one-third as great in December. On the other hand, in the eastern Himilaya, where the air at all elevations up to 9,000 or 10,000 foet is nearly equally moist, and where the range of temperature, especially over the phain, is much less than in the north-west, the decrease of temperature with height is most rapid in February and March and least so in June and July. The slow rate of decrement in the rainy scason is doubtless due to the liberation of latent hat in the condensation of vapour ; this heat rendering the atmospheric strata in which condensation occurs warmer than they otherwise would be, while the constant precipitation of rain prevents the lower strata from becoming very much hotter than the rain drops which pass through them. The effect of the rainy season in retarding the fall of temperature as we ascend is distinctly seen between Barcilly and Naini Tíl or Ránikhet, but is not scen between Roorkee and Chakráta.

The great annual range of temperature at more elevated stations, especially such as lie behind the first nowy range and receive little or no precipitation, causes even greater differences in the rate of decrease of temperature with height, but in the opposite dircction. In January, the difference of temperature between Chakratta and Leh is 24 degrees, but in August it is only 4 degrees. The greater length of the day in summer at Leb, and the absence of cloud to obstruct solar radiation on the surrounding mountain sides, render the summer montlis at that station, 11,500 feet above the sea, as hot as they would be on the southern side of the snowy mountains at an elevation of 8,500 or 9,000 feet. If General Cunningham's figures for the temperature of the Spiti valley are to be trusted, the heat of summer at an elevation of 13,000 feet is still more excessive. The relation of this to the greater height of the snow-line on the northern than on the southern side of the Himálayan system is obvious.

In the following table the mean rate of decrease of temperature in the first 6,000 or 7,000 feet of ascent has been worked out for each montl. In Dehra Dún the lower station is Roorkee and the upper one Chakráta; in Kumaon, Bareilly has been taken for the lower station, and instead of choosing either Naini Tál or Ránikhet for the upper one, the mouthly mean temperatures of both
places have been taken and assigned to the mean elevation of the two. This was considered preferable to taking the figures for either hill station alone, becuuse Ránikhet appears to be a little hotter than the average of places at the same elevation, and Naini Tal is probably somewhat cooler than the average.
V.-Decrement of temperature with height in the Himálaya.

Month.		Dehira Dua, difforance of ele cation, 6,165 feet.		Kumatn, differcace of elcuation, 5,698 feet.		Mean rate of decrease.	
		Difference of temperature.	Meight for 1°.	Difference of tentperature.	Height for 1 .	Height for 1°.	$\begin{aligned} & \text { For 1,000 } \\ & \text { fect. } \end{aligned}$
		\bigcirc	Tt.	-	Ft.	Ft.	\bigcirc
Fanmary	\cdots	151	408	129	442	425	2.83
Felnuary	...	17.1	354	15.7	363	358	$2 \cdot 79$
March	...	$20 \cdot 1$	307	17.1	383	320	$3 \cdot 13$
$\Delta_{j} \mathrm{rril}$...	$22 \cdot 9$	270	20.6	278	274	3.65
May	...	$23 \cdot 3$	265	$22 \cdot 2$	257	261	$3 \cdot 83$
June	..	$22 \cdot 8$	270	$20 \cdot 1$	283	277	$3 \cdot 61$
July	...	$20 \cdot 7$	298	$16 \cdot 7$	341	3 I 9	$3 \cdot 14$
August	...	20.0	308	16.7	$3+1$	325	$3 \cdot 08$
Suptember	. \cdot	$19 \cdot 7$	313	$17 \cdot 1$	333	323	$3 \cdot 09$
October	...	18.0	343	163	830	356	$2 \cdot 81$
November	...	$12 \cdot 8$	482	123	463	473	$2 \cdot 11$
Veccuber		10.9	567	$10 \cdot 2$	559	563	$1 \cdot 78$
Year	...	18.6	331	16	345	338	$2 \cdot 96$

In Dehra Dun there is a regular annual periodic variation in the rate of decrease of temperature with height, but in Kumaon the regular variation is interrupted in July and August, when the rate of decrease is slightly retarded by the fall of rain, as has been explained above. When the mean for both districts is taken, the regular variation from month to month is only slightly broken in August.

The figures given in the table include not only the decrease of temperature due to increase of elevation above the sea, but also a certain diminution caused by an increase of latitude equal to about a degree in 6,000 feet of elevation. The change of temperature with latitude in the Himalaya is small aud to some extent masked by the contrast between the sumny valleys of the interior and the cool and cloudy outer ranges, but nevertheless it exists. On the plains of the North-West Panjab the temperature falls as the latitude increases at a mean rate of about $1 \cdot 1^{\circ} \mathrm{F}$. for each degree of latitude, when corrections are made for differences of height above the sea. Probably much the same rate obtains in the wostern Himallaya at moderate elevations. The mean temperature of Yárkand, in latitude
$39^{\circ} \mathrm{N}$. and 4,200 feet above the sea, appears from the observations of Captain Trotter, R.E., of Drs. Bellew, Henderson and Scully, to be about $54^{\circ} \mathrm{F}$. At the same elevation in Kumaon the mean temperature is between 65° and 66°, and since the difference of latitude is ten degrees, the temperature appears to diminish about $1 \cdot 1^{\circ}$ or $1 \cdot 2^{\circ}$ for a degree of latitude. There is also a certain variation of the mean temperature with the longitude, places situated towards the east of the chain being cooler than those towards the west on account of the cloudiness of the summer montlis. In order to determine the true variation of temperature with height it is necessary to make allowance for these variations in latitude and longitude. The mean annal temperature of any place in the western Himilaya may thus be looked upon as a function of four quantities-(1) the sea-lovel temperature at a point taken as the zero of latitude and longitude, (2) a constant multiplied into the height of the place above the sea, (3) a constant multiplied into the latitude, and (4) a constant multiplied by the longitude. From the Schlagintweits' work and the reports of the Indian Metcorological Department fairly trustworthy mean temperatures for about thirty places in tho Himálaya between the Nepál frontior and the Indus can be obtained, more than half of these being given in Table III. When treated by the method of least squares the observations admit of being thrown into the form $\mathrm{T}=78 \cdot 5^{\circ}-\cdot 00277 / 1-1 \cdot 20\left(\lambda-29^{\circ}\right)-\cdot 105\left(\mathrm{~L}-73^{\circ}\right)$, a formula which represents the observations with a mean error of about three-quarters of a degree. It ignores, of course, the differences of temperature between such places as Almora or Ránikhet and others of equal elevation on the outermost range. The decrement of temperature with height when latitude and longitude remain unchanged appears therefore to be 2.77 degrees in 1,000 fect or 1° in 361 feet. In the castern Himalaya the decrease is more rapid, the observations taken at Darjíling and Gwálpára giving a mean rate of 1° in 320 fect. At great elerations on the table-land, too, it is probable that the temperature diminishes more rapidly than on the southern slope of the mountains. General Cunningham's observations in Spiti and Ripshu during the month of September, 1847, give a mean increase of about 280 fect in elevation for one degreo of fall in temperature; and from the observations taken by Dr. Scully on the return journey from Yarkand over the Karakoram
pass and through Ladák in September, 1875, Mr. Blanford has deduced a mean fall of temperature equal to one degree in 227 feet. ${ }^{\prime}$

The isotherms for equal altitudes in the western Himalaya and Ladák run from about W. 6° N. to E. 6° S., being thus three points less inclined to the parallels of latitude than the general direction of the mountain axis; but in eastern Tibet, Nepal, and Sikkim they probably bend to the southward. The mean temperatures of Káthmandu and Darjiling, at elevations of 4,354 and 6,912 feet above the sea, appear from the observations of ten years to be 61.7 and $53 \cdot 9$ degrees respectively, but according to the preceding formula they should be $66 \cdot 7^{\circ}$ and $60 \cdot 1^{\circ}$. The mean temperatures of the four stations, Darjíling, Káthmandu, Gwálpára, and Sibságar, in the castern Fimálaya and Asám, may be represented very accurately by the formula $\mathrm{T}=77 \cdot 7^{\circ}-\cdot 00312 h-1 \cdot 53\left(\lambda-26^{\circ}\right)-23\left(\mathrm{~L}-85^{\circ}\right)$. In this part of the chain the temperature decreases at a mean rate of one degree in 321 feet of ascent, and the isotherms rim from W. $10^{\circ} \mathrm{N}$. to E. $10^{\circ} \mathrm{S}$., the direction of the momatan axis being nearly due east and west. The isotherms are thus slightly curved, with the concavity towards the south-west, whilst the general line of the momatains is considerably curved in the opposite direction. This is merely another form of the statement in page 209, that the highest temperatures characterize that part of the chain between the Nepral frontier and the Satlaj.

Supposing the uniform rate of decrease worked out in Table V. to hold grood for the whole sonthern slope of the North-W est IIminlayn, since the difference of latitude is nearly propotional to that of leight, a mean temperature of $49^{\circ} \mathrm{F}$., equal to that of London, would be attained at a height of 9,600 feet, and the amnal range of temperature would probably differ little from that observed in Fingland. The hill sanitaria, lying between 6,000 and 7,000 feed, possess climates comparable, as regards temperature, to those of Nice, Mentone, and other health resorts in the Riviera; all the towns along the cost of France and Italy fiom Marseiles to Florence having mean temperatures between $5 s^{\prime}$ and $60^{\circ} \mathrm{F}$. The anmal range of the monthly means at the Himalayan stations dies not execed 25 or 26 degrees, whereas on the Mediemmenn const it varies from 28 or 29 degrees at Nice to 35 or 36 at Florence and Rome.

[^74]Nice and Rénikhet have exactly the same mean temperature, but Nice is seven or eight degrees hotter than Ránikhet in July and Angust, and several degrees colder all throngh the winter and spring months, except in January, when the temperatures of the two places are nearly equal.

At the superior limit of natural forest in the Himálaya, about 12,000 feet above the sea, the mean temperature is probably ten degrees above freezing. In the Alps a species of pine, P. cembro, forms natural forests on the borders of perpetaal snow, where the mean temperature is several degrecs under the freezing point. This difference of habit between the Himilayan and Alpine pines is very curious, and it is difficult to suggest any reason for it, since the natires of the Himálaya and Tibet find little difficulty in growing poplars and fruit trees in sheltered situations up to 13,000 feet or higher. ${ }^{1}$ A mean temperature of 32° would be attained at a lreight of 15,400 feet, which is 2,000 fect above the upper limit of cultivated trees in Tibet.

The zone which has a mean temperature of 32° in any month will probably be near the lower edge of the snows in that month, especially in summer, when the light falls of snow on the outer hills have been all melted away. If the height of this zone be calculated for every month, the highest value obtained will be near the perpetual snow-line. With the uriform rate of decrease given in the last column of Table V., the result for July and August, when the snow line is highest, is about 17,630 fect. This result is very much higher than that given in Humboldt's Asie Centrule, on the anthority of some of the earliest Enropean travellers who penetrated into the country. General Struchey has, however, shown ${ }^{2}$ that some of these mistook the lower limit of glaciers for the line of perpetual snow. The elevations of the snow line on the Trisúl and Nanda Devi groups of peaks, determined by trigonometrical observation from Almora in the latter part of 1848 , luefore the winter snows set in, varied, according to Strachey, from about 17,000 feet on the eastern face of each group to 15,500 on the west; this latter was, however, in part probably newly fallen autumnal snow. The conclusion from these observations was that the height of the snow-line on the " more prominent points of the southern edge of the belt (of snowy mountains) may fairly be reckoned at 16,000 feet at the very least." The Schlagint-

[^75]weits found that the average height of the snow-line on the southern face of the Himalaya from Bhatán to Kashmir was 1(i,200 feet. At page 72 of General Cumningham's book on Tadak the mean height of the snow-line on the peaks north of Simla, determined trigonometrically, is given at 16,665 feet, the highest point observed being about 1,000 feet higher ; and in Mr. Drew's volume on the Kishmir territories, published in 1875, the elevation of the snow-line on the outermost zone is stated to be 16,500 feet. The height obtained by calculation as above suggested is thus probably a little too great, though it comes surprisingly close to some of Strachey's observations on Nanda Devi and those of Cumninghem on the peaks of Kulu. Some observations have recently been mate by the Trigonometrical Survey officers at Mussooree to determine the height of the snow-line on the peaks above Jumnotri, but the results have not yet been published.

For the ramges north of the Indian watershed we have not sufficient data to calculate the approximate height of the snow-line from temperature observations; but the high temperature of Leh and the Spiti valley in July and August show most distinctly that it must be much higher than on the southern side. The limit of perpetnal snow on the ridges bordering on Tibet, especially those which lie beyond the Satlaj, is given by Strachey as 19,000 feet at least. Dr. Gerard many years ago, and more recently Mr. Drew, assigned an elevation of 20,000 feet to the limit of the snow in Rúpsha. One reason why this limit is so high-the intensity of solar radiation in summer -has already been mentioned; another is the insiguificant quantity of snow that falls each winter in these regions that are almost completely cut ofl from the great southern vapour currents.

The lower limit of the snow in winter is usually about 6,500 feet in Kumaton and somewhat lower in Dehra Dan and the hills north of the Panjabl. While it lies the temperature does not rise much above $\ddot{3} 2^{\circ}$, but it seldom falls in sulficient quantity to lie more than a few days at a time. About one year in ten the show comes down as low as 5,000 feet. The lowest level attained in the first half of the present century was about 3,000 feet in 1817 and 1847. In 1877 and 1878, though the snowfall was heavier than it had been for many years, it did not come down much below 5,000 feet. Λ slight fall of snow is said to have been observed at Lahore on the 12 th of January, 1874,'

[^76]bat no notice of this mprecedented oceurrence was taken in the meteorological report for that month.

One of the most important effects of solar heat upon the atmos-

Amospheric pressure and winds. phere is the disturbance of its statical pressure relations, which in turn gives rise to those movements of aljustment towards equilibrimn that are recognised as winds. The diurnal heating and cooling of the air causes certain oscillatory variations of pressure called the barometric tides, and gives rise to wind movements, such as the land and sea breezes and certain mountain winds that will be described below. The great ammal change of temperature between summer and winter, in like mamer, causes an annual variation in the height of the barometer and sets, up, those great currents of the lower atmosphere that are called the monsoons. Since the temperature is constantly changing no such thing as a simple statical distribution of pressure ever exists, though the arerages of long series of observations may approximate more or less nearly to what a statical distribution would be. The air is constantly in motion either horizontally or vertically, and these movements canse variations of pressure, just as variations of pressure produce movements. Guseand effect, as regards pressure variations and winds, are thas so inextricably mixed up that it is next to impossible to disentangle them and show their relations clearly.

Ihere can be little doubt that both the daily and the yearly inequality of pressure grow less as we ascend; and the annual variation at least becomes quite altered in character at a moderate elevation ; but since the barometric variations depend upon the range of temperature which is possibly very greatat great altitudes, while at a height of 6,000 or 7,000 feet it is less than on the plains, the decrease of the pressure variations with height is not strictly proportional to that of the total pressure. 'lable V I. gives the mean monthly pressures al a number of stations, and Table VII. the average daily range between !-30 or 10 A.m. and $3-30$ or 4 r.m. The figures for Bareilly, Roorkee, Delira, Mussoorce (both stations), Ránikhet, Chakratia, and Leh, have been corrected for the index errors of the harometers and are thus comparable with each other, except in so far as the different lengths of the periods of observation may cause the averages to differ ; the others involve an unknown barometer error, which does not, however, aflect the range of pressure, either diumal or annual.
VI．－Monthly and annual means of Piessure at places in the IFimálaya．

Place．					䎟	完	岕	\％	$\begin{aligned} & \text { 萢 } \\ & \text { 枈 } \end{aligned}$		$\begin{aligned} & \text { تे } \\ & \text { 菦 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 茏 } \\ & \text { 易 } \\ & 0 \\ & 4 \end{aligned}$	U E． U0 0	$\stackrel{\text { 8 }}{\substack{3}}$	Num． ber of ycars．
Bareilly	568	$\stackrel{\prime \prime}{ }$	29－366	$\stackrel{\prime \prime}{ }$	$\stackrel{n}{29 \cdot 148}$	$\stackrel{\prime \prime}{\prime \prime}$	28．924	28.931	${ }_{\text {2 }}{ }_{2}$	29．097	n $29-263$	$\prime \prime$ 29.393	$29 \cdot 139$	$\stackrel{\prime \prime}{\prime \prime}$	11－12
Roorkee	887	$29 \cdot 123$	$29 \cdot 057$	28．967	28．856	$28 \cdot 744$	28.615	28．629	28.694	28•796	28．959	29.090	29．132	28.888	12
Dehar	2，232	27．734	27.689	$27 \cdot 632$	27.553	$27 \cdot 463$	27－346	$27 \cdot 348$	$27 \cdot 403$	$27 \cdot 495$	27.638	$27 \cdot 740$	27．763	$27 \cdot 567$	12
Dharmsúla ．．	4，495	$25 \cdot 478$	25.449	25．442	25．429	25．361	25.318	25－296	$25 \cdot 323$	$25 \cdot 465$	25．045	25．624	25．620	$25 \cdot 446$	2
Almora ${ }^{1}$	5，546	24.704	$24 \cdot 622$	$24 \cdot 668$	24－588	24－542	$24 \cdot 422$	$24 \cdot 434$	$24 \cdot 462$	$24 \cdot 578$	$24 \cdot 710$	$24 \cdot 771$	24.731	$24 \cdot 603$	1
Mussooree（1），	5，855	2 ± 287	24．284	24．304	24．250	$24 \cdot 211$	$24 \cdot 123$	24－10t	$24 \cdot 143$	$24 \cdot 217$	24.290	$2 \mathrm{t} \cdot 321$	$24 \cdot 323$	$2+\cdot 238$	1－3
Ránikhet	6，069	24．096	$24 \cdot 076$	24•070	$24 \cdot 066$	$24 \cdot 010$	23.932	23．926	23.959	$24 \cdot 023$	$2 \mathrm{t} \cdot 106$	$24 \cdot 157$	$2 \cdot 1 \cdot 134$	$24 \cdot 046$	5－7
Naini Tál	6，463	$23 \cdot 865$	23－834	$23 \cdot 858$	23832	23•760	23.687	23．693	23－716．	23.758	23.879	$23 \cdot 90{ }^{-1}$	23.894	$23 \cdot 807$	；
Mussooree（2），	6，881	．．．	\ldots	．．．	\cdots	23.334	23.267	$23 \cdot 249$	23－29t	23．358	$23 \cdot 439$	$23 \cdot 492$	$23 \cdot 423$	．．．	1－14
Chakráta ．．．	7，052	$23 \cdot 259$	$23 \cdot 220$	$23 \cdot 243$	$23 \cdot 238$	$23 \cdot 194$	23．133	$23 \cdot 113$	23－158	23.223	23－293	23－303	23.287	$23 \cdot 222$	4－5
Leh	11，503	19.604	19：778	$19 \cdot 640$	19.649	$19 \cdot 668$	19.650	19－616	$19 \cdot 640$	19.692	19.722	10.742	19•701	$19 \cdot 659$	$4-6$

VII.-Mean diurnal and annual ranges of pressure at places in the IIimalaya.

The double barometric tide that occurs regularly every day, especially in tropical countries, is still one of the least understood of atmospheric phenomena. It has been observed at all elevations in the Himálaya to which barometers have been carried, and with no considerable difference of phase, ${ }^{1}$ though the range and general form of the oscillation are not the same at different heights. It is thas probably something of the nature of a wave of expansion and contraction propagated upwards and downwards with a velocity equal to that of sound.

The amplitude of the daily tide bears an obvious relation to the diumal range of temperature, for it is greater over land areas than over the sea, and in table VII. it is seen to decrease pretty regularly from the plains up to stations sitrated at an elevation of 6,000 or 7,000 feet, where the range of temperature is least, becoming greater again at Leh, where the temperature rango is large. Moreover, on the plains there is a well-marked amual variation of the daily range of the barometer, having its maximun in the hot-weather months, when the temperature range is greatest, and its minimum in the rainy season. But the inequality of temperature is not the only cause on which the observed barometric tides depend ; for their amplitude, as well as their general form, varies with the season, the latitude and the position of the place with respect to the sea and to mountain ranges.

[^77]| Place. | | | | Height. | Morning maximum. | Afternoon minimum. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Feet, | H. M. | H. | |
| Calcutta | ... | \ldots | | 18 | 935 | 16 | |
| Allahabar | ... | ... | \ldots | 307 | 9 3+ | 16 | |
| Hazaribagh | \cdots | ... | ... | 2,010 | $9 \quad 17$ | 16 | |
| Simla | \ldots | ... | \ldots | 7,071 | 10.26 | $1 ;$ | |
| Leh | ... | \ldots | ... | 11,503 | 848 | 16 | |

The observed diumal movenzents of the baronctria colam are in fact made up of several parts, only one of which is directly cmsed by the alternate heating and cooling which the air undergons every day, though the others are all indirect effects of it. The direct effect of heating and cooling upon the pressure of the air has been more or less clearly explained by Espy, Davies, and Kreil, bat it has not yet been shown by strict mathematical reasoning that their explanation accounts for the whole of the phenomenon. There is firstly, with a rise of temperature in the morning, an increase in the elastic force of the air, indicated by a rise of the barometer. But the increased elastic force immediately sets up a movement of expansion, either vertically or it may be in some cases laterally, by which the pressure is diminished. The actual movement of the mercury in the barometer is determined by the difference of these two actions; and consists of a rise at first, up to 9 or 10 A.m., on the average, followed by a fall which goes on until some time after the hottest period of the day. It is easily soen that as long as the temperature continues to rise more and more rapidly, that is up to 9 a.m. or a little after, the first effect mast outweigh the sccond, and the barometer will rise ; but as soon as the rate of increase of temperature begins to grow less, expansion will prevail and the barometer will fall. The expansion will not cease at the instant when the temperature reaches its maximum, but owing to the accumulation of motion it will go on for some time longer. Thus, there ought to be a barometric maximum about the time of most rapidly increasing temperature and a minimum in the afternoon. In much the same way it can be shown that there should be a maximum in the evening, when the temperature is falling most rapidly, and a minimum about the coldest time of the morning.

The coincidence between the barometric minima and the extremes of temperature is usually very far from exact, the barometer in this country standing lowest in the mornings about two hours before the time of minimum tomperature, and in the afternoon about an hour and a half or two loours after the hottest time of the day. This may perhaps be explained on the principle of forced oscillations, that in the snecessive transformations which the encrgy undergoes, the oscillations approximate more and more nearly to simple harmonic waves witl the maxima and minima separated by equal intervals. The
diumal curve of temperature approaches more nearly to a simple wave lorm than that of the solar radiation which falls upon the earth at any place, and the double daily oscillation of pressure can be almost exactly represented by two waves superimposed.

At most places in India and the Fimálaya the minimum temperature of the day occurs about sunrise, that is at 6 A.m. on the average of the year, and the maximum is attained about 2 P.m. 'The daily rise of temperature therefore occupies only eight hours of the twenty-four, and the fall the remaining sixteen. On the principle that the height of the barometer varies with the rate of change of temperature, the morning maximum should be much more decided than that of the evening; and this is found by observation to be the fact, especially in the interior of India and other continental countries. Over the sea in tropical regions the periods of increasing and decreasing temperature are probably more nearly equal, and there the difference between the day and night waves of pressure is less.

At places near the equator the epochs of maximum and minimum pressure hardly vary from month to month ; but in higher latitudes the morning maximum and afternoon minimum approach each other when the days are short, and become more widely separated in the long days of summer.

Besides this primary oscillation of pressure calused by the heating and cooling of the air every day, the barometer indicates other changes due to the transfor of air by winds blowing to and from the place of observation, and perhaps also in some places it indicates other changes again due to the repetition of previous oscillations in the form of free waves. The great regularity and considerable range of the barometric tides over tropical seas where the daily range of temperature is small, may be thus to some extent caused by the repetition of the waves of previous days. In high latitudes, where the days and nights are usually of very unequal length and the variation of temperature is irregular, the tides becone feebler, and near the pole disappear altogether, for in forced vibrations of any kind regular periodicity in the cause is an essential condition.

Near the const the land and sea breezes modify the form of the diurnal pressure curves both at sea and on land. The transfer of air from sea to land during the carlier hours of the night renders the
nocturnal fall of pressure on land less, and at sea greater, than it would otherwise be, while the land breeze which blows in the forenoons has a similar effect in the opposite direction. Over the water the morning minimum thus comes to be the lower of the two, in opposition to the usual rule. ${ }^{1}$ Among the mountains a very similar semi-diurnal transference of air takes place, causing two distinct types of barometric tides-the one characteristic of valleys and the plains near the mountain system, and the other of high ridges and detached peaks. These types can be readily distinguished in the following table, which gives the variations from the daily mean at the hours nearest the turning points of the tides:-

	$\text { \& } 4 . \mathrm{M} .$	$10 \text { м. м. }$	$4 \text { r. }$	$10 \text { Р. м. }$
Barcilly	-021	$+060$	-. 047	+.008
Loorkee	-020	+.057	-.036	-.001
Ranikhet	-025	+.041	-.018	$+\cdot 013$
Nitini Tál	-028	$+\cdot 0.13$	-.012	-.003
Chakrata	-022	+.035	-.015	-.001
Simla ${ }^{\text {a }}$	-0.0.7	+.063	-.032	+ 022
Leh	+.011	+.037	-.049	$+{ }^{\circ} 001$

At Bareilly and Roorkee, on the plains, the variation from the mean at 4 P. m. js twice as great as at 4 A. m. At all the Himálayan stations except Leh, which is in a valley between two ridges, this relation is reversed. Over the plains and on the outer hills, as at Naini Tabl and Chakrata, the pressure at 10 p. m. hardly differs from the mean of the day. There is a small positive variation for this hour at Bareilly, and as we recede from the mountains and approach the sea the variation becomes greater ; bat there can be little error in concluding from the above table that along the southern border of the Himilaya the pressure rises in the evening just sufficiently to touch the mean. At Simla and Rinikhet, some twenty or thirty miles in towards the centre of the mountain system, there is, however, a well-marked evening maximum. This seems to indicate that the air continnes to accumulate over the interior of the mountain zone for some time after the current has changed on the outer runges and the air has commenced to flow back towards the plains.

[^78]The transfer of air from the plains to the mometains in the daytime and its retransfer to the plains at night, which, by partly counterbalaneing the afternoon fall of the barometer in the mountains and correspondingly increasing it on the plains, cause the peculiarities of the pressure variations seen in the preceding table, are bronght about, by the expansion and contraction of the air under the influence of heat and cold. In the daytime the air over the plains expands more than that over the hills, because the total thickness of air is greater and the range of temperature is probably higher. The surfaces of egual pressure, which we may assumo to be lorizontal on the average, are thas raised more above the plains than on the mountains, and the air under the influence of gravily flows down the incline towards the momatains. At night the air contracts and these surfaces sink more above the open plains than in the hills, and there is thus a slope or gradient in the opposite direction.

The following is General Strachey's description of the diumal variation of the wind in Kumaton:-
"At most seasons of the year wo find that on the Himathyan slope winds blow up the valleys during the day, that is from about 9 A. м. to 9 r. m., and down them during the corresponding hours of the night, or from 9 P. M. to 9 A. m. At the debonches of the principal streams into the plains, these night winds blow downwards with great violence, particularly in winter. In the interior of the mountains they are more moterate; ; and at great elevations, and in the central parts of libet, the nights are almost always nearly calm. Tho diumal currents from the south, on the other hand, inerease in force as we ascend in height; and along the Indian watershed and the neighbouring parts of Tibet they are excessively strong; so that in travelling there, I have often looked forward to the afternoon, when they are at their height, with real droad; and the natives of the country invariably endeavour to cross the high passes of the Indian watershed early in the day, for the purpose of avoiding the fury of the afternoon wind. As we advance further into the tableland, however, their power rapidly ceases.
"These winds, though on the whole blowing from the south-wost during the day and from the nortl-east at night, that is perpendicular to the general line of the mountains, are naturally constraned
to follow the course of the deep valleys up which they pass, so that their direction is sulajeet to endless lowa variation; and, excepting on the tops of the hills, lithle information can be oltained by a register of tho direction of the wind on the Himsilayra, beyond the fact of there being an up or down current. In the part of Tibet I visited, near the Inelian watershel to the north of Kaman, the day wind seemsl to commence in the south-uast fuarter about 9 A. m., and gradually to shift romm with the sun as the day advanced, ending in the south-west quartor about 9 p . m. On several oceasions in these localities I also notic el the wind blowing faintly from

"The calm nights of the table-land and the higher mountains would (according to the theory above statel) be a consequence of their position in the centre of the montain area, where the down current would originate, and therefore havo the leist force, though it be still felt in the faint northerly winds that are often observed near the Indian watershed.
"The violent night winds from the gorges by which the principal rivers leave the mountains would not appear to be altogether due to the same canse which proluces the ordinary down winds, but to the accumulation of cold air in the deoper valleys to which I have before alluded. The air collected in thess aërial lakes, as they may be called, having no means of escape but the openings through which the drainage is carried off, pours from them in a current the velocity of which will be dependent on the depth and area of the mountain basin from which it flows."

General Cumingham also states that in Ladák and Spiti the southerly or south-westerly day wind asually begins about 9 A. м., the wind blowing faintly from the north about midnight and from the north-east in the early moming.

The day and night winds are probably strongest about 4 r. m. and $4 \mathrm{~A} . \mathrm{m}$., and the pressure and temperature observations made at these hours on the plains and at the hill stations indicate clearly enough that the direction of the baric gradient is from the plains towards the mountains in the afternoons, and from the mountains towards the plains in the mornings. When the pressures of Roorkee and Barcilly at 4 . m. are reduced to the level of Chakrata and

Ránikhet respectively, and are corrected for any residual gradient to or from the mountains discovered by similaty redacing the mean pressures to the level of the hill stations, it is found that there is a pressure difference of "077" at Chakráta and 055 " at Ránikhet, sending a wind towards the plains. At 4 p. m. the gradient is towards the hills, and is equal to $062^{\prime \prime}$ at an clevation of 7,000 feet between Roorkee and Chakríta ; while between Bareilly and Ránikhet it is equal to $045^{\prime \prime}$ on the average of the year. On the southern border of the mountain zone the gradient causing the down wind at night is therefore rather greater than that which causes the up wind during the day.

When the pressures of Roorkee at 4 A. m. and 4 p. m. are reduced to the level of Teh, a station beyond the Indian watershed, the gradients are found to be $\cdot 033^{\prime \prime}$ in the morning and $\cdot 182^{\prime \prime}$ in the afternoon. The pressure difference causing the day wind at great elevations thus appears to be nearly six times as great as that which causes the night wind ; but this relation is much exaggerated, no donlt, by the peculiar form of the pressure variation at Leh, which camot be taken as a typical mountain station. This peculiar variation is doubtless due to the position of Leh in a narrow valley between two parallel mountain ranges. In the daytime the air of the ralley expands and flows towaids the mountains, and at night it again accumulates over the ralley. In this way the nocturnal barometric tide is completely obliterated, and the alternoon fall of the barometer is rendered much greater than it would be on an open plain at the same altitude.

In April, May, and June the afternoon winds of the mountains blow with greatest violence, because in these months the range of temperature both on the plains and among the mountains is greatest. In thesc three months we find the afternoon fall of the barometer on the plains at a maximum, while at the hill stations it is less than in the cold weather. The nocturnal inequality of pressure is then at a minimum on the plains and valleys and at a maximum on the hills.

The annual variation of pressure differs from the diurnal in that no part, or an exceedingly minute part, of it is due to direct increaso or decrease of elastic force accompanying gain or loss of heat. The
rise of temperature in the first hald of the year and the fall in the latter half are accomplished so slowly that the increase or decrease of elastic force camot accumulate, but is lost in expansion or contraction. The ammal variation is thus almost entirely a secondary eflect due to the movement of air both vertically and horizontally. When the temperature of the air over India changes the air expands or contracts, and the hypothotical surfaces of equal pressure widen out or come closer together than they were before; and since the ammal variation of temperature over the south of India is very small in comparison with that which occurs over the northern plain and in Central Asia, the vertical range through which these surfaces travel in the course of a year will be greater on the Himálaya than under the equator. In the cold weather, for example, the planes of $30,29,28$, \&c. inches are wider apart vertically over Ceylon than in Northern India, while at the end of the hot and in the rainy season the opposite relation obtains.

If there were no lateral movements of the air the pressure at a station on the plains would be nearly constant all the year round, while at the hill stations it would be least in winter and greatest in summer, because in the latter season a larger fraction of the total atmosphere than usual wonld be elevated above the place, while in the winter less than usual would lie above it. In winter, however, the planes of equal pressure in the upper regions of the atmosphere over India all slope towards the north, and down this slope winds blow, causing an accumulation of air over Northern India which renders the total pressure observed on the plains at that season greater than in summer. As regards mountain stations, it depends entiroly on the height of the place whether the influx of air from the south will be more or less than sufficiont to compensate for the contraction and sinking of the atmosphere in winter. At all the hill stations in Table VI. above 5,000 fect clevation there are indications of a winter minimum of pressure, though this is not the lowest minimum except at Leh, the most elevated station of all. There the pressure is least in the beginning of February, whereas at all the other stations, as on the plains, it is least in June and July.

During the cold weather winds are usually blowing out from Northern India towards the south along the surface of the ground at the same time that other currents are blowing northward in the
upper strata; the apparent direction boing modified in either case by the rotation of the earth on its axis and by friction against the ground surface. On the plain of the Ganges the conformation of the surface makes the lower winds have a north-westerly direction.

As the temperature rises the air over India expands and a larger and larger proportion of the total atmosphere is lifted above the level of the hill stations. In consequence of this the barometer at first rises at the higher hill stations; and it simultaneously sinks over the plains and the lower hills owing to the outward movement of the air. As the scason advances more and more air is removed from India by the strong day winds which blow in the hot weather as well as by the winds over the Indian watershed that have been already described, while but little is restorcd by the feeble night winds that come from the opposite quarters ; the barometer continues to fall over the plains, and the rise obscrved at the hill stations in spring is soon also changed to a fall, except at Lch, where the barometer continues rising until May. In the upper half of the atmosphere, that is, above the plane of 15 inches pressure, the summer depression of the barometer, which at Leh is feebler than that of winter, probably disappears altogether, and the barometer stands highest in the hottest season as it would do at all elevations if there was no transfer of air from place to placo by lateral currents or winds.

When the temperature of Northern India is at its maximum in the latter half of June, the planes of equal pressure are widest apart, and they all slope towards the north in the lower half of the atmosphere. Winds consequently blow in from the sea towards the land in the lower strata, and there are possibly upper currents in the opposite direction, though the existence of such has not yet been established. This relation continues until the autumnal equinox, after which the temperature falls rapidly, and the atmosphere contracts and sinks so as to reproduce the conditions characteristic of the cold weather. The cooling of the air at this season, like the heating of it in spring, produces a differential cffect on the height of the barometer at the hill stations, which again have a maximum of pressure in November.

When the effects of the two actions above described-the expansion and contraction of the atmosphere vertically, and the lateral
transference of air by winds-are borne in mind, some curious and at first sight inexplicable peculiarities of the annual variation of pressure become intelligible. For example, on the plains the barometer almost invariably stands higher in December than in January, though January is the colder month of the two. This anomaly at once disappears when we remember that the total pressure of the air on the plains, considered statically, is made up of two partsthat of the air from the plains up to the hill stations, and that of the air lying above the hill stations. The latter part appears from the observations of Leh to be greatest in the first fortnights of May and November, and least in the corresponding parts of February and Angust ; and if the monthly means for any station on the plains or lower hills be subjected to harmonic analysis, the annual variation will be found to be very closely represented by two harmonic waves-one of annual period, reaching its maximum at the time of greatest cold in the beginning of January, and the other of six months' duration nearly coinciding in phase with the pressure variation at Leh. The amplitude of the first of these undulations, which is as much as six tenths of an inch at some places on tho plains, rapidly diminishes as we ascend, and passing through a zero value at about 10,000 feet elevation, re-appears at Lèh in nearly the opposite phase, the minimum falling in winter. The amplitude of the half-yearly oscillation increases slightly as we ascend, but it appears to vary with distance from the plains in a horizontal direction rather than with height. The observed pressure on the plains, being due to the superposition of the two waves, is highest in December-thatis, between the dates when cach wave separately attains its maximum.

The truth of this theory of the annual change of pressure may be more clearly seen from Table VIII., where the monthly variations of the barometric weights of three saccessive strata of the lower atmosphere from their annual mean valucs are compared with the simultaneous variations of temperature. The last double column gives the variations for the whole thickness of the atmosphere from the plains up to 11,500 feet above sea-level.
VIII.-Annual variation of pressure and temperature in the lower atmospheric strata over the Ilimalaya.

${ }^{1}$ From the average of the three stations-Roorkee, Chakráta, and Leh.

The barometric weight of each stratum and of the whole thick-ness-that is, the difference between the observed pressures at the top and bottom-varies inversely with the temperature, and the ono variation is as nearly as possible proportional to the other. The only exception worth noting is that in the month of November the statical pressure of the stratum between Chakrata and Leh is less than it should be according to the temperature figures. This anomaly, however, would probably disappear from tho means of a longer scries of observations.

The annual variation of the wind in Northern India is for the most part such as should accompany the pressure variations above described, according to the usually received "convection current" theory ; but there is one important feature of the winds of the plain that has not yet been satisfactorily oxplained-namely, the prevalence during the hot weather of strong north-westerly winds when the distribution of temperature and pressure should, by the theory of convection currents, give rise to winds with a southerly element. These " winds of elastic expansion," as they have been called by Mr. Blanford, actually blow sometimes from places where the mean pressare is low to others where it is slightly higher. They are the strongest winds of the year on the Indian plain ; they blow only in the daytime, and since there is no compensating current of any appreciable strength at night, they are probably the chief agency in that removal of air from Upper India which causes the great summer depression of the barometer. They are not confined to India, but are equally charicteristic of Afghanistan ; and Colonel Prejevalsky encountered winds perfectly similar in everything except temperature in various parts of tho Gobi desert and on the Alashán plateau north-east of Tibet. On the southern slope of the IIimálaya these winds are sometimes met up to elevations of 6,000 or 7,000 feet, and when they blow the air is unusually dry and full of dust. At greater clevations, however, they are cither not felt or become undistinguishable from the ordinary up currents that blow during the day.

From the preceding table it is seen that though the change of the prevailing wind from north-west to east or south-east at the commencement of the rains is very distinctly marked on the plains, no such change takes place at the hill stations. Even at the lowest of these, Dehra, the resultant wind varies only from about three points north to the same distance south of west. Λ t all the higher stations the prevailing direction in every month is southerly or south-westerly, with modifications depending on the form of the ground,-at Naini Tál, for instance, the winds are generally southeasterly. The only notable variation of the wind direction is a deflection towards the east at Chakráta (also at Simla, Marri, and other stations on the north-western Himalaya) at the time when the winter snows and rains are heaviest. The canse of this has not yet been ascertained.

The wind direction at the hill stations changes so little from month to montl because the winter monsoon is of no great vertical thickness, while that of the summer months extends to a much greater clevation than the highest station at which observations have been made. When northerly or north-westerly winds are blowing on the plains, the return current from the south-west is felt on the mountains at all elevations above the first few thousand foct; and when southerly winds blow over the plains, the return current, if it exists at all, lies at a very great altitude. The existcnco of this return current from the north during the summer monsoon may possibly be proved by cloud observations. Dr. Scully's observations on the way back from Yarkund in August, 1875, tell neither for nor against it, the resultant of all the wind directions observed at elevations above 14,000 feet being due west.

In the next table the vertical thickness of each monsoon current on the Himálayan slope has been computed approximately from observations made at pairs of hill stations in the north and south of India. The northern stations are Rookee and Chakrita, and the southern ones, Colombo and Newara Eliya in Ceylon. To render the figures directly comparable, the observed pressures at the hill stations have been reduced to the common elevation of 7,000 feet, and those of the lower stations to sca-level, as was done by Mr. Blanford in drawing up a similar table in the Indian Meteorologist's Vade Mecum, page 175.
X.-Vertical thickness of the Monsoon Currents.

	Montl.	Mean pressure at 7,000 fect.			Mean pressure at sea-level.			Neutral plane.	
					$\begin{aligned} & \text { 送 } \\ & \text { 总 } \\ & \hline \end{aligned}$				
	November	$23 \cdot 388$	23.353	+ 03.5	29.904	30-021	- 117	$24 \cdot 45$	
	December	23:387	23:337	+ 050	$29 \cdot 911$	$30 \cdot 078$	$-\cdot 167$	$24 \cdot 89$	5,260
	January	$23 \cdot 379$	23:310	+ 066	29.915	30.070	- 155	$25 \cdot 39$	4,690
	February	$23 \cdot 389$	$23 \cdot 270$	+ 119	$29 \cdot 917$	29.994	--077	27.35	2,650
	June	23:348	$23 \cdot 179$	$+\cdot 169$	$29 \cdot 856$	$29 \cdot 183$	$+\cdot 373$	17.96	14,130
	July	23•313	$23 \cdot 160$	+. 183	$29 \cdot 87+$	29:08	$+366$	16.81	15,930
	Angrst	$23 \cdot 3+4$	$23 \cdot 200^{2}$	+ 139	$29 \cdot 879$	$29 \cdot 576$	$+303$	17.80	14,370
	(September	23-359	$23 \cdot 270$	+089	$29 \cdot 897$	29.681	$+\cdot 213$	$15 \cdot 67$	13,140

At 7,000 feet elevation the pressure gradient in both seasons is such as to send a current from south to north, while at sen-level it is only in the winter season that the wind blows from north to south. The neutral plane separating the lower wind current from the supposed upper return current is nearly 16,000 feet above the sea in the height of the rainy season ; but in the cold weather, especially in January and February, the neutral plane is below the level of the hill sanitaria.

The heights in the table represent only the approximate mean positions of the neutral plane for the several months. In reality its height is constantly fluctuating, and thus in the winter season it often sinks so low as to strike the Indian plain below the base of the hills. A moist easterly or south-easterly current then blows for several days at a time in Upper India, bringing the winter rains, while in Southern India the wind may be northerly. The prevailing direction of the wind on the plains is, however, always northerly in the cold weather, in accordance with the mean position of the neutral plane.

The pressure gradients both at sea-level and at 7,000 feet are much greater in summer than in winter. In the latter half of October and the beginning of November there is hardly any gradient either way, and at that time feeble winds and calms prevail. The velocity of the wind being directly proportional to the baric gradient (except perhaps in the case of anomalous currents like the "winds of elastic expansion" which blow down the valley of the Ganges in the hot weather), this velocity should be greater in the rainy season than in winter.

XI．－Monthly mean velocity of wind in miles per diem．

Station．			$\begin{aligned} & \text { 烒 } \\ & \text { 鳥 } \end{aligned}$	$\begin{aligned} & \text { 苞 } \\ & \text { 年 } \end{aligned}$	空	官	官			（		守	感
Roorkee，	55.8	65.9	$67 \cdot 3$	71．6	91－9	$101 \cdot 0$	$18 \cdot 3$	65.5	$58 \cdot 8$	3.8	$31 \cdot 3$	35.7	63.5
Barcilly，	$70 \cdot 6$	$95 \cdot 4$	95.1	$110+1$	$117-2$	134．5	105－5	75.9	$71 \cdot 6$	41.0	42.3	$51 \cdot 6$	81.3
Dehra ．．．	$40 \cdot 1$	$49 \cdot 2$	576	（65．2	61．7	－ 4×0	$34 \cdot 9$	29．6	$3+1$	$42 \cdot 6$	$50 \cdot 9$	$47 \cdot 1$	$47 \cdot 3$
Ránikhel，	$71 \cdot 9$	77.0	$87 \cdot 1$	$131 \cdot 3$	98.01	120．0	$129 \cdot 11$	$150 \cdot 31$	$136 \cdot 1$	116.6	99．5	9\％．0	$109 \cdot 4$
Chakráta，	114：5	$114 \cdot 6$	129•4	137－0，	$\left.\right\|^{135} 8$	128.11	110－1	88－5	$100 \cdot 3$	116．1	105.91	$\left.\right\|^{103} 3$	$\left.\right\|^{117.7}$

Table XI．shows that on the plains and at Rínikhet（for which station more observations are required to get a good average）the wind velocity is least in winter，but that at Chakríta it is least in the rains．At the hill stations the winds are chiefly of the diurnal kind，and are feeblest when the temperature range is least－that is，in the month of August．

The quantity of water vapour present in the air at any time is a most important meteorological condition．It dcpends on the temporature，the distance from the sea or other evaporating surface，and the direction of the wind． These relations are very distinctly marked on the North Indian plain， where the high temperature range in the yearly period and the semi－ annual change of the winds combine to render the proportion of vapour in the air during July and Angust nearly three times as great as in December and January．Δ high temperature cannot of course increase the quantity of vapour in the air，unless it be in a region where vapour is being generated．Accordingly we find in Table XII． that the vapour pressure at Roorkee，on the drier part of the plain， hardly varies from December to April，though as soon as the sea winds set in，which they sometimes do in the middle of May，the proportion of vapour rapidly increases．At Bareilly，where the surrounding country is moister and better wooded than at Roorkee， there is a slight increase of vapour in the hot－weather months．
XII.-Monthly mean tension of aqueous vapour at places in the IImálaya. ${ }^{1}$

The tensions in the faregoing table lave been computed from observations of dry and wet bulb thermometers. The formula used for the most part has been Apjohn's ; but all the figures for Leh and Musooree, and those for the last four years at the other stations, have been computed by means of certain talles based on August's formula.

On the sonthern slope of the mountains the annual variation of vapour tension is similar to that which obtains on the plains, though because of the considerable cvaporation from the forest-covered slopes, and the occasional showers of rain which fall, the increase of vapour during the hot weather goes on much more uniformly than on the plains. At Lelh, where hardly any precipitation occurs at any time of the year, but in the neighbourlood of which there is some cultivated land irrigated from the hill streams, the annnal variation of vapour tension is determined almost entirely by the temperature. In the valley of Yárkand the quantity of vapour in the air is similarly determined by the temperature and the extent of irrigation.

In the mountains the mean vapour tension decreases very rapidly with the height, on account of the rapil decrease of temperature as we ascend. If Dalton's law, that in a mixture of gases or vapours the pressure of each is the same as if it filled the whole space alone, were applicalle to the, atmosphere, as is sometimes supposed even yet, then the pressure or tension of vapour obscreed on the plains ought to be reluced one-half on ascending through 29,000 feet; but it is found by observation that a vapour pressure equal to half that observed on the plains is attained at an elevation of 7,000 or 8,000 feet. This was pointed out by Gencral Strachey in the Proceedings of the Royal Society for Mareh, 1861, where he has shown that the observations of Mr. Welsh in balloon ascents, those of Dr. Hooker in Sikkim, and his own observations in Kumaon (most of which are included in Table XII.), make it perfectly certain that the proportion of water vapour which exists at any given elevation is determined, not by Dalton's law, but simply by the temperature. The vapour raised from the carth's surface is constantly diffusing upwards, and would go on doing so until it attained the state of equilibrium represented by Dalton's law ; but the temperature falls so rapidly as the height increases that saturation point is reached and the vapour is partially condensed into cloud or rain long before the barometric equilibrium is attained.

In the third column of Table XIII. the figures given in the previous table have been compared in a manner suggested by Strachey. The tension of vapour at sea-level under Kumaon and Garhwál has been computed for each month, by multiplying the mean of the observed tensions at Roorkee and Bareilly into the ratio between the tension of saturated vapour at the sea-level temperature and that of saturated vapour at the temperature of the plain ; that is to say, the temperature is supposed to be corrected for elevation aljove the sea while the degree of saturation remains constant. The figures in 'lable XII. have then been divided by the corresponding tensions at sca-level, and the average of the fractions for all the months has been calculated for each clevation. Finally, from these results the ratio of the tensions at cach even thousund feet above the sea has been found by interpolation. The second column of the table gives the results of Sir Joscph Hooker's observations in Sikkim compared with those taken at the metcorological observatory of Gwalpara near the foot of the hills, and the fourth column has been computed from the observations in General Cunningham's Ladák and those taken by Dr. Scully on the way back from Yárkand in 1875. The latter have been published in the Indian Metenological Memoirs, No. VIII. The base station for the Kashmir group is Ráwal Pindi. The figures opposite 7,000 fect in the second and fourth colums are derived from the monthly means of the Darjiling and Marri observatories.

XIIL.-Proportions of caponr tension al various elerations in the Ifimálaya.

Height.	Sikkim.	Kimmaon.		mean moh Himatiaya.		
					Computed by	mputed by
				Observed.	Stachey's methar.	Ham's method
Sem-level ...	$1 \cdot 00$	1.00	1.00	1.00	$1 \cdot 00$	1.00
1,000 fect ..	-89	92	-92	$\cdot 91$	$\cdot 91$	$\cdot 91$
2.000 : ...	-83	-89	$\cdot 8.5$	-86	-83	-82
3,000 ", ...	-71	-87	$\cdot 69$	$\cdot 77$	-75	-71
1,000 , ...	$\cdot 67$	$\cdot 74$	- 2	$\cdot 64$	-68	-67
5.000 ., ...	$\cdot 6.1$	$\cdot 70$	$\cdot 51$	$\cdot 62$	-62	$\cdot 61$
6,000 , ...	$\cdot 59$	'60	$\cdot 57$	$\cdot 59$	$\cdot{ }^{-2}$	-5\%
7,000 :, ...	-33	- 56	$\cdot 60$	-56	$\cdot 51$	-0
8,000 :, ...	-50	-53	$\cdot 41$	-48	$\cdot 16$	$\cdot 45$
9,000 :, ...	- 4	$\cdot 19$	-28	-40	$\cdot 42$	- 1
$10.000, \ldots$	$\cdot 40$	-47	$\cdot 27$	-38	$\cdot 38$	$\cdot 37$
11,000 "...	$\cdot 37$	$\cdot 35$	$\cdot 26$	-33	$\cdot 34$	-33
12,000 ," ...	-35	$\cdot 28$	$\cdot 21$	-28	-31	-30
13,000 : $:$...	-30	-2.3	$\cdot 23$	$\cdot 26$	$\cdot 28$	-27
14,000 ". ...	$\cdot 27$	-20	$\cdot 19$	-22	$\cdot 25$	-24
15,000 "...	$\cdot 27$	$\cdot 17$	-15	-20	$\cdot 22$	-22
16,000 : ...	-22	$\cdot 15$	$\cdot 16$	-18	$\cdot 20$	$\cdot 20$
17,000 \% ...	-20	-15	$\cdot 11$	$\cdot 16$	-18	-18
18,000 ., ...	$\cdot 19$	$\cdot 14$	-15	$\cdot 16$	$\cdot 16$	$\cdot 16$
$\underline{19,000}$, ...	$\cdot 18$	$\cdot 13$	$\cdot 1 \pm$	$\cdot 15$	-1t	$\cdot 1.5$

The mean of all three sets of observations probably represents very closely the actual diminution of vapour pressure on ascending in the Himálaya. It decreases with more regularity than either the Kumaon or Kashmir series of observations alome, and it agrees very closely with the series for Sikkim, where the relative humidity, or percentage of saturation, varies much less than in the western Himálaya. The last column of the table but one gives a series of ratios calculated on the assumption that the degree of bumidity is the same at all elevations, and that the temperature of the southern slope of the Himalaya decreases at the mean rate above found-one degree in 361 feet. This series agrees very closely with the average of the results given by observation ; though from 2,000 to 10,000 feet the calculated ratios are all considerably less than those observed in Kumaon. During the hot-weather months the degree of saturation on the plains below Kumaon falls exceedingly low, while on the hills, as has already been stated, the air remains much moister; at Dehra, for example, the vapour pressure in March, April, May, and June is greater than at Roorkee owing to local evaporation. Thus on the average of the year the relative humidity of the air in the Kumaon hills is considerably greater than over the plain. On the other hand, the observed ratios from 14,000 feet upwards are less than those given by calculation, because most of the observations at these altitudes were made at places lying behind the snowy range.

In the last column are given the ratios calculated by the logarithmic formula, $\log p=\log \mathrm{P}-\frac{h}{23058}$, where h is expressed in feet. Dr. Julius Hann, in an article in the Austrian Meteorological Society's Journal for 1874, page 193, has deduced from all the available observations on mountains and in balloons a similar formula in which the numerical constant is 6,517 motres, or 21,382 feet. On the assumption that this formula holds good to some distance beyond the limits of observation, we find that an elevation of 23,000 feet, or about the average height of the snowy peaks, the quantity of vapour in the air is only one-tenth of the quantity at sea-level. The extreme dryness of Tibet and Ladák is thus easily accounted for.

The logarithmic formula has the alvantage of enabling us to calculate approximately the total quantity of vapour in the air at any time, by an application of the integral calculus. Using the generally reccived values for the density of water vajour and its
co-efficient of expansion with heat, and extending the integration to an infinite height above the ground, it is found that the depth of water that would be formed by the complete condensation of the vapour over a given area is almost exactly three times the height of the mercurial column which measures the pressure of the vapour at the bottom. In the rainy season for example, when the pressure of vapour over the Indian plain is equal to about an inch of mercury, the complete precipitation of the vapour would yield only three inches of rain, that is, less than the quantity which sometimes falls in two or three hours. A continuous downpour amounting to fifteen or twenty inches, such as frequently occurs in India, must be fed by a powerful indraught of moist air.

The relative humidity of the air is probably greater at all elevations on the Himálayan slope than either on the plains or on the Tibetan plateau beyond the Indian watershed; and it is doubtless greater on forest-clad slopes and valleys than on steep and bare mountain sides. On a high ridge, too, which intercepts and deflects upwards the prevailing south-west winds, thereby cooling them and partially condensing their vapour, the degree of saturation is greater than on the lower ridges or valleys behind it ; for the air in sinking after crossing the high ridge is warmed and rendered capable of absorbing more moisture than it has been able to retain in crossing the ridge. Thus Naini Tál, independently of the influence of the lake, is always much moister than Ranikhet or the notoriously dry and bare station of Almora. The registers of the meteorological observatories do not, however, illustrate this very well; for at several of them observations have only been taken in the daytime, when the relative humidity is below the mean; and the humidities recorded at the old observatory of Naini Tál are quite untrustworthy and in many cases impossible. At Barcilly, Roorkee, Ránikhet, and Chakráta obscrvations were taken both night and day for some years, at the hours of ten and four. If the meaus of the four observations at these hours be adopted as daily means, Chakríta appears to be the most humid of the four stations, and Roorkee and Rímikhet the driest, though the difference between Chakráta and Roorkee or Rínikhet is less than might be anticipated. The humidities of the other places in Table XIV. have been calculated approximately from the montlily means of temperature
and vapour tension. The figures for Lelh in the winter montirs are doubtful ; the psychrometer generally giving umreliable results when the temperature falls much below freczing.
XIV.-Aprorimate mean humilities of places in the Himatlaya.

I'lace.			空	$\begin{aligned} & \text { e } \\ & \text { g } \end{aligned}$	菏						$\begin{aligned} & \dot{4} \\ & \frac{0}{3} \\ & \frac{0}{0} \end{aligned}$			-
Barcilly		69	63	51	39	43	59	82	83	81	70	65	69	
Roorkec		fi)	(:)	33	36	37	\% 5	78	80	77	6	62	68	62
Dehra		69	69	58	47	45	63	86	90	86	69	62	67	7
Dharmsála		83	73	${ }^{6} 7$	57	51	50	79	80	77	69	56	67	68
Mussoorec	\ldots	66	6t	23	+ ${ }_{\text {¢ }}$	19	62	99	99	98	70	61	72	71
Ránikhet	\cdots	60	58	i2	39	49	61	85	86	79	f0	83	34	$1 ; 2$
Clakrata		68	$0 \cdot 1$	${ }^{5}$	19	57	68	94	94	$8!$	dit	49	38	67
Leeh	...	100	100	79	57	52	50	62	(i6)	68	63	67	71	70

The relative humidity of the air at all elevations up to 11,500 feet is subject to a double annual variation, one maximum occurring at the time of greatest cold, and the other in the middle of the rainy season. At Leh the summer maximum is very faintly marked, ninc-tenths of the vapour brought by the south-west monsoon being cut off before reaching the station, and at Dharmsála, north of the Panjáb, the air appears to be slightly more humid in winter than in summer. At all the other stations the maximum degree of humidity is reached in August.

In April and November the air is dry, especially in the former month, when, during hot winds from the north-west, the percentage of saturation over the plains often falls as low as 5 or 6. In the hills, at Almora and Ranikhet, the humidity of the air frequently sinks to 25 per cent., but is scldom less than 20 per cent. The month of November and the beginning of December appear to be guite as dry as Λ pril at the higher hill stations, where these months are rainless, while showers sometimes fall in April ; but on the plains, because of the low temperature of November and the moisture left in the ground by the summer rains, the air is still comparatively moist. In the cold weather the Sub-Himalayan stations are more humid than the hill stations on the average of the twentyfour hours, probably because the air, which is cooled and has its relative humidity increased by radiation during the night, drains away from the hills and collects over the plain. At this season the air at the hill stations appears to be drier in the mornings than in the evenings.

The humidity of the upper regions of the atmosphere，as indicated by clouds，is always greater in the daytime than at night． On the outer slope of the Himalayan chain the variation is doubtless quite as distinctly seen as anywhere else in the world，but it has not been recorded in the observatory registers，where only the amounts of cloud seen at 10 A．m．and 4 p．m．have been entered．The variation is，however，probably very similar to that which occurs over the plains，where the sky is most serene about 10 p．m．and most cloudy at the hottest time of the day，when the upward con－ vection currents are strongest．In Table XV．the figures represent the means of the $10 \wedge$ ．m．and 4 p ．m．observations，and they are therefore a little above the true mean for the day．
$X V$ ．—Average proportion of cloudy sky in tenths of the expanse．

Station．				$\begin{aligned} & \text { 苞 } \\ & \text { 蔦 } \\ & \hline \end{aligned}$	芸	空	字	宫		$\left\|\begin{array}{c} \dot{0} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{y}{*} \\ \stackrel{y}{0} \\ 0 \end{array}\right\|$	$\begin{aligned} & \dot{6} \\ & \text { 号 } \\ & \stackrel{3}{3} \\ & \hline \end{aligned}$		$\dot{0}$ ¢ ¢ ¢ ¢	品
Bareilly	．．．	$2 \cdot 87$	3－12	$2 \cdot 97$	$1 \cdot 96$	$1 \cdot 46$	$3 \cdot 98$	7－11	6－18			$0 \cdot 72$	5	3．12
Hoorkee	．．．	$2 \cdot 96$	3－47	$3 \cdot 12$	$2 \cdot 25$	1.71	$2 \cdot 90$	$1 \cdot 97$	4.5	$4 \cdot 58$	0.99	10.82	$2 \cdot 18$	$2 \cdot 8$
Dehra	．．．	3.73	$4 \cdot 07$	3－5．	2：30	$2 \cdot 75$	$4 \cdot 02$	7－50	7.00	$4 \cdot 83$	1.08	$1 \cdot 33$	$2 \cdot 74$	$3 \cdot 76$
Dharmsáa	．．．	499	3－91	$3 \cdot 42$	2－17	$2 \cdot 60$	$3 \cdot 26$	7－60	6．76	$4 \cdot 09$	0.74	0.95	$2 \cdot 02$	$3 \cdot 5$
Ránikhet	．．	3.66	$4 \cdot 42$	$3 \cdot 78$	$3 \cdot 34$	3：58	$5 \cdot 41$	$8 \cdot 58$	$8 \cdot 42$	$5 \cdot 64$	$1 \cdot 69$	$1 \cdot 31$	$2 \cdot 99$	
Chakríta	\cdots	$4 \cdot 23$	$4 \cdot 75$	$4 \cdot 4$	$3 \cdot 42$	$3 \cdot 75$	$5 \cdot 14$	8.89	$8 \cdot 57$	6.79	$2 \cdot 28$	$1 \cdot 74$	3.62	
Leh	，	6．32	6．38，	6－27	$5 \cdot 78$	$5 \cdot 77$	5：00	4－89，	$4 \cdot 68$	4．44	$4 \cdot 19$	5．12	5.91	5

The armual variation of cloud is similar to that of the relative humidity of the air near the ground．It has two maxima，in the cold weather and the rainy season，and two minima，in April or May and in November．April is cloudier than November，probably be－ cause the upward movement of the air during the day then prevails over the downward movement at night，while in November the preva－ lent movement is downward．In this way the air in the upper strata is dynamically cooled in the hot－weather months and dyna－ mically heated in November．The variation of humidity at the hill stations is intermediate in character between that observed on the plain and the variation in the cloud－bearing strata of the atmosphere．

No direct observations of the heights of clouds above the ground have been made in the Himalaya．The ordinary clouds of the rainy season that look like broken cumulus from below are often not more than 5,000 or 6,000 fect above sea－level，hill stations like Naini Tál and Mussooree being frequently enveloped in them
for days. They sometimes even extend down to the level of the plains, the whole mass of the mountains up to the snows being then slorouded in fog. From the vapour tensions given in Table XIII., and the temperature decrements in Table V., it is possible to calculate approximately the average height at which a mass of air rising up from the plain would reach the dew-point and begin to form cloud. In January this height is a little over 4,000 feet above the plain, or about 5,000 feetabove sea-level. In April and May the height above the plain is 8,000 feet, and at this time of the year it is rare to find clouds resting on the outer ridges of the Himálaya, though great banks of them are formed every day along the southern face of the snowy range. In the rainy season, that is, between the middle of June and the end of September, the average height at which clouds would commence to be formed in a rising column of air is 3,100 feet above the plain or about 3,900 above sea-level. This probably coincides very nearly with the zone of greatest rainfall on the mountains. In August, when the air is most humid and rainfall most frequent, the average lower limit of cloud is probably about 3,200 feet above the sea.

Regarding the upper limit of cloud nothing is known. The light feathery ice-cloud called cirrus, seen above the plains of Tibet and the passes over the Indian watershed, appears quite as high as when viewed from the Indian plain. It is probably formed at all elevations to which water vapour extends, though what the upper limit of vapour is we do not know. If we assume the cirrus clouds over the Tibetan plateau to be trice as high as the plateau itself, say 30,000 feet above sea-level, the quantity of vapour in the air would be only one-twentieth of that observed on the plains of India, but it would probably be quite sufficient to form light clouds.

The distribution of rain both on the plains and on the mountains
Rain and snow. has already been described in a general way. The plains of Northern India, between the mountains and the Jumna river, or a line drawn north-westward from Delhi beyond the river, may be divided into roughly parallel zones of equal rainfall, that which receives the greatest amount of precipitation lying nearest to the Himálaya. The breadth of each of these zones gradually diminishes towards the north-west and widens out in the direction of Bengal, because, the prevailing wind of the rainy season
being easterly over the plain, the supuly of vapour gradually diminishes and the rains become lighter as we pass from east to west. In Table XVI., the average monthly rainfalls of 15 places on the plains near the base of the hills of Kumaon, Girhw'al, and Dehra Dún, are given. The first group of stations is at an average distance of 20 to 30 miles from the base of the hills, and the distance of the other group is under 20 miles. In both groups the stations are arranged in order from east to west. The table might be extended indefinitely in both these directions as well as southwards, but little would be gained by doing so, since the distribution of rain above described is seeu clearly enough from the figures as they stand.

The average rainfall of the line of stations at a distance exceeding twenty miles from the Himalaya is 40.1 inches, and that of the stations at a distance less than twenty miles is 46.6 inches. In each group the total rainfall gradually diminishes in passing from the extreme east of Rohillhand to the neighbourhood of the Ganges, where it iucreases suddenly and again gradually shades off to the westward. The mean wind directions for the rainy season at Roorkee, Meerut, and Delhi indicate that there is frequently a sort of eddy formed at that season near the upper course of the Ganges, probably by the mecting of the south-east winds of the plain with south-wost winds from the Arabian Sca that have been deflected nortlıward by the Aravali hills in Rajjputána, and this may be the cause of the increased rainfall that is observed.

On the mountains the rainfall varies rapidly with height, and its quantity is to a very great extent dependent on the situation of the place to the windward or leeward of high ridges and peaks. At fairly exposed stations of nearly equal altitudes there is a gradual diminution of the amnual rainfall on passing from west to east, and between the Ganges and Jumna there is a slight increase perfectly comparable to that which occurs on the plain in the districts of Bijnor and Saláranpur. Thus the annual rainfall of Darjiling is 120 inches, that of Naini Tal 91 inches, that of Mussooree 95 inches, and that of Chakrúta, Simla, and Marri 62, 68, and 58 inches respectively.

The next table gives the average monthly and annual rainfall of twenty places on the Himálayan slope, classified into three groups according to their positions near the foot of the slope, on the outer high ranges or on the imner ranges and valleys.
XVI．－Rainfall of stations on the plains near the base of the IIimalaya．

Station．			Ele－ vation in feet．				$\stackrel{\text { 空 }}{\star}$	空	号	官			$\begin{aligned} & \text { '1 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 若 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	容宮	¢ ¢ ¢	苞	
			＂	＂	＂					－11－	${ }^{\prime \prime}$	1•51	＂	$0 \cdot 49$	40．11	16－17		
Nawábganj	．．．	\ldots		640	1－28	$1 \cdot 15$	$0 \cdot 55$	$0 \cdot 27$	$1 \cdot 29$	582	16×4	11．79	8.02	151	．．．	$0 \cdot 49$	＋8．11	16－17
Baheri		．．．	690	1－12	$1 \cdot 40$	0.63	$0 \cdot 28$	1－25	5．35	$17 \cdot 62$	11：09	$6 \cdot 55$	$1 \cdot 16$	$0 \cdot 02$	$0 \cdot 43$	47．40	16.17	
Thákurdwára		．．．	720	$1 \cdot 55$	$1 \cdot 63$	0.73	$0 \cdot 56$	1．06	5．95	14．02	11．71	$5 \cdot 91$	0.79	．．＇	$0 \cdot 63$	44.54	16－17	
Bijnor	－	．．．	800	I•14	1－22	$0 \cdot 86$	0：54	$0 \cdot 70$	481	$10 \cdot 47$	9．32	541	0.53	0.05	$0 \cdot 40$	35.5	$31 \cdot 33$	
Deobnnd	．．．	\cdots	870	1－31	$1 \cdot 60$	$1 \cdot 20$	0.31	$0 \cdot 88$	2186	10：31	8．16	$3 \cdot 49$	0.28	0.03	0.61	31.04	16－17	
Baháranpnr		．．．	950	$1 \cdot 12$	$1 ヶ 51$	1．09	$0 \cdot 42$	0.82	4．46	12\％32	9.77	3×68	0.50	$0 \cdot 16$	$0 \cdot 61$	36．76	$31 \cdot 33$	
Ambála		．．．	820	1－41	$1 \cdot 38$	$1 \cdot 01$	0.63	$1 \cdot 03$	$4 \cdot 18$	11：3	8．75	4.57	0.8 .4	0.14	0.71	36．18	2：－26	
Puranpur	\cdots	\cdots	620	1．32	1．90	0.53	0.50	0.62	－ 539	20－28	15.00	8.80	2－25	．．．	$0 \cdot 82$	57•1］	6－7	
Pilibhit		．．．	650	0.99	1－41	$0 \cdot 45$	$0 \cdot 37$	$1 \cdot 15$	6．25	16.17	12＇06	8.72	1－31	．．．	$0 \cdot 48$	50．36	16－17	
Rudarpur		．	720	1－18	$1 \cdot 42$	$0 \cdot 80$	$0 \cdot 32$	1－16	574	15］11	11－30	$5 \cdot 39$	1．02	\ldots	$0 \cdot 47$	48.91	20－21	
Káshipur		．．．	750	1－48	$1 \cdot 53$	$0 \cdot 79$	0.49	$1 \cdot 43$	$6 \cdot 05$	13：33	11.70	$5 \cdot 29$	0.83	\cdots	$0 \cdot 69$	43.81	16－17	
Dhámpur	．．．	\cdots	780	$0 \cdot 96$	1．84	0．74	0.88	0.95	$4 \cdot 22$	13.12	11／87	$5 \cdot 29$	0．50	\ldots	$0 \cdot 63$	$40 \cdot 70$	16．17	
Nagina	\cdots	．．．	850	1－18	$1 \cdot 79$	$0 \cdot 81$	$0 \cdot 54$	0．9\％	503	1＋2＋	13.02	6.24	0.54	\cdots	0.72	45.06	16－17	
Majibabad	．	．．．	870	$1 \cdot 49$	1：92	$0 \cdot 92$	0.78	$1 \cdot 02$	3＇6t	15：50	1.111	$7 \cdot 23$	0.88		0.71	50.20	16－17	
Roorkee	\ldots	\ldots	890	1.95	$1 \cdot 63$	0.95	0.36	1.04	4.83	12.62	$12 \cdot 05$	1.75	0.72	0.19	$0 \cdot 42$	41.51	26－27	

XI'TI.-Rainfall on the Mimálayan slope.

The influcnce of an elevated ridge in diminishing the rainfall of the valley behind it is seen on comparing the rainfall of Almora with that of Naini Tall，or even hy comparing Srinagar with Pauri， though both of these lie far in the interior of the mountain system． A much greater contrast is observable between Bhogpur，at the foot of the mountains overhanging the gorge of the Ganges above Hardwir， and Dehra，in the Dún，behind the central and lighest part of the Siwálik chain．The rainfall of Bhogpur，given loy the obscerations of two and a half years is，however，probably too high．

The variation of rainfall with height can only be roughly determin－ ed，becanse every high ridge and peak thus cuts off the supply of vapour from the lower ground to the north of it．In Table XVIII．an attempt has been made to determine it approximately from the rainfall figures in the first two sections of Table XVII．，together with those of two or three places in the hills north of the Panjab and the observations made by Gencral Strachey at Niti in 1849．The ratio between the mean rainfall of each hill station and that of the nearest station or stations on the plains，for the same years，is given in the last column．
XVIII．－Rainfall of the outer slope of the Himillaya compared to that of the neighbouring plain．

Hilleg．			Plains．				
Station．		$\begin{aligned} & \dot{\overline{4}} \\ & \text { 長 } \\ & \text { ल. } \\ & \hline \end{aligned}$	Nearest station or stations．	荒范			
Kilpuri	800	60.1	Rularpur		$13 \cdot 9$	s0	
Harclwár	1，100	45.7	Loorkee	890	＋0．2	210	1.14
Pathánkot	1，160	302	Gurdíspur	900	$30 \cdot 1$	260	$1 \cdot 67$
Mohan	1，330	$65 \cdot 1$	Roorkec	890	39.8	4.40	$1 \cdot 14$
Haldwíni	1，130	$7+1$	Rudarpur	720	439	710	1－69
Aumbári	1，800	77.8	Saháranpur and Ambáa，	890	$30 \cdot 0$	910	$2 \cdot 59$
Kálsi	2，000	$82 \cdot 3$	Ditlo ．	890	$34 \cdot 0$	1，110	$2 \cdot 12$
Núrpur	2，050	$74 \cdot 3$	Gurdispur	900	$30 \cdot 1$	1，150	$2 \cdot 60$
Dehra	2，230	74.9	Roorkce	890	415	1，310	$1 \cdot 80$
13bogpur	2，450	157.7	Ditto	890	30.0	1,560	$5 \cdot 26$
Pajampur	4，000	1180	Gurdispur	900	28.7	3， 100	$4 \cdot 11$
Dhammsála	4．490	1232	Dilto	900	$33 \cdot 1$	3.590	$3 \cdot 72$
Mussooree（1）	5，8：5	1.22	Hoorkee	890	32.0	4,960	$4 \cdot 4$
Mussooree（2）	（6，550	$95 \cdot 2$	Ditto	890	41.5	万， ， $660^{\text {c }}$	$2 \cdot 29$
Nairi Tál	（0，600）	90.9	Rudarpur	720	45%	5，880	$2 \cdot 07$
Simia	6，950	18.6	Ambála	820	$36 \cdot 2$	6，130	1.90
Chakríta	7，050	（62\％2	Saháranpur and Amıála，	890	$36 \cdot 4$	6，360	171
Sanclaur	7，510	87.1	Ruorkee	850	$42 \cdot 5$	6，620）	2.05
Níti	11，460		Rourkee and Rudiurpur，	800	45.04	10，660	0.12

[^79]By grouping together the ratios for the places lying between the even thousands of feet, many of the irregularities that appear in Table XVIII. are cleared away and the results may be accepted with more confidence. The excessive rainfall of Bhogpur, for example, will to some extent counterbalance the defect at Dehra caused by the position of the latter station behind the ridge of the Siwalliks. The following figures are thus oltained :-

IIcight above plain.			Mean height.	Rainfall ratio.		
			Observed.	Calculated.		
		Fect.		Feet.		
0 to	...	1,000	435	$1 \cdot 68$	$1 \cdot 83$	
1,000 "	...	2,000	1,290	$3 \cdot 04$	$3 \cdot 01$	
3,000 ",	..	4,000	3,3̄0	$3 \cdot 1$	$3 \cdot 77$	
1,000 "	...	5,000	4,740 ${ }^{1}$	$3 \cdot 18$	$3 \cdot 15$	
5,000 ,	...	6,000	5,770	$2 \cdot 18$	$2 \cdot 39$	
6,000 ,	...	7,000	6,370	$1 \cdot 89$	1.89	
10,000 \#	...	11,000	10,660	$0 \cdot 12$	0	

The ratios in the last column are calculated by means of a formula, $\mathrm{R}=1+2 \cdot 12 h-0 \cdot 47 h^{2}+0.025 h^{3}$, given in the official Report on the Rainfall of the North-Western Provinces and Oudh, published in 1879. It was originally computed from somewhat different data, but it represents the observed ratios in the above table as closely as can possilly be expected, considering the nature of the observations. At elevations greater than 9,585 feet alove the plain this formula gives inercasing values for the rainfall, and is therefore inapplicable ; but from 7,000 feet above the plain upwards the rainfall ratio may be approximately represented by a logarithmic formulit, $\log \mathrm{l}=2 \cdot 151-0.287 \mathrm{~h}$. In both formulee h is to be expressed in thousands of feet.

The mean rainfall along Rohilkhand and the Doál, at a distance of twenty miles from the hills, is about 43 inches, and the mean elevation of this line above sea-level is 800 feet. Applying the formule in the preceding paragraph to these data, we find that

[^80]the average rainfall on the southern slope of exposed mountain ridges in Kumaon and Garhwil would probably be the following :-

At	800	fect above the sea	43		inches.
$"$	1,000	$"$	$"$	60	$"$
$"$	2,000	$"$	$"$	125	7
$"$	3,000	$"$	$"$	159	$"$
$"$	4,000	$"$	$"$	164	$"$
$"$	5,000	$"$	$"$	149	$"$
$"$	6,000	$"$	$"$	122	$"$
$"$	7,000	$"$	$"$	98	$"$
$"$	8,000	$"$	$"$	52	$"$
$"$	9,000	$"$	$"$	27	$"$
$"$	10,000	$"$	$"$	$1 \cdot 4$	$"$
$" 11,000$	$"$	$"$	7	$"$	
$"$	12.000	$"$	$"$	4	$"$

From the table it appears that the maximum rainfall occurs about 4,000 feet above the sea. The exact height of the maximum zone determined by the formula is 2,948 feet above the plain, or about 3,750 above sea-level. This agrees very closely with the mean altitude at which a rising column of air reaches its dew-point in the rainy season.

By far the most important if not the only cause of rain in the Himálaya is the cooling of the air by expansion as it ascends the mountain slope. It has been already seen that in the rainy season, the direction of the wind at all clevations in the Himélaya up to 15,000 or 16,000 feet, if not higher still, is from some southerly quarter. Near the foot of the hills the prevailing direction is southeasterly, but at most of the stations from the level of Dehra Dún upwards the wind blows from some point to the west of south ; that is, more or less nearly at right angles to the axis of the mountain zone. The air in rising to surmount the barrier has its heat rapidly converted into the work of expansion, and it commences to precipitate raill when the temperature falls to the dew-point. When once condensation begins, the rate of decrease of vapour with height will be a measure of the quantity condensed or the rainfall. This rate is greatest at the lowest elevations; and thus rain should be heaviest at places on the outer slope of the mountains where a rising stream of airs usually begins to precipitate moisture, as the observations prove to be the fact.

The slight rainlall of places like Almora and Srinagar, to the leeward of a ligher mountain mass is caused by the partial exhaustion of the vapour in crossing the mountains and by the dynamical heating of the air as it streams down towards the valley, both causes diminishing the tendency to condensation. The rapid decrease of rainfall on ascending beyond 6,000 or 7,000 feet is due simply to the exhaustion of the vapour, but at all elevations the influence of high ranges in cutting off the supply of vapour is casily seen. Regarding the rainfall of 1849 on the Tibetan table-land, General Strachey says:-"In the country beyond Niti no register was kept; but during a week of rainy weather in the middle of August $1 \cdot 5$ inches fell at Niti, while at Sanjar, beyond the watershed, where I was then encamped, at 16,500 feet, the rain nover exceeded a very faint drizzle, and could hardly have been susceptible of measurement." At the Leh obscrvatory all through the summer the rainfall hardly ever exceeds a few drops, and the greatest fall in a month during several years was an inch and a half. Sir Joscph Hooker's experience in Sikkim supplies us with facts quite parallel to these. In August, 1849, he says 26.8 inches fell at Darjíling, while in tho interior, at the same elevation, but in the rear of the first masses of snowy mountains only 125 inches were measured. Between the 8 th of September and the end of the month only 1.7 inches fell at Mome Samdong, about 15,500 feet above the sea, while at Darjíling 10 inches fell, and other instances of a similar nature might be cited.

The variation of rainfall with season is very distinctly marked in India. At all the stations in Tables XVI. and XVII., and at almost every station on the North Indian plain, the driest month of tho year is November. In the great majority of years no precipitation whatever occurs in this month or in the first half of Decomber, except perhaps on the higher mountains towards the north-west where the winter snows usually begin before the end of November. About Christmas a few showers of snow usually fall on the outer hills, and at the same time there is a slight precipitation of rain over the plains of the Panjab and the North-Western Provinces. These winter snows and rains increase in quantity and in frequency on the lills and in the north-west Panjál until February or March,
but on the plains of the North-Western Provinces and Behar the maximum occur's in January.

The cause of the winter rains and snows has already heen pointed out in describing the annual changes of the winds. In October and about the beginning of November the air over Northern India is as near as it ever attains to a condition of statical equilibrium. It is subject to the diurnal oscillations called the barometric tides and to the accompanying mountain winds, but there is little permanent movement of the air in any direction. During the cold weather, however, the neutral plane of pressure gradually sinks and the south-west upper currents of the atmosphere are then forced to ascend the slope of the mountains where they precipitate more or less of the vapour they contain. On the lower hills the temperature increases so rapidly in March and April that the tendency to precipitation, and consequently the rainfall, becomes less than in January and February, though the upper currents continue to blow from nearly the same direction as in winter. Along the sonthern deelivity of the great snowy range, however, thunderstorms are of daily occurrence at this time of the year, and above the snow line considerable quantities of snow are frequently precipitated. In Ladák the heaviest falls of snow observed by Captain H. Strachey in 1848-49 occurred in April ; but during the three years, 1876-78, there was no precipitation at Leh in that montli.

April and May are the months in which hail is most frequently noticed in the Himalaya. No regular registers of this phenomenon have been kept, bat nearly every year several hailstorms occur in the outer hills, and the stones are often of large size. On the 11 th of May, 1855, a hailstorm occurred at Naini Tal in which many stones of $6,8,10$ and even 24 ounces were observed to fall, the circumference of these varying from 9 to 13 inches. In 1878 there was a storm in which large hailstones foll, some of them so heavy that they punched holes through the zinc roofs of the houses, while the quantity was so great that it lay in shady places, where covered with leaves, for nearly a month.

About the middle of Junc usually, and sometimes before the end of May near the foot of the hills, the hot north-west winds of the plains give way to sea winds from the Bay of Bengal. The
whole of the lower atmosphere over India is then moving towards the Himálaya; and the upward deflection of the air currents by the mountains causes frequent precipitations of rain in the manner already described. The rainy season almost always commences sooner on the mountains than on the plains, for saturation is reached first at high elevations and then propagated downwards by the cooling effect of the falling rain drops and the cutting off of the sun's heat by clouds. At most places in India, and in the inner parts of the Himálaya, July is the rainiest month, but on the outer slope of the mountains August is equally or sometimes even more rainy, especially towards the north-west of the chain.

While the rainy season lasts, the parts of Ladák about Leh, and the Tibetan plateau generally, receive perhaps, on the whole, less precipitation than in winter, because the temperature is then so much higher than on theIndian side of the chain, this high temperature greatly decreasing the relative humidity of any air that may reach the plateau from the south. It is probable also that the high snowy peaks, lying above the limit of the monsoon current proper, receive less precipitation in summer than in winter. At the turn of the seasons, however, about the end of September, falls of snow amounting to several feet in thickness sometimes occur on the passes over the Indian watershed.

Shortly after the autumnal equinox, about the end of September or beginning of October, the rains cease all over Northern India. The sudden cessation of the rainy season seems to be in some measure determined by the rapid diminution of solar heat, as the sun retreats to the south of the equator. It is possibly to this that we must attribute the somewhat remarkable regularity of the recurrence of two or three days' incessant rain frequently experienced in Kumaon about the 20th of September. On the plains, also, it is well known to the natives of the country that if rain falls in the nakshatra (lunar mansion) of Hathiya-that is, in the last week of September or first week of October, it is likely to be heavy. Excessively heavy rain, like that of the 17 th and 18th September, 1880, when 30 inches fell in little more than two days at Naini Tál and produced a disastrous landslip, cannot, however be thus produced by a simple loss of heat, but requires a powerful indraught of moist air to keep up the supply of vapour. The
heavy rain observed on the phains at "the break-up of the monsoon," and probably also that which falls at the same time on the outer hills of Kumaon, must be due chiefly to the minor storms of a cyclonic character that are frequently formed near the head of the Bay of Bengal at the turn of the season, and pass inland in a north-westerly dircetion.

CHAPTER VI.

Economic Mineralogy.

OONTENT心。
Mining history. Experments in Garhwal. The Kumaon Iton Works Company. Causes of present poor returns. Mode of mining: excavation: removing the ore : crushing the ore: cleaning the ore: drainage. Smclting operations; refining the ore. Division of profits. Improvement needed in applinnces: Chili furnace: English systen. Outturn. Financial results of the settlement of the revenue derived from mincrals. Gold: Tibetan gold-fields: Thok Jalung mines. Silver. Copper mines: Rai mine and its ores: Sira mines: Gaul and Sor Gurang. Bournonile. Copper mines of Garhwál : Dhanpur : Dholñ : Pokhri : Claumattiya mines : Kája’s mine: Nota mine: Thàa wine: Danda miue: Tálapungla mine: Kharna mine: Agar Sera mine. Iron mines: Kumanonion mines: Giwár mines: Garhwál mines: Nágpur: Dasauli: lriyakol. Lead. Arsenic. Iiguite. Graphite. Sulphur. Boran. Gypsum. Soap-stone. Asbestos. Silajít. Limestone. Building stonc. floofing slate. Alum.

The mineral resources of the Kumaon division early obtained
Mining history. the attention which their traditional value assumed to be due to them, and it was one of the directions to the first Commissioner to procure specimens of the ores to be found in Kuman and transmit them to the mint for assay. Specimens of copper ore from the mines in Síra and Gangoli were accordingly forwarded to (dalcutta in 1815, but the report was not favourable; for, if the specimens sent were fair samples of the ores in general, it was doubted whether the mines could be worked to advantage. ${ }^{1}$ The Govermment were, however, not satisfied with this report, and in 1817 deputed Mr. A. Laidlaw as mineralogical surveyor to accompany Lieutenant Webb's party through Kumaon. His orders ${ }^{2}$ were to consider the examination of the mineral resources of the country his primary duty, though at the same time he
${ }^{1}$ To Government, dated 26th Junc, 1815: from Government, dated 13th January, 1816. F'or further information on the mineral resources of Kumaon see Moorcroft's Travels, 1., \bar{i} : As. Res., XVIII., 236: Rec Geol. Sur., 1871, 19: IL., 86 : (Lawrler) III, 43 ; J. A. S., Ben., VI., 653 ; Glean. in Sc., I. 230.

Graphite, Glean. in Sc., III.. 280 : J. A. S., Ben., XXIV., 203 ; N.-W. P. Rec., III., N. S., 371 ; G. India Rec. XVII., 58.

Iron ores and works, N.-W P. Rec., XVIII., 1 ; Rec. G. India, Sup., VIII., 37 : XVII., 1 : XXVI. : Bhábar iron works, Agra, 1856.

Copper ores and works, J. A. s., Ben., VII., 934 (Drummond): VIII., 471 (Glasfurd): XlI., 453, 769 (Lushington): XIV.; 471 (Reckendorf); As. Res., XVIII., 239 ; N.-W. P. Rec., IIII., N. S., 22 ; Glean. in Sc., I., 228.

I,ignite, As. Res., XVI., 387, 397.
${ }^{2}$ Firnm Goverament, dated 11 th July, 1317. Mr. Laidlaw died at Pithoragarl in 1836, and I have not been able to procure any of his original reports
should not feel himself debarred from bestowing attention on any other matters deserving of scientific research, so far as such investigation did not interfere with his more immediate duties. These instructions further go on to say:-"You should ascertain the existence or otherwise of mineral productions applicable to purposes of public use, or available as a source of revenue; and report on the practicability of bringing them to account. The existence of iron and copper ores in considerable quantity has already been ascertained; but as the working of these metals might injuriously affect important articles of British import, it is not designed that your attention should be occupied in detailing any practical arrangements for that purpose; you will not, however, consider yourself debarred from prosecuting enquiries into any circumstances regarding them which may be of sufficient interest to science to merit particular notice. In every part, indeed, of your researches it is the wish of Government that, in the first instance at least, you should contemplate rather the general capabilities of the country which you are to visit than the special means necessary for bringing them into action in any particular district ; though, of conrse, the facility or difficulty with which metallic ores or other useful minerals could be raised and brought to market must be a leading point in your observations on them. The minuter details of machinery, mode of working, \&c., are what it is meant to postpone, as these will be the subject of future determination, when the whole result of your survey shall be before Government."

In 1826 Captain J. D. Herbert submitted his report on the mineralogical survey of the province. ${ }^{1}$ This was followed by a report ${ }^{2}$ in 1838 by Captain H. Drummond, of the 3rd Light Cavalry, on the copper mines at Rái in Gangoli and at Síra in Bárabisi. Captain Drummond had brought with him from England an experienced Cornish mincr, Mr. Wilkin, to examine the mines already worked, and proposed that, with a view of ascertaining their actual value, a certain sum should be advanced by "Govermment for an experimental opening of such mines as might appear best suited to the object in view." This proposal was accepted ${ }^{3}$ by Government, and a sum of Rs. 2,415 (subsequently increased by Rs. 1,000) was

[^81]allotted to carry out the designs furnished by Captain Drummond. A report ${ }^{1}$ on the experiments then undertaken was rendered by Mr. G. T. Lushington, Commissioner of Kumaon, in 1842.

The place selected for the important purpose of determining the Experiments in Garhwál. advantages or otherwise of working the mines under European superintendence was the Pokhri copper mine in pargana Nágpur in Garhwál. The works were carried on from 1838 to 1841 with a net loss to Government of Rs. 7,384 . The Commissioner considered this complete failure to be due to the poorness and scarcity of the ores found, and not in the least to any want of skill or industry on the part of Mr. Wilkin, or any injudicious selection of the places for experiment. Mr. Reckendorf, a mining engineer, visited these mines again in 1845, and in commenting on the deductions to be drawn from Mr. Wilkin's experiment, gave it as his opinion that the operations then undertaken should not be considered as conclusive against the value of the mines. ${ }^{2}$ The experiment should have been confined to driving a shaft some thirty or forty fathoms below the old mines, and not to collecting ores which might have been a good addition in smelting other ores, but the smelting of which alone could never be profitable.

Again, there were no proper appliances for smelting, the loss from which by the native method adopted was very great, and the ores used, from their nearness to the surface, had already lost much of their value by the slow metamorphosis of pyrites into sulphate of copper. On the whole, Mr. Reckendorf's opinion was favourable to more extended and expensive operations in the hands of a private company. Nothing of importance, however, resulted from this the first attempt to obtain some accurate information regarding the mineral resources of the Himálaya. Captain Drummond also combated ${ }^{3}$ the conclusions arrived at by Mr . Lushington as to the mines not affording a fair field for investment of capital, and in support of his views quoted the testimony of Captain Glasfurd (Executive Engineer), Captain J. D. Herbert (Superintendent of the Mincralogical Survey), and the experts Wilkin and Reckendorf, who had actually visited and partially worked the mines. He urged that the sums

[^82]litherto expended were larely sufficient to pay for the expenses of discovering and laying open the lode, and were utterly insufficient to carry on the experiment in the only way in which it could be made to pay. Nothing was undertaken until 1852 , when the mines were again opened on the same footing, but the result was failure as complete as before. No attompt has since been made towards placing the copper mines of Garhwal under European superintendence. In 1872, however, a European leased the mines and continued the extraction of the ore according to the native method, but was obliged to abandon the process, as he found the cost of the metal when manufactured more nearly approached the current rate for silver than that obtainable in the market for the best foreign copper. The copper mines in Kumaon have never been worked under European superintendence, and any remarks that I have to make on their value or fiscal history will be found under the notice of the mines themselves.

Connected with the history of mining enterprise in Kumaon

> Kumaon Iron Works Company.
special prominence must be given to the
Kumaon Iron Works Company still in existence, and whose origin is no doubt due to the continued belief, in spite of successive failures, in the possibility of turning the utilisation of the mineral resources of the province into a profitable investment. These had again in the regular cycle of inquiries become the subject of much speculation. From a review of the information before Government and the results of certain experiments made in 1856 the Directors of the East India Company sent out a Mr. Sowerby and a large staff of mining assistants in 1857 to carry on the smelting of iron on account of Govermment in the interior. ${ }^{1}$ The fact was soon established that iron of an excellent quality could be manufactured at rates below the cost of iron imported from England, and a number of private individuals under"the style of Davies and Co. were permitted to undertake operations for the same purpose in other parts of the lower hills.

[^83]The avowed object of the Government enterprise was to induce private companies to work by demonstrating the financial and physical possibility of carrying on iron works as a remunerative industry in this province. Messrs. Davies proposed to take over the tract between the Dhabka and the Bhakra, and their proposals were accepted, with an assurance that they might proceed in confidence to make their arrangements, as Government would grant the lease sought. They therefore took over the Khúrpa Tal works in the rains of 1858 , and paid their cost price in 1863. This company also erected buildings at Káludhúngi at a cost of Rs. $1,2 \overline{5}, 000$. On the failure of the Government works at Dehchauri Colonel Drummond offered to take them over at a valuation. These works were given over to Drummond and Co., who paid the capital under agreement into the treasury in $\mathbf{1 8 6 1}$. The forest rules were relaxed in favour of both companies, so as to allow them entire control over the fuel supplies, and eventually in November, 1862, both companies were amalgamated under the title of the North of India Kumaon Iron Works Company (Limited). Soon after the formation of the company instructions were received from the Secretary of State to construct a tramway to Khurja on the East Indian Railway, chiefly, it would appear, to afford an outlet for the iron manufactures of Kumaon. The tramway was to be laid with cast-iron rails manufactured at Dehchauri, and the company lost no time in making several thousand maunds of pig iron. Before the rails were made, however, the Government announced its determination not to undertake this line itself, but to hand its construction over to the Oudh and Rohilkhand Railway. It was essential to the success of the enterprize that some such outlet should exist, and the company aceordingly determined to close its works for a time and await the opening of the line.

A license was granted by Government, bnt, unfortunately for the company, not executed till it was too late, and the deed of agreement contained briefly the following clauses :-1.-That a capital of $3 \frac{1}{2}$ lakhs of rupees should be paid hefore execution of the deed. 2.-That the company should pay Rs. 83,585 as the liquidated value of the works at Dehchauri, Ramgarh, and Khúrpa Tál, made over to them by Government, in four instalments, on or before the 1st September, 1862, 1863,1864, and 1865, respectively; and in default of one
payment the whole to become immediately due. 3.-To pay yearly, for the first three years from 6th June, 1861, a rent of Rs. 1,500, and thereafter a yearly rent of Rs. 2,500 and a royalty of one rupee per ton of cast or wrought iron produced, and eight annas per ton of iron ore raised and sold without being smelted; the said royalties not to be paid unless they exceed, and only so far as they exceed, the rents of Rs. 1,500 and Rs. 2,500 before named; payments to be made on the 1 st May yearly. 4.-To erect during the third, fourth, and fifth years suitable furnaces with requisite appliances for the smelting or blasting of iron (no number mentioned), and during these third, fourth, and fifth years to manufacture at least 750 tons of iron per annum on an average, and thereafter till the end of the term of 50 years manufacture 2,500 tons of iron per annum on an average of three years, to be struck in May each year. 5.-That the area of the forest at the close of every ten years should be covered with at least nine-tenths of such timber like trees as stood upon it at the commencement of the term, and when less than nine-tenths the company should plant to the necessary extent, failing which they should pay for each default Rs. 20,000 . 6.-Not to transfer their lease without the consent of Government. 7.-To keep all roads (not being public ways made by Government) used by them in repair, also their works. 8.-At the close of their term remove their buildings, \&c., first giving Government the option of purchasing them at a fair valuation. 9.-On the failure to pay or manufacture as stipulated, Government to enter upon and possess the works. 10 .-But if such failure is not due to the neglect of the company, they shall be free from such penalty.

The purchase-money of the Khúrpa Tíl works was alone paid up, but the forfeiture clause was suspended by the local Government in 1868. The forest tract was never given over to the company in the meaning of the agreement, but its revenue has been separately collected and credited by Government. The license was not sent up from Calcutta till June, 1864, by which time the company had begun to see that the speculation would not tarn out a profitable one. In fact the license deed was not prepared for signature until after the company had suspended operations, and then it was ruled by the Solicitor to Government that it ought not to be signed. The
map of the tract to be given over to the company was not completed till 1869. So much for the relations of the company to Government, and the delay in dealing with its affairs which has been shown throughout. In June, 1861, permission was obtained for the company's manager to draw against their capital. This was expended with little result, and in 1864, as above mentioned, the company was wound up. This result was in a great measure, no doubt, due to the company being unable to raise capital in the market, owing to the defect, or rather the want, of title, which appears to be ascribable to no fault of their own. Since 1865 correspondence has been carried on in reference to the affairs of the company and plans have been proposed for its resuscitation. In 1872 the works were visited by Mr. Jones of the Roorkee Workshops and valued; he made them then worth Rs. $1,26,733$, with a debt to Government of about Rs. 80,000 . There can be no doubt that the works can hardly be said to have had a fair trial, and the valuable opinion of the Commissioner of Kumaon may be quoted to the effect that there is every reason to believe that, if carefully supervised and fed with capital, the works should at least turn out as favourable under any circumstances as the East Indian Railway. There is no doubt that, in the distance, the fuel difficulty exists, but at Dehchauri and Káládhúngi for many years this can* scarcely be felt, and under penalties to replant, the company may fairly be allowed to have an unlimited supply from the neighbouring forest. At Ramgarh it is doubtful whether iron manufacture will pay, as the ore, though of the finest quality, lies at a considerable distance from any forests of any considcrable magnitude, so that until it has been definitively settled whether coal does or does not exist in Kumaon the eventual absolute success of these Kumaon mines must remain problematical. ${ }^{1}$ The increase of railways in Northern India and the development of the resources of this province must sooner or later press these difficulties into notice, and they will then obtain a final solution. "Too much has been written and too little done" hitherto in this direction.

In reviewing the causes of the poor returns from the different

Causes of present poor returns. mines, one that presses itself into notice on the most cursory inquiry is the comparative

[^84]inaccessibility of the principal mines. The copper mines of Sira and Gangoli, equally with Pokhri and Dhanpur, are situated on high cliffs in the interior. The talcose and calcareous formations in which the ores are found occupy the high precipitous mountains which build up the outlying spurs of the principal range, and some lie within it. This chain itself is metalliferous, as the lead mines at Ghirti between Milam and Niti, the copper indications at Tola and elsewhere in the Juhar country, and the copper and iron mines at Polar near Rudrnath combine to show. The absence of coal and the increasing cost of wood fuel, with the distance it has to be carried when the forests near the mines have been exhausted, materially enhances the cost of production, while the difficulties of carriage in the tracts where the mines lie are often such as almost to preclude the transport of ore for smelting, and the forests in the neighbourhood of most mines only suffice for the most moderate requirements. Another difficulty is the want of labourers. The present workmen only come to work in the mines from the latter end of October to the beginning of April, and many of the less productive mines have been abandoned owing to the miner class turning to agriculture and to supplying the labour market at Ránikhet and Naini Tál. This want, however, could be sapplied from Nepál were regular wages and constant employment once established. Sea-borne copper, though inferior to native copper, is from its cheapuess preferred, and until capital is invested in opening up the larger mines and conducting the whole operations on a sufficiently large scale to warrant the permanent investment of capital in machinery and proper furnaces, and other appliances for the more economical working of the ore, mining enterprise must remain as it is-a practical failure in this province. It may be said that theso extended experiments have already been tried in the case of the Kumaon iron works, but this remark will scarcely apply, as that is another of those unsatisfactory operations which stopped just at the point where further progress would have decided the question for or against the possibility of making mining speculation a remunerative one in Kumaon. I shall now briefly describe the mode of working and the financial results of the settlements of the revenue from mines from the official reports and papers before describing each mine.

The mode of working the mines is the same in Garhwal and

> Mode of mining. Kumaon, and the suggestions for its improvement will serve for all classes of minerals. A gallery or passage is cut in the face of the hill with such slight declivity outwards as is sufficient to carry off the water. These adits have more of the nature of burrows than that of the shafts known in European mining. The section is always small, and in those parts where the hardness of the rock occasions any difficulty in working the passage is scarcely sufficient to admit of a person in a creeping posture. In no place will it allow of an erect position. Where necessary, frames of timber formed of unsawn branches of trees, rudely and even carelessly constructed, are set up to support the roof and sides. Accidents are therefore not uncommon, and the frequently falling in of the mines is one result of these imperfect protections. ${ }^{1}$

The ore as well as the rock is excavated by a very different Mode of excavation. kind of pickaxe, the handle being made of a piece of wood with a knob at one end, into which a piece of hard iron is thrust and sharpened at the point. This with a miserable iron hammer, wedge, and crowbar, constitutes all the apparatus that the native miner has to depend upon. It is plain that with such tools no hard rocks cau be penctrated nor can the softer ones be worked with much facility, and to this fact may be attributed the universal smallness of the passages throughout the mines, as the native miner can have his passage no larger thim the rock which encloses the ore and its matrix will admit of. Proper pickaxes and steel gads (wedges) should therefore be substituted instead of the inefficient tools in use, and when blasting may be required the necessary materials should be provided. The miners work during the day, using torches made of dry pine, and clear out on an average from ten to twelve maunds of ore.

The ore is removed from the mine by boys, who pick up the stuff with their hands and put it into skins,
Removing the ore. which they drag along the floor by means of a rope and cross handle attached to their neck to the entrance of the mine. In most mines the greater part of this work must be done in a crecping posture, the string from the skin being fastened around the waist of the dragger. In place of this method wheel-barrows

[^85]or sledges on four wheels and shovels should be used when the passages are enlarged and properly supported with sawn timber.

The ore or dhin being delivered at the mouth of the minc is reduced to a small size either by the watermill or by the manual labour of women. A large stone is placed on the ground on which they lay the ores; they then, either with a stone or a large hammer, and more frequently the former, proceed to pulverize the ore and pick out the impurities. In this way a woman may manage one to two maunds (82 tb avd.) a day, according to the hardness of the ores. In Cornwall a woman will pulverize from 10 to 15 cwt. per day, according, as in the former case, to the nature of the ores. The method in practice there is, first, to dispense with the picking; secondly, to have the ores elevated, so as to cnable the individual to stand while working, and to have a plate of iron about a foot square and two inches thick on which the ores are broken with a broad flat hammer. The impurities are then finally separated by a peculiar mode of dressing the ores with a sieve, by which a boy gets through with from one and a half to two tons per day. The ores are conveyed to the women, and from them to the boys by a man who attends for that purpose.

The washing of the ore in Kumaon also is performed by women,

> Cleaning the ore. who carry the stuff in baskets from the entrance of the mine to a stream, where they contrive by dabbling it with their hands to wash off the mud and finer particles of the earth. They then proceed to pick out all the pieces of ore they can get hold of ; or, in the case of what may be submitted to the water in a commuted state, they work this against the stream, so as to gather it clean at the head of a small pit by handfuls; but, from the bad construction of the pits, it is with difficulty that this is performed. After picking up any larger pieces of ore which may have gone back with the stream, they scoop out the refuse with their hands, and then proceed with another charge. In Cornwall, one woman provided with a wheelbarrow and shovel for the conveying and washing of the ores, and a boy with a sicve for clressing them, as formerly mentioned, would accomplish a task equal to that of ton women on tho system described.

The drainage of the mine is managed in a proper manner by an adit. But whenever any attempt is made to go below it, as is the case in most if not all of the mines, the water is then raised in wooden buckets, handed from one man to another until they reach the adit into which they are emptied. In this manner six, ten, or even more men may be employed, whilst only an inferior number can be spared for excavating the ores. At the Sidra mine, for instance, six men were found constantly engaged in lifting up the water, and there were only two at the ores : the work done by these six men could be effected with a hand-pump by one man: but in order to keep the pump constantly going, two men might be required, and tho remaining four added to the number of those who are excavating.

The furnace of the Dhanauriya or smelter is very simple, and is
Smelting the ore. made of common stone and clay faced with slabs of quartzose schist, lated with a compost of chaff and clay. It is about $3 \frac{1}{4}^{\prime}$ long by $2 \frac{1}{4}^{\prime}$ broad, with an ash-pit about six inches square, all of which are built inside a house about 12^{\prime} by 14^{\prime}, of which the roof is composed of planks. (Figs. A. B.) The operation of smelting takes about $28 \frac{1}{2}$ hours, during

Fig. B._ Vertical Section', from the front.

which time the fire is kept up, and after that the facing slabs and luting require renewal. The implements used are a crowbar, poker, shovel, and a pair of buffalo hides, dressed whole, to form the bellows, the neck of which forms the nozzle, and the buttock the valve for the ingress of air. The hides for making them are worth Rs. 12 apiece. ${ }^{1}$ The furnace being freshly luted, the ash-pit is filled with charcoal dust and chaff, and a fire being lit, six baskets of iron ore, each containing about thirty sers (the ser $=2 \mathrm{~h}$. 2oz. avd.), are placed round the fire. The blast is then commenced, one bellows being inflated while the other is undergoing depletion. In about half an hour the slag commences to flow from the flosshole, which is kept open by a poker. In about two hours more, the ore having subsided considerably, two more baskets of ore and a corresponding supply of charcoal is given with a new luting for the bellows nozzle. In another two hours, this having also subsided, the charge is deemed ready. The fire is then raked out through the flosshole, and the charge, consisting of a pasty mass called phalka or jhauj, is shoved out with a crowbar by the smelter. The same operation is repeated until seven blooms are obtained, consuming thirty-eight baskets of ore, thirty-one of which are converted into the seven blooms, and the remainder, comprising the partially roasted ore, become the property of the smelter. The charcoal consumed weighs 340 sers, or a little more than the seven blooms, which weigh 327 sers, or about one-third of the ore expended (930 sers). Each bloom consists of three qualities of metal, all intermixed with earthy particles. These are kept separate, and are broken into small pieces before being sent to the khatauniya or refiner.

The furnace of the refiner is smaller than that of the smelter,
Refining the ore. and the implements required are a pincers, poker, two or three sledge-hammers, an anvil, and bellows. The fire being lit, a mixture of one-sixth of first quality, one-sixth of second quality, and the remaining twothirds of third quality, in all about six sers of bloom metal, is placed on the hearth opposite the bellows, with the larger pieces nearest the fire. The blast having commenced, in a quarter of an hour the slag begins to flow, and in another quarter of an hour the

[^86]metal (now a porous, pasty mass) is taken out of the fire and subjected to the blows of two or more sledge-hammers; the blows being slight at first, to prevent the metal flying into pieces, but as it becomes more solid, they are given with the full force of the workmen. Mcanwhile a fresh supply of bloom-metal is placed on the hearth, as at first. The hammered mass, after several hammerings, assumes the shape of a small bar, weighing one and a quarter ser; it is thick in the middle and tapering to either extromity, and six sers of charcoal have been used in its formation. This bar is now fit for the market, and is called by the workmen phala, but by the plains-people pain. The charcoal used by the refiner is made from the dry trunks of fir trees which have been felled for two or more years, while that made use of by the smelter is made from small green wood. The refiner class is subdivided into another, called Bhadeliya, who, instead of making the iron into bars, manufacture it at once into cooking utensils. Nine hundred and thirty sers of ore produce 327 sers of bloom-metal, which in its turn produce 82 sers of marketable bar-iron, or only 8.8 per cent. The bloom operation consumes 340 sers of charcoal and the refining process 667 sers, so that for every ser of iron produced $8 \cdot 2$ sers of charcoal are consumed. The Swedish furnace only consumes 1.33 times the weight of the iron produced.

The mines are leased for a term of years to contractors for a

> Division of profits. certain sum, and the lessee collects for the season from the different classes of workmen at the following rates: from cach son or miner Rs. $2 \frac{1}{2}$; from each gang of smelters Rs. $4 \frac{1}{2}$; from refiners of the Khatauniya class Rs. $4 \frac{1}{2}$, and from those of the Bhadeliya class Rs. 6. The miner is originally sole proprietor of the ore, which he takes to the smelter to reduce into blooms, giving him for bis trouble one basket of ore (30 sers) and one basket of charcoal (5 sers) for each bloom turned out; also for each set of seven blooms 16 sers of grain, and food for one man for four days; and at the end of the scason a suit of clothes. Sometimes, however, owing to the smelter being largely in debt to the miner, he does not receive any charcoal from him. The smelter can only work for certain miners, generally five in number, not being allowed to work for any other miners; or, in other words, each party of five miners employ one family of smelters exclusively.

Each party of smelters must consist of at least five persons, but they generally count eight to ten persons. The share of each party of refiners is one half of the bloom-metal made over to them to refine, no further remuneration being allowed them. Refiners, unlike the smelters, are not bound to work for any particular person, but may work for any one that chooses to patronize them.

In the roasting and smelting of the ore Captain Herbert

[^87] recommends a system of reverberatory furnaces for these two different processes. An excellent material is at hand in the indurated tale known as potstone, which, though soft, is infusible. The simple blast furnace in use in Chili would also be an improvement. It is of a circular shape, similar to a lime-kiln, covered with a dome to confine and concenChili furnace. trate the heat. The ore is arranged in it in alternate layers with the fuel, which is wood, and being lighted it continucs burning for a considerable time. When required, the heat is urged by a double pair of bellows worked by a crank turned by a water-mill.

The methods of reduction practised in England, where the

> English system. sulject is best understood, vary with the ore, and even with the establishment. But the differences are triffing and only affect the minor details. The two great objects to be effected are, first, by a proper calcining heat to drive off the volatile ingredients sulphur and arsenic, and to oxidate the iron, thereby promoting the fusibility of the ore and consequent separation of the metal from the scoria when in fusion; and, secondly, by an intense and properly continued fusing heat to cffect the vitrification of all the impurities which thus form a slag at the top and are skimmed off while the metal sinks down in a comparatively pure state. To promote this vitrification of the ingredients occasional additions are made to the ore as the case may soem to require, though in general the run of the ores is such as to require little beyond a few slags of an old smelting. The operations of roasting and smelting are repeated several times, each smelting being followed by a roasting, to expedite which effect in the case of copper the ore is, after each smelting but the last, let into water to be granulated. This separation of the metal into such small parts assists the calcining power of the furnace, and the work is more speedily effected than if
performed on the mass. After the last smelting comes the process of refining or poling, which consists in keeping the copper in a melted state covered with charcoal, and introducing from time to time a wooden pole into the melted mass to produce the evolution of gaseous matters. Lead is sometimes used both in Hungary and England to expedite the previous operations of the refinery. The oxides of this metal are amongst the most powerful vitrifiers known. As such they are effectual in the assay and refinery of the precious metals, and as such they may be also used with copper. But the process requires attention, for if not stopped in time, or if too much lead be added, the copper itself will be oxidated and vitrified.

The process of manufacturing iron from the ores is different from that of copper, inasmuch as none but the oxides or carbonated oxides of the former metal are ever employed. In the copper ores, that is in those which occur in any quantity, the metal is combined with sulphur, which can only be driven off by repeated roastings. In the iron ores the metal is united to oxygen and mixed with various earthy impurities. In reducing these ores, then, there are three distinct points to be attended to: first, the provision of a substance which shall effectually take the oxygen from the ore, leaving the metal mixed only with its earthy constituents; second, the proportioning the flux used to those earthy ingredients so as to insure a complete vitrification of them and separation from the metallic particles; and third, a sufficient heat to fuse the latter, that the separation and reduction may be more complete. The first point is attained by using a sufficient quantity of charcoal in the reduction of the ores; the second by adding, as the ore may require it, limestone or other flux ; and the third point is only to be effected by using a powerful blast furnace.

It is not easy to give the outturn from the mines, the arrange-

> Outturn. ments are so intricate and the returns so imperfect. In 1868 about 29 maunds of copper were raised from the Kumaon mines, and in 1869 the same mines yielded the same amount, of which 21 maunds werc exported. The Dhanpur mines in Garhwál yielded 10 maunds of copper in 1869, but every year since the produce has decreased. In 1868 the Kumaon iron mines yielded about 2,000 mands of metal, and the Garhwal mines about 1,752 maunds, while the returns of 1869 give

5, 153 mands for Kumaon aud 529 maunds for (xarhwál. Besides this an immense quantity of copper is imported into Kumaon in the shape of manufactured vessels for culinary purposes: about 2,000 maunds of iron also are imported from the plains against 155 maunds exported. No reliance can be placed upon the estimates of outturn in recent years, as the mines have been leased for a term of years, and the lessoes are not inclined to have their affairs too closely examined.

Previous to the Gorkháli conquest of Garhwal the copper mines

Financial results of the settlement of the revenue derived from minerals. of Nágpur are said to have yielded Rs. 5,000 Gk. a year, or about Rs. 3,800 of our money. The entire mineral revenue of Kumaon and Garhwail, including mint dues ${ }^{1}$ on the coinage of copper pice, had fallen in 1812 to Rs. $4,800 \mathrm{Gk}$., equivalent to Rs. 3 , 600 British currency. ${ }^{1}$ This was mainly due to the neglect of the Gorkháli Government, under which the mines had fallen in and become choked with rublish. Their suspicious policy prevented them from trusting their own officers, whilst their want of probity precluded any private person from venturing to sink the capital necessary to re-open the mines. In 1815 the Nitgpur mines were leased for Rs. 10, and in the following year for Rs. 15, and with the villages attached to them seldom brought in more than Rs. 1,850 a year, whilst those in Kumaon were leased at Rs. 850 a year. Up to the year 1826 the revenue of the Kumaon mines was included in the assessment of pargana Rámgarh, and that of the Garhwal mines in pargana Dhaupur, and subsequently was accounted for in the returns of the pargana within which they are actually situated. Between the years 1815 and 1840 the revenue derived from mines averaged as follows :-

| | | | Kumaon. | Garhwál. |
| :--- | :--- | :---: | :---: | ---: |\quad Total.

The highest mincral revenue of the province for any one year amounted to Rs. 5,417. This return was not altogether due to the

[^88]smelting of ore, and inchuded the land revenue of villages attached to the mines for the location and support of labourers. Mr. Beckett in his report ${ }^{1}$ on the settlement of Garhwal gives the revenue of each mine from 1839-40 to $1863-64$. The revenue every fifth year from each class of aine during this period was as follows:-

Class of mine.	1839-40.	1844-45.	1849-20.	1854-5\%.	18:29-60.	1863-64.	Total revenue from 1838-39 to 18633-64.
	1 s .	Rs.	Rs.	Rs.	R.s.	Ris.	Rs.
Iron ...	609	727	779	430	272	131	3,764
Copper .-	1,990	2, 1.42	2,138	1,305	81	627	21,304
Lead	5	3	3	*'	10	64
Total ...	2,599	3,174	2,920	1,738	353	771	25,132
worked,	$2 \pm$	25	23	17	31	30	76

In 1865 there were 24 iron, 9 copper, and 2 lead mines worked in Garlwál, and 33 iron, 35 copper, and 3 lead mines had been abmaloned. The lead mines have since been abandoned, and the revenue firom copper and iron mines in 1878-79 was as follows:-

There are no statistics of outturn for these years.
In his Kumaon settlement report Mr. Beckett gives the revenue of each mine from the year 1844-45 to the year 1872-73. The revenue every fifth year from each class of mine during this period was as follows:-

Class of mine.	18:8-49.	1853-54.	1858-59.	1863-64.	1868-69.	1872-73.	
	Rs.						
Copper ..	100	48	Nir.	120	67	30	2,831
Iron ..	2,27.	1,751	1,532	870	929	1,420	46,126
Total	2,374	1,799	1,532	990	996	1,450	48,957

[^89]The following quotation from the Commissioner's report in 1874 gives the opinion of those best acquainted with the subject on the future of the mining industry in Kumaon:-"Iron and copper abound, but at the present value of labour the mines are worth very little. The sons or miners have, as a rule, given up their old trade and taken to contracts. The great attraction to miners in former times was the cheapness of grain in the Khetsari valley, where iron was most extensively manufactured. This advantage no longer exists, for the market at Ranikhet has doubled the pricc of grain, and the miners would be no longer content to exchange their labour for the small profits on iron. Copper mines are in no greater favour. Formerly some villages where the miners reside were included in the mining leases of Kumaon and Garhwál. These villages have been settled with the miners, therefore they are no longer servants of the contractor. Tea gardens and other labour markets offer much better terms than a contractor, who, at the least possible expenditure, tries to make the greatest possible profit. These contractors know nothing about the science of mining, and they have no money to expend in penetrating beyond the workedout galleries. In fact the mines have collapsed, and without considerable outlay no reasonable profit can be oxpected. Labour is expensive, and English copper can be bought at a cheaper rate in the Almora bazar than the local miners can produce it with profit. I expect nothing more from native petty contractors than a pittance which they can realize by the resident miners working when convenient to themselves, when they give half of the ore to the contractors and keep the other half. No doubt there is alundance of copper in Gangoli ; but any mines, copper or iron, that are now worked barely produce sufficient for local consumption. Agricultural instruments are made for the people of the surrounding country, and a fow copper vessels; but all the mines in the interior are in remote places, and too far removed from a good market to be of much value."

The gold exported from Kumaon is either obtained from the Goll. streams within the province, or is brought down by the Bhotiya traders from Tibet. Althongh no mine of this metal has been discovered in the province, there are indications of its existence in Garliwal. The sands of the

Alaknanda, Pindar, and Sona furnish a small amount of gold-dust. The Ganges also is auriferous as far as Lachhman Jhúla, and the Rámganga for a short distance below its junction with the Sona. The washing is nowhere a profitable occupation, and scarcely gives an average of four annas a day for ench workman. The gold obtained by washing the sands of rivers paid a small duty during the Gorkhali rule, and was leased with the forest duties for a short time after the British occupation, but the amount was too trifling to render its continuance expedient, and it was accordingly abolished by Mr. Traill. Undonbtedly a greater return might be had from this source by the use of mercury, as in Australia, for the purpose of separating the gold from the sand; for as this is afterwards recovered by a simple process of distillation, the expense would be very little more than it now is. Captain Herbert found gold in a matrix of granite near the Alaknanda.

The gold imported from Tibet by traders is chiefly taken in
Tiluctan gold mines. the hill fairs for the same purpose. The principal gold mines in Tibet, sár-chaka, are ten days' journcy beyond the borax fields further north and north-east in a district otherwise uninhabitable, named Sár-bachýcicl. These are farmed or managed by a sár-pan or gold commissioner on a triennial contract direct from Lhassa. The lessee in 1845 was also Garpan Urku-wa at Gartoh, and paid Rs. 17,000 per annum for the lease. He had 170 miners at work, for whose subsistence he used to send supplies from Pruang. It would also appear to be sometimes the custom to sublet 'claims' at a tax of a sárjao or jao of gold, about $7 \frac{1}{2}$ mashas, or ten rupees. ${ }^{1}$ The gold mines are worked by pits and shafts under ground, where the gold is found in its pure native state, and undergoes no other process than washing and shifting, and after that requires little or no refining. In this state, ticl up in little bags called sár-shut (H. phatang), woighing about 90 grains, it forms the heavy currency of the comntry. A superstitious belief holds ground that no large nugget should be removed, as it belongs to the genii of the place, bat the Lama of Gnari is said to have one weighing nearly a ser.

[^90]Gold is sold at the same fairs as the borax, and is imported to the value of about Rs. 10 to 12,000 annually.

The gold in the bags commonly current has usually not more

> Thok Jalang mines. than 7.73 specific gravity. Even the picked yellow grains have only a specific gravity of $11 \cdot 96$, showing that they are alloyed with some other metal. The grosser impurities appear to consist of iron more or less oxidised. One of Montgomery's pandits visited the gold mines of Thok Jalang in Rolitoh in $1867,{ }^{1}$ and deseribes it as a great excavation from 10 to 200 paces in width and 25 feet in depth, access to the bottom being by means of steps and slopes, the earth dug out being thrown on either side. The digging is carried on with a long-handled kind of spade or an iron hoe, the iron for which comes from Ladak. Λ very small stream runs through the gold ficld, and the bottom is consequently a quagmire during the daytime. The diggers dam up the water, leaving a sloping channel for an escape. A cloth is then spread at the bottom of this channel, and the channel is supplied by one man with the auriferous earth, and another gives water, so that the gold sinks to the bottom and is caught in the cloth at the end. Some nuggets weigh up to two pounds. The diggers come from the Tsang province round Shigatze or Digarcha. There are numbers of abandoned gold fields in different directions about Thok Jalang, and probably a whole series of them from Rohtol to Lhassa. The Sárpan levies a tax of about half a tola (saishu), or two-fiths of an ounce, from each digger. There is no wood, and water can only bo had from melted ice. A cold wind blows at all seasons, and, in consequence, the tents of the diggers are pitched in excavations in the ground to protect them from this wind. The dried dung of yaks, ponies, and sheep afford fuel. The Tibetans cook and eat three times a day, their food consisting chicfly of boiled meat, barley cakes, buttermilk, and tea stewed with butter : they also smoke a great deal. They always sleep with their lineses close up to the head and rest on the knees and ellows, luddling all the clothing on to their backs. The price of gold at Thok Jalang was about $5 \frac{1}{2}$ to 6 rupees per saishu, or 30 rures per ounce.

[^91]Silver was brought down to these provinces from Tibet silver. in former times. It was imported into that country from those surrounding it (probably China), and does not seem to be found in Tibet itself in any quantity. It was sent into Tibet in a crude state in lumps called doja or thaka, of a general value of Rs. 165 each. limportations from that source have ceased for some time, owing possibly to the great and growing inflax of silver in the shape of rupees from British territory. Formerly all borax, salt, \&c., was barterod for grain, cloth, \&c., but now, while a large amount is still disposed of in that way (probably to procure actual necessaries), still, whether it proceed from the increase of trade and the portability of coin for hoarding purposes, or from the existence of a greater demand for silver in Tibet, by far the largest amount of borax is disposed of here for British money. The Bhotiyas, too, state that our coin is largely current in Gartoh and the other large towns, and is preferred by the inhabitants there to the coinage of other countries. They ask for the Cheharádíar Rupaya, or face-printed money. ${ }^{1}$ The difference in the exchange now made up in Government rupes camnot be less than eighty thousand to one lakh of rupees per annum. This trade in rupees dates from about 1820 , when they began to displace the Srinagari and Ladáki rupees.

The mines of copper in Kumaon and Garhwál have never been

> Copper mines. of much practical value either as a source of supply for local consumption or as offering a valuable return to labour and capital. They are still, however, deserving of notice, and we shall now describe each in succession, commencing with the Gangoli mines in Kumaon.

The Rai mine in pargana Gangoli is the most important in Kumaon. The ore is chicfly pyrites in a matrix of indurated and sometimes slaty talcose and steatitic schists inclosed in dolomitc. In some places the one, and in some places the other, forms the roof and sides of the mine. The dolomite has a large crystalline grain and great tenacity, and forms a perfectly durable work when excavated. The schists when massive may be depended on, and can be easily worked,

[^92]but, as a rule, they occur of such inferior consistence, having much the appearance of re-mited débris, that they require support, and often occasion much inconvenience and even danger. The ore occurs in the schists in numerous strings, having overy appearanco of being leaders, as they are called, to solid ore, and forming a distinct lode. The strike or direction of the strata is nearly W.-N.-W. to E.-S.-E., dipping at an angle of about 45° to the N.-N.-E. The copper ore is accompanied by iron pyrites which are occasionally found in the pentagonal dodecahedron form, but most commonly in such irregular and anomalous forms as can with clifficulty be described. There are a few specimens of grey copper, but the working ore is undoubtedly pyrites. On visiting the mine in 1836, Captain Drummond found the lode about two feet wide, containing a good yellow copper ore, but with a large proportion of its matrix talcose, twenty per cent. only being metalliferous. The ore is extracted in the usual way by means of drifts slightly inclining upwards, to allow for drainage. The adit at Captain Drummond's visit was driven on the course of one of the lodes which continues west about 60 feet, when it falls in with another lode that alters its direction to $15,^{\circ}$ and afterwards to 30° north, inclining nearly 50° to the east of north. At that time the adit had penetrated some 348 feet from the entrance. The ore had been taken away from beneath as far as the mincrs could excavate it, and the hollow had been filled up with rubbish. From above, too, the ore was taken away as far as it was found productive. The passage varied from two to four feet in height and from two to two and a half feet in width, being bounded by the hard dolomitic rock which the miners did not know how to remove. In 1868-69 these mines fell in and became Hooded with wrater. About a couple of hundred yards to the north, and in the same hill, is another similar deposit of copper. This used to be laid open to the surface during the rainy season, and was then allowed to fall in, so soon as the water employed by the miners to carry off the talcose mud from the ore ceased to be plentiful. This also has ceased to be worked for some time.

In 1815 one specimen of fused copper from the Gangoli mine
Ore nssayed. and several specimens of the ore in matrix were sent to the Mint at Calcutta for assay. The report showed that the ore was mixed with arsenic and sulphur,
and produced 25 per cent. of malleable metal, but the specimens were too small to allow of any exhaustive examination of them. ${ }^{1}$ In 1826 Captain Herbert valued the outturn at 35 per cent. of the pure ore, and in 1836 Captain Drummond gave the general result from the pyrites in their perfectly pure state as about 30 per cent. of metallic copper. ${ }^{2}$ Pyrites, though not a rich ore, is the most important of any, from its abuudance and from being generally more to be depended on for continuance than the richer varieties. In England more copper is obtained from it than from all the other ores together. The Gangoli, Síra, and Sor mines were farmed from the conquest until 1828, when they were leased for one year to the miners, ${ }^{3}$ and were again farmed at a reduced rent in 1833. In 1815 they yielded a revenue of Rs. 850 , increased to Rs. 1,201 in 1819 and 1820, and to Rs. 1,215 in 1821 and 1822, but in 1874 the whole of the copper mines of Kumaon brought in a revenue of only Rs. 30 a year.

The Síra mines in Patti Bárabísi in pargana Síra are situated
Síra mines. on the northern side of a hill somewhat ligher than the one at Raii. The ore here too consists of copper pyrites, accompanied by iron pyrites in a gangue formed of dolomitic and talcose rocks. In 1816, a specimen of copper ore from the Síra mine was sent to the Mint at Calcutta for assay, with the result that it was found to contain only 24 per cent. of malleable metal, so that it was thought that this mine would not repay the working. ${ }^{4}$ Captain Drummond found that nearly thirty-three fathoms from the entrance the adit struck on a copper lode on which a level passage was driven that continued westward, its course being about 10° south of west, and the dip northerly from 45° to 50°. The ore was harder and more mixed with iron pyrites than the ore at Rái. At the end of the level a second lode yielding a poor ore was met, and beyond it a pit was sunk which seemed to have yielded in former times fair returns.

The Gaul mine in Patti Kharahi and the Sor Gurang are simi-
Gaul : Sor Gurang. larly situated, but the ore produced is in very small quantities, consisting of grey

[^93]copper, copper pyrites, and carbonate of copper. Steatite and limestone are the neighbouring rocks, the steatite forming the gangue. The Sor mine had not been worked up to 1833, although a lease at a small rental had been taken out in 1821. ${ }^{1}$ Captain Herbert notices that all these ores are free from the presence of arsenic, which, above all other metals, deteriorates the quality of the copper and is most difficult to remove.

In digging the foundation of a house at Hawalbigh the workmen came on a vessel containing three crystallized Bournonite. specimens of bournonite, the triple sulphuret of copper, antimony, and lead, and the only trace hitherto discovered of its existence in these hills (1826). Copper pyritos also exist near Ganai and Phadiáli in Patti Athgáon in pargana Gangoli ; at Bujúl and Ratháyat in Patti Bel in a matrix of stoatite and feldspar ; and at Támba kín in Patti Gangoli in a matrix of talcose rocks. There are small mines in Patti Gíwár, at Chín ka Káli, Beler, Sor, and at Kemakhet, on the east bank of the Ladliya river in Kali Kumaon.

The copper mines of British Garhwal are more extensive and have always borne a higher reputation than those of Kumaon. The principal are situCopper mines of Garhwál. ated at Dhanpur and Dhobri in pargana Dewalgarl. These mines yielded a considerable outturn in former times, but of late years operations have not been so vigorously carried on, owing to the intricacy of the workings, and the idea prevailing among the miners that very little ore remains in the mines.

The Dhanpur mine is situated on the north side of a high and procipitous range in compact dolomite. ${ }^{2}$ The ores are principally copper pyrites and grey or vitreous copper ores, with the red oxide and green carbonate in smaller quantities, the latter being scarce. The ores are found in a bed about fifty to sixty feet wide, which runs nearly north and south, and underlies east about one foot in the fathom. It is divided by a bed of potstone or indurated tale, which rums through the copper formation longitudinally, conforming to the strata and having a frith

[^94]or flukan on the western side. The seams of ore are sometimes one foot in thickness, bat seldom more than one inch. In his report on Dhanpur, in 1816, Mr. Traill deelared that these mines were incapable of much improvement, and that the ore produced was not rich. The lease of the mincs, including the twenty-two villages attached to supply the requisite labour and grow grain for the miners, was fixed at Rs. 1,850 a year. Up to 1829 there was little improvement, as the lessees were too poor to undertake the cleaning out of the mines, and no capitalist would venture to take them. ${ }^{1}$ In 1838, the best scam or vein seen by Mr. Wilkin was not more than half an inch thick, and in 1841 the best lode worked was about two inches. The veins are very close together, and being softer than the matrix, the ore used to be first removed, and then the miners burned the rock with wood and threw water on it to facilitate removal. The red dolomite is of such a consistence as to seldom require props for its support, thus enabling the miners to dispense with wooden framework and to work all the year round, while the situation of the mine on the top of a hill admits of adits for drainage. The interior consists of a network of chambers from end to end.

The Dholri mine is situated on the south side of the Dhanpur
Dhobri mine. range in very nearly the same kind of rock as the Dhanpur mine, but in this mine most of the veins are horizontal, rumning along the side of the hill. At the surface they are very small, containing oxide of iron and green stains of copper, and occasionally copper pyrites. The present working mine is not extended very far from the outside of the precipice or surface, the ores being much the same near the surface as at a distance from it. When the miners find their passages growing long and tedious they begin outside on a new vein. There are several old mines west of the Dhobri village ; one of them is very extensive, and the ores seem to have been most abundant when the horizontal vein was crossed by perpendicular ores ; but the whole of the horizontal vein has been taken away. The most western of these veins is said to have been vory rich, but it fell in about the time the Gorkhális entered the province, and has not been openod since. The ores of these mines are principally copper pyrites, containing 25 per cent. of copper. There is water for machinery about a mile and a

[^95]half below the mine, and wood for all purposes near that place. There is another mine on this range at Maulgiri, said to be in the same rock as the Dhobri mine. There are other mines of both copper and iron in Dhanpur, but few of them are worked, and they are for the most part of little value. The mines were leased in 1872 to a European, but even then western intelligence and energy could not make them a remunerative investment. There is a copper mine in Patti Lobla at Agar Sera ${ }^{1}$ in the face of a precipice on the right bank of the Rámganga river which was leased in 1872 for three rupees. The lessee, however, makes little profit, as the shatts have been sunk so deep that men are afraid to enter them, and the rock is too hard to allow of fresh shafts being driven, unless at great expense.

The Pokhri copper mines early attracted the attention of the Government of the country. For many The Pokhri mines. years they had been worked by the Garhwál Rájas, and subsequently by the Gorkhális. They consist of several separate mines ; that known as the Chaumattiya is situated in talc which rests on dolomitic limestone. The lode after crossing the ridge east of the mine enters a very compact basin, in which is situated the Duined mine. This has not been worked much, owing to the softness of the talc and the abundance of water, but it is said to have a good lode in one part of it. The lode then crosses the hill near Deothán, a small village above the mine, and is found near Gúgli and Keswara, where some ores have been extracted, but have never proved very profitable in working. ${ }^{2}$

The Raja's mine is situated about 450 yards north of the ChauRája's mine. mattiya mine in common dolomite which rests on talcose schist. A shaft of 70 fathoms was dug by the early workers mecting an adit which must have been driven over 100 fathoms through dead ground. Several other adits were driven, and when they fell together, about one hundred years ago, there were three places where copper was found-the Gaja Chauk, Kuvera Chauk, and Bhartwál Kúa, all of which have now fallen in. The produce was about 300 sers of ore a day, yielding 25 per cent. of copper. Two-thirds were claimed
${ }^{1}$ Described by Beckett in Sel. Rec., N.-W. P., III., N. S., 37J. ${ }^{2}$ For clet: ils o these mines see Mr. Wilkin's report in J. A. S. Ben., XII., 404, and Recken $2 O_{\text {If }}$ in iUir7, XIV., 471.
by the Raja, and the remainder was left to the miners, who had also grants of land free of revenue. The experiments of Mr. Wilkin already noticed were confined to these two mines and a new mine which he opened close by. In the new mine the lode was very promising and yielded good specimens of ores near the surface, but at a depth of fifteen fathoms it became poor, and was consequently abandoned. During the time the experiment lasted the expenditure on the Chaumattiya mine amounted to Rs. 2,847 , and the return in copper to Rs. 231, besides about three to four hundred rupees worth of ore. Rs. 347 were expended on the Raja's mine, and the experiment was then abandoned, and the new mine cost Rs. 246 before the operations were closed. The entire net cost of the undertaking when operations ceased was for labour, in working the mines, less sule proceeds of copper, Rs. 2,585, and for European superintendence Rs. 4,800 , or a total of Rs. 7,385 . These mines were then leased to a native contractor for Rs. 500 a year.

In addition to the three mines mentioned above there are several others in the vicinity of Pokhri, some of which were worked by the former rulers, and some again have never been opened. Mr. Wilkin noticed the principal mines, and described them as follows:-

The Nota mine is situated about two and a half miles north-west Nota mine. of the Pokhri mines in talc, which rests on dolomitic limestone. The lode is a bed of yellow or buff-coloured talc, about four feet wide, dipping northwest at 50°; it rests immediately on the dolomite limestone, and has a sulphuric effervescence on the surface. This mine is said to have been rich; it is situated on the western side of an extensive basin or valley, on the eastern side of which ores have been turned up by the plough, but no mine has been worked. This is an extensive field for mining, as the lode may be productive throughout the basin or valley. There is wood and water for all purposes near this mine.

The Thála mine is situated about a mile north-west of the Nota
Thála mine. mine, probably on the same lode, in an extensive plain or comparatively level surface.
It was first worked in 1810, and again in 1825, but there being no good facility for adits, the water prevented its being worked to any considerable depth. The miners who worked it state the ores to be
copper pyrites disseminated in a lode of two feet wide, one-fifth of which was metalliferous. There is plenty of wood for all purposes in the neighbournood of this minc.

The Danda mine is situated on the hill, about 500 yards above
Danda mine. contact with common dolomite. This mine has been worked to a considerable extent, and is said to have yielded Rs. 52,000 profit in one year. The ores are of good quality, and found in three or four different beds or holes which dip into the hill at an angle of 30°. The chlorite slate in which the beds of talc and ores are found is so hard as to stand without timber ; it also contains finely disseminated copper in small quantity. The lodes run into a fine fall or basin westward, in which Mr. Wilkin thought they would be found productive. There is abundance of wood near this mine, but no water for machinery nearer than the Thála mine.

The Tálapungla mine is situated about a mile north-cast of the Tulapúngla mine. Danda mine in talc, which rests on dolomitic limestone. The strata in which the ores are found is about six fathoms wide, dipping south-west at various angles. The bed is extensive, but the ores are scarce; however, this might improve at a distance from the surface. Ores have been found in a precipice, east of this mine, near the village of Bangtál, but at present the outcrop is covered with rubbish; it is in the talcose formation, and has good facilities for working.

The Kharna mine is situated in the ravine below Bangtál, near Kharna mine. its junction with the Nágal river in tale ; it was discovered by the water of the ravine washing away the strata, and leaving a quantity of ores exposed to vicw ; these ores were taken away by the Pokhri miners and the mine was worked five or six fathoms under the surface, beyond which they were prevented from going by the water. They say that the lode at the bottom of the mine for two fathoms in length is one foot wide, of solid copper pyrites. Of late years nothing has been done at this mine beyond washing among the surface layer, which contains a small quantity of copper pyrites. There is plenty of wood in the neighbourhood of this mine and water for machincry, but no facility for adits.

Mr. Beckett has described the mode of mining and preparing the ore of the Agar Scrá ${ }^{1}$ mine from which the following account has been extracted. The gangue consists of white and yellow quartz much encrusted with green carbonate of copper, and is so difficult to work that not more than 40 to 601 b . of ore can be excavated by one man in a day. The workings are dry and the lode has a dip of about 30° below the horizon with a north-westerly direction. The ore is pounded and moistened with water and receives an admixture of five parts in six of limestone as a flux. The charge, consisting of about 61b. of unmixed ore, takes about half an hour to melt and is placed from time to time in handfuls on the furnace, and covered with oak charcoal which is occasionally moistened with water. Wheu the fire falls in after the last supply of ore, the charge is ready to be taken out. The door of the furnace is then taken away and the remains of the fire being raked out, there appears at the bottom a melted mass which, after being stirred about a minute or two to allow the heavicr particles to settle down, is sprinkled with water to harden the surface. Three or four of these charges being taken away, the melted copper is found at the bottom in a small mass weighing about 23 ounces, for which twelve pounds of charcoal have been used. Thus from every 100 parts of ore about $2 \frac{1}{\bar{T}}$ ths parts of copper are procured, having consumed 200 parts of charcoal or, in other words, 137 tb . of charcoal are required for the production of a little over two pounds of pure copper, which sells at about one rupee a pound.

The iron ores found in Kumaon all belong to either of two varie-

ties, the rhombohedral or the prismatic. The first is a peroxide of iron containing in its
best defined type 70 per cent. of iron and 30 per cent. of oxygen. The workable ore, however, often contains earthy impurities which reduce the proportion so low as 50 per cent. of metal. This is the common species. A variety of this, known as red hematite, also occurs in many places, and frequently contains small grains of specular iron ore of a highly splendent lustre. At Rámgarh it passes into the variety known as scaly iron ore, consisting of loosely cohering glimmering particles of a stecl-grey or iron-black colour, strongly soiling and feeling unctuous to the touch. Captain Herbert

[^96]considers these beds connected with those at Dhaniya Kot on the Kosi. Both yield very good iron. The prismatic species or hydrated peroxide is only known to occur in the Chaugarkha pargana.

The following are the principal iron mines in Kumaon. In Patti
Kumaon mincs. Agar of the Rángarh pargana, as noted, the iron is of the species known as scaly, somewhat laminated in structure, slightly micaceous, and influencing the magnetic needle. The names of the principal mines are the Lúsgani, Nathúa Kán, Gulla and Satbúnga mines, the last of which has a rich hæmatite. In Patti Rámgarh, also, there are several mines that aro largely worked. For the first 18 years of British rule these mines were leased to the headman of the Agaris at a nominal rent, ${ }^{1}$ which up to 1826 included all the iron mines in Kumaon. In 1833 the mining industry in Ramgarh received its first check in the emigration of the miners to Khetsári in Páli, and has never since recovered its early importance. In the Chaugarkha pargana, the ore of the Muniya mine in Patti Lakhanpar is of the prismatic species. It is of two varieties, the ochry and compact. The former sometimes contains octahedral crystals and magnetic iron ore, and in the neighbourhood of the mine on the summit of a small hill there occur rolled pieces consisting of grains of quartz and small octahedral crystals of this mineral cemented together. These pieces are magnets, and have each two poles. The ores, too, contain manganese in notable proportion, and would consequently afford a very good steel; as it is to the alloy of this metal that the superiority of the steel manufactured from brown ore is attributed. In Patti Dárun there are mines at Digarhia and Jhiratoli of the same nature ; in Rangor Patti at Jalal and Digarhia; in Patti Kharáhi at Lob. A specimen of iron ore brought from the neighbourhood of Milam, called by the natives of Malla Juhár 'buldúnga,' seems a crystalline variety of red hæmatite. It is used there for a red dye, the colour being extracted by rubbing the stone on a hard surface while wet.

The mines of Patti Giwar in pargana Páli are found at Chiteli,

[^97] Sirauli, Khetsári, Simalkhet, Gudi, Bailgaon, Bonigarh, and close by at Mehalchauri and Tilwára. The valley in which the iron is produced rons nearly north and south, and extends from Dwárahát on the south to Pandúa

[^98]Khal on the north. It is formed by the rivers Kotlar and Khetsari, both flowing into the Ramganga, the bed of the former being about nine miles long, and that of the latter six miles. The ores lie on the east side of the valley and occur along a range of hills about thirteen miles in extent. The Simalkhet mine ${ }^{l}$ is the largest, and has four entrances penetrating upwards of 350 fcet into the mountain. The ores here consist of red hæmatite of a good quality in a gangue of clay slate branching in every direction and at all angles. The lodes range from 3^{\prime} to 18^{\prime} in width and $2 \frac{1^{\prime}}{}{ }^{\prime}$ to 15^{\prime} in height, the average being from 3^{\prime} to 5^{\prime} by 4^{\prime} to 6^{\prime}. There is no water, and the surrounding rock is compact, requiring few supports.

In Sayalgarh of pargana Kotauli there is some iron ore not at present worked. At Manglalekli in Talla Rao tho ore is much esteemed for its quality, and is raised in some quantity. At Dehchauri, Rámgarh, and Khurpa Tál the mines are in the hands of the Kunaon Iron Works Company. The Lugthan mine is in Malla Katyúr, and there is another in Baraon Patti in pargana Gangoli. The burrows at Khairna are now unworked, likewise those atSimalkha and Uchakot.

In the Garhwál district the iron mines in Patti Painkhanda
Garhwál iron mines. exhibit specimens of granular iron pyrites imbedded in veins of quartz which occur in a dark-greyish talcose schist." They are apparently not very rich in ore. In Patti Sili Chandpur the Rajbunga mine gives a rich hematite which is slightly attracted by the needle, and is still worked. The Khúsh mine in the same patti gives a micaceous ore, scaling off easily and showing minute crystals resembling garncts on the edges of some specimens. The adjacent beds seem to be chloritic schists; this ore affects the needle. In Taili Chandpur magnetic ore is found with hæmatite, and a specimen from Patti Talli Kálíphát resembles specular iron ore.

Specimens from the Búlhanda mine in Patti Bichbla Nág-

Nágpur mines.

 pur are also of a micaccous nature, and seem to contain in parts minute crystals of quartz and pyrites, otherwise they much resemble graphite, and soil the fingers when touched. They do not influence the compass needle. The Jákhtoli mine in the same patti give an ore which[^99]is probably a clay ironstone. It is of a light coffee colour and of little specific gravity. The Gilet mine close by gives an ore of a similar quality. In Malla Nágpur the ore is probably hæmatite. A vein of iron pyrites mus along the Alaknanda in this patti near the village of Hath. The people call them 'sona ke pathacr;' or gold stone, and sell them to the pilgrims to Badrináth at high rates. The stones, in the form of powder, are used as an orpiment, and the stone itself as a flint. A specimen from Nágpur itself is probably a carbonate of iron.

The Mok mine in Patti Malli Dasauli yields au ore of which

Dasauli and Dachhansyún. specimens appear to be magnetic, rich in metal, black in colour and crystalline, and laminated in structure. It possesses highly magnetic propertics. The Charbang mine in the same locality is of a similar character, very rich in iron, and, according to Mr. Lawder, exhibits its polarity in the direction of the planes of lamination. The Dúngara mine in Patti Bachhansyún gives specimens which may possibly be an earthy hydrated oxide of iron. Its colour varies from ochry to dusky black, streak the same. It is of little specific gravity, the clay scemingly predominating. The iron of Bachhansyún, however, las a wide reputation for hardness and toughness. Sledge-hammers (gan) made from it have been found to last out those of the best English metal.

The ore of Pipali mine in Patti Iriya Kot is probably a

> Iriya Kot. hydrous form of sesqui-oxide of iron, the clay largely predominating. The Danda Toli mine in the same patti seems to give an argillaceous variety of brown hæmatite. Lohba affords a rich hematite, raised in large quantities. The Chalya mine in Patti Painún gives a hard and brittle ore possessing the iron-black colour and metallic lustre of magnetic iron, but specimens of it failed to affect the compass needle in the manner characteristic of that ore. It may possibly on analysis be found to contain manganese.

The deposits of lead are fairly numerous. The ore is found at Táchhira in pargana Dhanpur mixed with a little silver. A large mine also existed at Ghirti in the snowy range between Milam and Níti, but this has lately been closed by a landslip. The mines at Ralum and Banskum on the banks of the Gori river and at Baidli Baghir
are unworked. The ore is galena, and the matrix is silex, with varying proportions of feldspar and calcspar. The Nágpur mine is a fair one, but somewhat inaccossible. Near the Gaul mine in Patti Kharáhi and at Sor Gurang copper mines there are deposits of lead ore. The former is a galena traversing a silicious limestone, but neither are regularly worked. When the villagers require lead they burn the rock, and the lead, more or less sulphuretted, trickles from the crevices. A large nodule of lead, the size of an eighteen-pound shot, was found in Patti Maundarsyún, on the banks of the Nayar river. It consisted of pure galena, but though search was made no more could be discovered. In Jaunsár there are mines at Maiyár and Borela on the left bank of the Tons river and at Aiyár on the right bank. At Maiyár and Aiyár the matrix is clay slate, and at Borela, limestone supposed to be a bed in the clay slate. ${ }^{1}$ The revenue from these mines is now nominal.

Yellow arseuic, known as haritúl, is found in the northern parts of Kumaon, near Múnsyári. A small portion is brought down every year by the Bhotiyas for sale at the Bageswar fair in January.

Indications of lignite appear near Ránibágh close to Haldwáni, Lignite. the Barakheri pass near Bhamauri, and in the streañons of the sub-Himálaya near Najibabad in the Bijnor district. They do not give promise of any workable fuel, and, judging from the experience obtained in other parts of the hills, it is questionable whether any lignite deposits will ever be discovered of such extent and quality as to repay the expense of mining them. An analysis of a specimen of the Ránibágh lignite gave carbon $60 \cdot 0$, volatile matter $36 \cdot 4$, ash $3 \cdot 6$. The percentage of ash, however, contrasts favourably with Bengal coal. ${ }^{2}$ Traces of a true peat are found at Bhím Tál. In 1833 Mr. E. Ravenshaw reported ${ }^{3}$ the existence of coal in the bed of the Dhela river near Láldhang in Garhwál, where it occurred in thin seams varying from one inch to four inches broad. Similar traces were discovered in the beds of the Chala and Phika streams, but none of any commercial value. The specimens received in Calcutta were nearly all of the same character, "strongly impregnated with
${ }^{3}$ J A. S. Ben., 11., 264.
sulphuret of iron which forms their fibres, streaking some of them and passes into thick masses of pyrites, decomposing in others. A clean lump had a specific gravity of 1.968 in consequence, and the residual ash was principally iron oxide."

Graphite ${ }^{1}$ (plumbago) crops out at the Kalimatiya hill to the north of Almora and on the spur of Banini Devi facing Almora on the Lohughát road.
In 1850 , specimens were sent to England and subjected to examination, when it was found that it could be made serviceable as graphite. Excavations were also made by Major Drummond at Garjoli near Balti, and Palsími, about three miles from Balti and the same eastward of Almora. The following is the report of Mr. Rose, the mineralogist who tested the specimens sent from Almora :" Graphite is applied to several purposes. When very fine, compact, and of a sufficient cohesion, it is cut up for drawing-pencils. When the texture is loose, or it is otherwise of inferior quality, it is ground down and deprived of foreign substances by washing, as ores of metals are prepared for smelting. The powder thus purified is then used for various purposes, such as crucibles (being refractory or infusible by heat) for burning iron, and reducing the friction of machincry. A new method is now adopted for making artificial pencils, which are searcely if at all inferior to those sawn out of the finest blocks. The dust of such fine material as your specimens Nos. 4, 8, and particularly No. 10, properly prepared, is subjected to vast hydraulic pressure (several hundred tons), and thus acquires the compactness and solidity necessary for the best purposes. The best kinds of graphite may be known by a pale lead-blue colour, high lustre, unctuosity, and inferior specifie gravity. The first nine specimens will answer for pencils, most of them sufficiently pure and compact to be divided for that purpose. All the varieties sent may be used, even No. 13, though connected with much matrix, as it can be deprived of this by grinding and washing. All the varieties of this substance must continue in demand and bring remunerative prices if the expense of mining and conveyance should not be too great." It is also found in Patti Lohba of Garhwál on the Karnprayag road, and is there used as a dye.

[^100]Sulphur is found both in Kumaon and Garhwial. In the formor
Sulphur. district it occurs in the tract called Múnsyíri, and mechanically mixed with carbonate of lime in the beds of the Ránganga and Ganjiya rivers. It is also found as green sulphate of iron, and could be obtained in any quantity from the iron pyrites of the copper mines. There are also some sulphureous springs, as those at Naini Tal, Nargoli, and Kithgodán. There are two sulphur springs in Garliwal: the first lies close to the snowy range to the north-east of the temple of Madh Maheswar in pargana Nágpur ; the other is on the left bank of the Biri river, two miles above its junction with the Alaknanda. The water of this last is so very strongly impreguated that its existence can be discovered by the smell long before arriving at the spring itself. Neither are made use of any way. Sulphur is also fomd in the galleries of the lead mines at Mayyar on the Tons in Jaunsár.

Borax or tincal, a native saline compound of boracic acid and

Borax. soda. The borax and salt fields of Gnari or Húndes, lhút-lhaka or lháli-lháka, lie to the north of Bongbwa Tial, across mountains that round the north-cast side of the valley of the Shajan river, parallel to the Gangri range, and in the eastern part of the Zjang of Rohtoh (Rudukh) and at the Chapakani lake. The two salts are obtained from different spots in the same vicinity, and are both worked in the same way by lixiviation from the earth taken from the surface of the ground in which the salts are developed by natural efflorescence. These salt fields are open to all who choose to adventure their labour in them on payment of one-tenth of the produce to the Lhassa Government, who have an excise establishment on the spot. ${ }^{1}$ The borax is collected from June to September and sold at the different fairs-Ganpa, Gartoh, Sibilam, Chájna, Taklakhar, Dabaklar. It is brought down by the Bhotiya traders and purchased by the merchants of Ramnagar, where it is refincd. The process is as follows :-The borax is pounded and placed in shallow tubes, and then covered with water to the extent of a few inches; to this is added a solution of aloout two pounds of lime dissolved in two parts of water, for every ten maunds (820 pounds) of borax, and the whole mass is well stirred every six hours. Noxt day it is drained on sieves or ${ }^{2}$ Strachey : J. A. S. Ben., XVII. (2), 67.
cloth, and after this is again dissolved in $2 \frac{1}{2}$ times its weight of boiling water, and about sixteen pounds of lime added for the above quantity. It is then filtered, evaporation takes place, and subsequently it is crystallized in funuel-shaped vessels, usually of kansa, an alloy of copper and zinc or lead. The loss in weight is about 20 per cent. Borax is used in medicine and the arts. Dry borax acts on the metallic oxides at a high temperature, melting and vitrifying them into beautiful coloured glasses. It is also used as a flux for soldering in goldsmith's work and as a varnish combined with shell-lac. Its principal use is, however, in the manufacture of coloured glass, enamel, and glazed substances. ${ }^{1}$

Gypsum is found in pargana Chhakháta. Perhaps the best bed is near the Nihál bridge on the road between Káládhúngi and Naini Tál. In 1850 the late Mr. Tregear, of the Barilly College, made some very good plaster of Paris from it, which might be found useful in external plastering, as it has the property of expanding on cooling. Gypsum is found in Garhwál, on the banks of the Alaknanda near Panai and Nagrasu. There is also a dark-green variety which the people sometimes make into saucers and bowls. ${ }^{2}$ Captain P. T. Cautley noticed ${ }^{3}$ the occurrence of gypsum at Sansardhára and Salkot near Dehra and described its appearance and origin, which was further discussed by the Rev. R. Everest, but these papers have now little practical value. ${ }^{4}$

A white saponaceous stone resembling and used for the same Soapstone. purpose as pipeclay is produced in many places. In Garhwál various vessels are turned from it, which when polished have the appearance of marble. They retain liquid, but being extremely brittle are little used.

Asbestos has lately been discovered in a hill to the north of and at a short distance from Ukhimath in Garhwál. It is said to be of very good quality, but it is too far inland to be profitably worked. The people use it medicinally for dressing wounds and burns, and as a wick for oil-lamps, but it may yet be turned to a profitable account as a packing for steam-joints and the like.

[^101]Silajit ${ }^{1}$ or Salajit, a native sulphate of alumina, is found both in Kumaon, Nepál and parganas Painkhanda and Nágpur in Garhwál. It is much sought after and used as a dressing for wounds. It occurs in small light lumps, colour brownish white, externally anhydrous, internally semi-crystalline, fracture slightly fibrous, with a lustre resembling asbestos, porous, containing small cavities lined with scarcely perceptible needle-like crystals, adheres a little to the tongue. Taste acidulous saline, soluble in twice its weight of distilled water, friable. Mr. Stevenson's analysis ${ }^{2}$ gives as its component parts : sulphate of alumina, 95 ; peroxide of iron, 3 ; insoluble matter (silex), 1 , and loss, 1. This analysis would appear to point to a specimen of greater purity than those commonly met with in the bazars which, as a rule, have seldom more than 66 per cent. of sulphate of alumina. The lumps generally have an admixture of red sand and frequently portions of micaceous stone are found embedded in them. Some of them have the smooth surfaces of stalactites and are not unlike those deposits. All are readily soluble in water, and when touched with the tongue give the taste of common alum. Dr. Campbell has described ${ }^{3}$ the Nepálese trade in Salajít.

Limestone is found all over the division, both in immense
Limestone. masses exhibiting various shades of colour and structure, and as local tufa deposits. There are three distinct ranges of limestone hills in Garhwál : the first north of the Alaknanda in Nágpur, the second running from Johba Patti to the Pindar, and again to the Alaknanda in Patti Bachhansyún, and the third rumning parallel to the plains and south of the Nayár river. There are also small patches of limestone scattered throughout the district, but not in such large quantities as in the abovementioned ranges. Lime is manufactured at Naini 'Tal, at Jyúli in the Kharáhi range, half-way between Bágeswar and Almora, at Chiteli, north of Dwárahát, at Simalkha, Baitálghát, and Dhikuli for Ránikhet, and on the new cart-road to Rámnagar. Lime is also made in Borarau, Sor, Síra, Dhyánirao, and Charál. Two kinds of limestone are used in the Tarai district, the one being obtained from the quarries at the foot of the Kumaon hills, which

[^102]give by far the best kind of lime ; the other is the tufil deposit obtained in the small nálas of the tract itself; this latter kind, however, is of a very inferior quality. First-class limestone costs at the quarries five to eight rupees per 100 maunds; the tax levied by the Forest Department is eight rupecs on that amount, and cartage may be averaged at half a rupee per mile for 100 maunds. Thus the stone is landed at most points in the district for 30 rupees per 100 maunds, and including the expense of burning, a maund of lime costs 10 to 12 annas. This lime will bear two or three portions of pounded brick or surki. Second-ciass lime ready for use now costs 25 rupecs, and delivered in Naini Tal, 50-100 rupecs per 100 maunds ; it will, however, only bear a proportion of onc part of pounded brick to two parts of lime.

Good building stone can be procured in most parts of the

> Building stone.

hills. At Almora finc-grained, evenly-bedded quartzites and mica-schist form the hill itself, and supply material not to be cxcelled for durability and facility of dressing. Mica-schist seems to form the principal beds for some distance to the east and west of Almora, reaching to Dwitrahát and Mási on the west, Páli, Ránikhet, Síyáhi Devi, Dol, and towards Káli Kumaun to the east, and also in the formation of the Jageswar and Binsar ranges to the north. At Naini Tál the stones used are limestone and clay schist. At Ránikhet a pale-coloured gneiss forms both a handsome and a lasting building stone having the property of hardening by exposure. Sandstone is abundantly found in the lower hills. Gneiss and chlorite-schists are used frequently as building stones in the district. In the Bhábar split boulders are found to answer the purpose of bricks. The Tarai is the only portion of the Kumaon division where bricks are extensively used for building purposes. Nine-inch bricks cost about Rs. 750 per lakh, and the small native bricks Rs. 100. Stone is sometimes carted from the foot of the hills for the better kind of work, but owing to the great expense is, so far as possible, dispensed with.

At Chiteli near Dwarahát there are roofing-slate quarries, now
Roofing slate. unworked ; also at Dhári in the Bel Patti of Gangoli ; in Borarao Patti, Sult Patti, and at Naini Tál. In Lohba of Garhwál the thin dark-blue slate is procurable, but these last appear to be much inferior to the Chiteli quarry.

Alum, known as pritheri, is found in different parts of the province, and in abundance in the aluminous Alum. shales near Ják village, on the road from
Naini Tál to Khairna and as an offlorescence on the micaceous schist in the bed of the Kosi below Almora. The shales contain minute particles of pyrites disseminated throughout their mass, which on becoming decomposed promote the formation of alum and the lixiviation produced by water leaves an encrustation of alum on the rock. A dark-coloured talc called jalposhiis exported to the plains and used as a tonic and febrifuge in medicine. In the ncighbourhood of Kotgaon and Giwarsiu near Paori in Garhwál in hitumen or mineral resin is found.

There is no doubt but that in both quantity and quality the metalliferous deposits in this division are good, but the absence of coal and the competition of sea-borne metal have hitherto rendered mining an unproductive speculation, nor does there seem any probability of it attaining any important position among tho industries of the province.

> REFDRENCES.

The following list gives a reference to some of the works and papers on the geology and mineralogy of the North-Western Himálaya :-

1. Report of the mineralogical survey of the Himalaya mountains lying between the rivers Satlaj and Káli : with a geological map, by Captain J. D. Herbert. J. A. S. Ben., XI., 1, p. x.
2. On the mineral productions of the Himálaya mountains, by the same. Trans. A. S., XVIII., i., 236.
3. Journal of a tour from Almora through parts of the province of Kuman and Gorhwinl, eliefly in the centre of the hills, by the same, edited by J. H. Batten. J. A. S. Ben., XIII., 734.
4. Some inquirics in the province of Kumaon felative to geology and other branches of natural seience, by Assistant Surgeon J. McClellancl, Calcutla, 1835.
5. Gcological specimens from Kumaon and Garhwal, by the same. J. A. S. Beu., II., 653.
6. Notice of some fossil impressions occurring in the transition limestone of Kumaon, lyy the samc. Ihid, VI., $\mathfrak{6} 3$.
7. On the geology of part of the Himálaya mountains and Tibet, ly Captain R. Strachey. J. Gcu. Soc., VII. (1851).
8. Geology of Dehra Dúm, by Dr. Royle. J. A. S. Ben., I., 96, 249.
9. Geological sketch of Mussooree and Landour in the Himálaya, together with an abstract of the thermometrical register kept at Lanclour during the year 1831, by F. II. Fisher. Ilid, I., 193.
10. Geological obscrvations made on a journey from Mussoorce to Cangotri by Rev. R. Everest. Ilid, IV., 690.
11. On the origin of the Kumanon Lakes, by V. Ball. Rec. Geol. Sur., XI., 2,17f.
12. Note on a trip over the Milam pass, Kumaon, by T. W. H. Hughes, wills a description of the fossils by Dr. Waagen. Ilid, 182.
13. A Manual of the Geology of India, by 1I. B. Medlicott and W. T. Blandford, Calcutta, 1879.
14. Sivatherium giganteum, a new fossil ruminant gemus from the valley of the Markanda in the Siwalik branch of the Sub-Himálayan mountains, by Dr. H. Falconer and Captain P. T. Cautley. As. Res., XIX., I, and J. A.f. Ben., V., 38. VI, 152.
15. Note on the fossil hippopotamus of the Siwalik hills, by the same. As. Res, XIX., 39.
16. The fossil gharial of the Siwalik hills, by the same. Ibid, 32.
17. The fossil bear of the same, by the same. Nid, 193.
18. The fossil crocodile of the same, by the same. Ilid, 25 .
19. The fossil tiger of the same, by the same. Ibid, 135 .
20. The fossil camcl of the same, by the same, ibid, 115; and by Lieatenant W. E. Baker. J. A. S. Ben., IV., 694 ; IX. 620.

21, An additional fossil species of the order quadrumana, by the same. Ibict, VI., 354.
22. Specimens of the hipropotamus and other fossil genera in the Dádupur collection by H. M. Durand, As. Res., XIX., \bar{t}, and selected specimens of the SuisHimúlayan fossils in the Dádupur collection, by Licutenant W. E. Baker. J. A. S. Ben., IV. 665, and Durand, V., 291, 486, 661, 739.
23. Discovery of fossils in the Siwáliks, by Captain Cantley. 1bid, III., 502.
24. Fossil elephant's tooth from the same, by Lieutenant Baker, Ilid, 638.
25. The fossil elk of the IImálaya, by the same Ibid, IV., 506 .
26. Synopsis of fossil genera and species in the collection of Dr. Falconer and Captain Cautlcy. Ibid, IV., 706.
27. Collections of fossils presented by Colonel Colvin. Ibid, V., 58,179 .
28. Note on the tceth of the mastodon, by Captain Cautley. Ibid, 294, 768.
29. Fossil remains of the smaller carnivora from the Sub-IIimálaya, by Licutenants Baker and Durand. Mbid, 585.
30. Notice of the skull (fragment) of a gigantic fossil batrachian from the Nahan field, by Dr. T. Cantor. 1bid, VI., 538.
31. Note on the occurreace of fossil bones in the Siwalik rauge eastward of Hardwár, by Dr, H. Falconcr. Ibid. VI., 233.
32. Note on a fossil ruminant species allied to Giraffide in the Sewúlik hills, by Captain P. T. Cantley. Ibid, VII., 658.
33. Note relating to Siwálik fauna, by H. B. Medlicott. Ilid, XXXIV.. ii., 63.
34. A sketch of the history of the fossil vertebrata of India, by R. Lyddeker. Ibid, XLIX, ii., 8.
35. Fruna antiqua Sivalensis, by Falconer and Cautley. London, 1846-49-66.
36. Palœontological Memoirs and notes of II. Falconer, by C. Murchison. London, 1868.
37. Palœontologia Indica, published by the Gcological Survey, Caleutta.
38. Memoirs of the Geological Survey of India, by the same.
39. Records of the Geological Survey of India, by the same.

CHAPTER VII.

Scientific Botany.

CONTENTS.

Abstract

A list of the flora of Garhwál. Jaunsar-Páwar and the Dehra Dín, by Dr. King. Tract to which the list refers. The Siwáliks. Sub-Siwálik tract. Delra Dún. Himálayan tract. Characteristic vegetation from the plains to Mussoorce. From Mussoorce norlhwards. A list of the flovu of Kumaon, and the Kumaon Bhábar, by Dr. Watson.

Listri of tee Plants of Garhwál, Jaunsár-Báwar and the Dehra Dún.

THe tract of country of which the vegetation is to be considered in the following pages presents very varied conditions in respect of physical configuration, soil, and climate. Its boundaries are-on the west the river Tons, a tributary of the Jumna, and on the cast

Tract to which this list refers. and on the south the Siwálik range.

The Siwáliks run parallol to the Himálaya, and are separated from the latter by the Dehra Dún, a flat valley having an elevation Siwiliks. of from 1,800 to 2,250 feet above the level of the sea. The highest peaks of the Siwáliks do not rise much above 3,000 feet, and the majority are much lower, but their outline against the sky is jagged and picturesque in the extrome, and the part of them with which we have to deal is about scven miles wide. Their southern slopes are plonghed by the force of the sonth-westem monsoon into numerous deep narrow valleys, and the stceply scarped cliffs have a singularly bold beanty, totally different from any thing to be seen in the outer parts of the Himálaya behind them. On their northern aspect, the Siwáliks slope gently into the valley of the Dún, and the scenery, though beautiful, is tamer than on the southern side. The rainfall on the range during the south-west monsoon is about 60 inches, but from the porous character

[^103]of the soil and the steepness of the slopes, water drains off with extraordinary rapidity. The drainage passes away by innumerable channols, which, except for a few days in the ycar, are wide wastes of dry gravel and boulders. After cach heavy shower these suddenly become filled with rushing torrents, which subside as speedily as they rose. Except during the rainy scason, the range is very dry, and water is so scarce as to make it almost minhabitable.

Where the Siwáliks merge into the plains on the southern side, there are tracts of forest and grass equivalent to those covering the

> Sub-Siwálik tract.

Bhábar and Tarai of the Himalaya in the districts where there is no Siwalik range. The vegetation of the sul-Siwálik belts is to a great extent but a reproduction in miniature of that of the latter. The flora of the southern face of the Siwaliks comprises many plants of the plains, with the addition of such species as Hypericum cemuam and Cochlospermum Gossypium. Perhaps the most striking tree found in the Siwáliks is the long-leaved pine (Pinus longifolia), a Himálayan species, for which the Siwáliks form on outlying station. A largo proportion of the arboreal vegetation of the Siwaliks consists of species which oceur both on the lower slopes of the Himálaya and on the hilly districts of central and southern India, thus affording a good illustration of the width of distribution of Indian plants. As examples may be mentioned Bombax malabarioum, Buchanania latifolia, Spondias mangifera, Boswellia serrata, Garuga pinnata, Spathololnus Ronlurghii, Allizzia stipulata, Anogeissus latifolia, Ulmus integrifolia, and others. Epiphytal orchids are absent, and ferns are but few in the Siwáliks. One labiate plant (Eremostachys superla) is confined to one or two spots in the Siwáliks, and is ono of the best examples known to me in Inclia of a truly local plant. Sal (Shorea robusta) of very stunted growth is abundant in the southern sub-Siwailik tract and on both sides of the range, as also over the whole of the Din. This tree is here near its western limit; a little way to the west of the Jumna it disappears altogether.

The Dehra Dún is a charming valley. The Siwáliks on the south shut it in from the plains, and, until recently, not only most

[^104] effectually protected it from the hot winds in summer, but gave it a higher winter temperature than the phains outside. The extensive and ruthless
elearances of the Siwalik forest of recent years are, however, believed (and apparently with good reason) to have caused an increase of the summer temperature of the Dán. The soil of the Dún consists chiefly of sandstone débris washed down from the Himáliaya. The drainage is excellent, especially near the base of the Himalaya where the larger débris has been deposited, and the water level iss everywhere far below the surface. The drainage water passes off by the Asan into the river Jumna, and by the Son and Súswa into the Ganges. The watershed of these streams runs across the valley in the line of the station of Dehra. The rainfall is about 80 inches, but, although only a small proportion of this total falls during any other than the rainy season, vegetation is kept wonderfully green daring the whole year by the moisture prevalent in the atmosphere. Formerly the greater part of the Dún was covered by forest, of which the prevailing tree was sal, but of late years much of the forest has disappeared. Λ certain proportion of the cleared land has been devoted to village and some to toa cultivation, but much of it has been invaded by tall, coarse grasses useless alike to man and beast. Like the Siwaliks, the Dún is ravaged every hot season ly fires from which the arboreal vegetation suffers to a degree which can only be appreciated by one who has lived in the forest. Cnless these fires are checked with a high hand, the utter destruction of all forest vegetation in the Dún is but a question of time. The flora of the Dín presents an interesting mixture of species common on the phains outside, and of plants from the lower hills. Notable amongst the lattor are the pretty little Gentiana pedicellatc, and in the rains, here and there, Platystemma violoiles; whilst amongst shrubs and climbing plants Lespedeza, Indigofera pulchella, Jusminum pubescens, and Combretum decandrum are perhips the most noteworthy. The dense cancbrakes of the Tarái and Bhablar of the trans-Gangetic sub-Himillayan tract are represented in the Dún by a fow patches of a single species (Calemus Royleanus), and this is not found westward of the Nalaproni swamp, three miles from the station of Dehra. Epiphytal Scitamineca are unknown in the Dín : a fow orchids, however, occur, the most prominent among which are Aerides affine and odoratum, Saccoldviun Gharwalicum, and Oberonia iridifolia. Peperomat refleca is found here and there on trees in damp spots, and there are some opiphytal feris, such as Polypotium lineare.

The remainder of the region under review consists of a large irregularly shaped tract of the Himálaya proper, narrowed at its

> Himálayan tract. southern limit, but expanding towards the snowy range, part of which it includes. The physical features of this area are so varied that it would be out of place to attempt to describe them here. It must suffice to remind the reader that, while the lower and outer ranges have a climate not very different from that of the plains of India, the higher peaks, rising as they do to 18,000 feet above the sea-level, are covered with perpetual snow. As regards vegetation, the tract may be divided into three zones: the sul-tropical covering the slopes of the lower and outer hills, and following the courses of the deep hot valleys far into the interior of the range; the temperate covering the middle elevations; and the aretic confined to the greater heights and bounded on the north by the snow line itself. The transition between these zones is gradual. In consequence mainly of its greater distance from the sea, the rainfall of the western Himálaya is much less than that of the eastern part of the chain. But not only does the climate steadily increase in dryness from enst to west, but the rainfall on the outer ranges is much heavier than in the interior. At Mussooree, for cxample, it amounts to about 80 inches, while at Harsill, in the northern end of the Bhagirathi valley, the miny season is represented by a short period of misty weather, and actual showers are but rare. The intervening country has a rainfall graduated between these two extremes.

In ascending the Himálaya from the Dún to Mussooree, new

> Characteristic vegetation from the plains to Massoorce. species meet the eye step by step. Among trees, Bauhinia retirsa, Engelhardtia Colebrookiana, Rhododendron arboreum, and the Oaks are the most striking new forms. Pinus longifolia, already met with on the Siwâliks, becomes abundant. Berberries, various Buhmeruas and other Urticacece, Hermiltonia, Leptodermis, various species of Viburnum, Clematis and Rosa at first mingle with, and finally replace, the sub-arboreal woody vegetation of the base of the hills. During the rains the change in vegetation, as one ascends, is even more striking. On steep banks and faces of rock by the roadside the eye is delighted by such charming species as Chivita bijolia, Didymocarpus aromaticus and macrophyllus, Platystemma violoides,

Selaginella Jacquemontii, Androsace sarmentosa and incisa, Fragaria indica, Saxifraga ligulata, Argostemma sarmentosum, and Begonia picta. Ferns too abound both on the ground and on trees. A few epiphytal orchids, the Peperomia already mentioned, and Remusatia vivipara are found on the trees. But the epiphytal vegetation here is but poor and scanty when compared with that of the eastern Himálaya, thus illustrating in the most foreible way the comparative dryness of the atmosphere throughout the year. On these lower slopes a dwarf palm (Phounix acaulis) and a pretty little bamboo called ringál (Arundinaria falcata) are not unfrequent; a larger species of bamboo (Dendrocalamus strictus), which occurs in plenty, is common also in the Dún and Siwáliks.

At the level of Mussooree temperate forms begin to appear and the botanist revels in plants belonging to such familiar European genera as Ranunculus, T'halictrum, Anemone, Geraniam, Potentilla, Rubus, Rumex, Pedicularis, and IIabenaria. Umbelliferous plants and Polygonacee are common, and terrestrial orchids of northern

[^105] forms are not unfrequent during the rains. As the higher elcvations are approached, the vegetation assumes the characteristic Alpine type. Astragali, Corydatis of different species, numerous Caryophyllea, Saxifragos, Sedums, Primroses, Gentians and Carices abound, and in the carpet of rich green grass are here and there studded the magnificent Aconites, Meconopsis and Peeonia emodi. Prominent amongst the forest vegetation are the stately cedar, the rigid silver spruce and the graceful wecping pine. The twisted cypress towers aloft, and the solemn yow stretches out its sombre arms. Lichens, mosses and fungi abound, and alga are numerous in the streams.

The following list of the flowering plants and ferns does not profess to be complete. It contains only the names of species of which there are specimens in the Herbarium of the Calcutta Botanic Garden, or in my own collection. The former Herbarium ought to contain every species occurring within the British Empire in India. It has, however, been brought together principally by desultory private effort, and is consequently unequal and defective. As a rule, there are included in this list indigenous plants only; the few others that occur are marked either as naturalized or introduced. Certain plants which are believed to be natives, but which are
found only in cultivation, are morked as cultirated. For much assistance in revising this list I am indebted to Mr. W. Waterfield, C. S.

Natural Order 1.—Ranunculacces.
Clematis Nepaulensis, DC.
" montama, Ham.
: barbellata, Ddgw.
" grata, Wall.
" Gouriana, Roxls.
:, puberula, Hf. \& T.
" gravcolcus, Lindl.
" orientalis. L.
\% nutins, Royle.
" acuminata, DC.
" connata, DC.
", Buchananiana. DC.
Anemone vitifolia, Ham. obtusiloba, Don. rupestris, Wall. rivularis, Ham. polyanthes, Don. naruissiflota. L. tetrasepala, Royle. elongata, Don.
Thalictrum elegans, Wall.
platycarpum, FIf. \& T.
cultratum, Wall.
Chelidonii, Hf. \& T.
reniforme, Wall.
paucillorum, Royle.
rostellatum, Hf. \& T.
Punduanum, Wall.
saniculaforme, DC.
Javanicum, 131.
foliolosúm, DC.
minus, L.
Callianthemum cachemirianum, Camb. Allonis astivalis, L.
Ranunculus aquatilis, L.

$$
\because \quad \text { Lingua, L. }
$$

$"$ pulchellus, C. A. Mcy.
") lobatus, Jacquem.
" hyperboreus, Rottb. " affinis, Br .
" hirtellus, Royle.
" sceleratus, L.
" diffusus, DC.
" latus, Wall.
:, pensylvanicus, L.
, arrensis, L.
Oxygraphis polypetala, HIf. \& T.
Caltba palustris, L.
Trollius acaulis, Lindl.
Isopyrum thalictroides, L . grandiflorum, Fisch.
Nigella sativa, L. naturalized.
Aquilegia vulgaris, L.
Delphinium denudatum, Wall. cœruleum, Jacquem. " cceruleum,
elatum, L . " vestitum, Wall.

Natural Order 1.-Manumevlares(comeladod).

Delphinium Cashmirianum, Inoylc.
\because Ajacis, L., introduced.
Aconitum Lycoctonum, L .
" palmatum, Don.
" ternx, Wa'l.
", Napcllus, L.
" heterophyllum, Wall.
Acten spicata, L .
Cimicifinga foetida, L.
læonia emodi, Wall.
Nutural Order 2.—Magnoliacra.
Michelia Champaca, I., introducet.
Sclizandra grandifiora, Hf: \& T.
" propinqua, Hf. \& 'Г.
Natural Order 3.-ג初nacer.
Miliusa velutina, Iff. \& 'I'.
Natural Order 4.—Mrnispermanem.
Tinospora cordifolia, Miers.
Cocculus lanrifolins, DC.
, villosus, DC.
Stephania elegans, Hf. \& T. rotumda, Lour.
Cissampclos l'arcira, L.
Natural Order 5.-Berberiden.
Holbeœllia latifolia., Wall.
Berberis nepalensis, Spreng.
, vulgaris, L.
", aristata, DC.
", Lycium, Royle.
", asiatica, Roxb.
Podophyllum emodi, Wall.
Natural Order 6.-Nymphwacece.
Nelumbium speciosum, Willd., introduced.
Nymphæa Lotus, L.

Natural Order 7.—Papaveracea.

Papaver somniferum, L., cultivated.
" dubium, L.
Argemone mexicana, L., naturalized.
Meconopsis aculeata, Royle.
" robusta, Hf. \& T.
" nepalensis, DC.
Stylophorum lactucoides B. \& Hf.

Nhtural Order S.-humariacea.
Dicentra Roylei, HF. \& T. " scandens, Walp. Gorydalis rutafolia. Silth. \because Cachemiriana, Royle.
, critlmifolia, Royle.
" clegans, Wall.
:" Govaniana, Wall.
\Rightarrow sibirica, Pers.
" cornuta, Royle.
", chærophylla, DC.
", meifolia, Wall,
" fiabellata, Wdgw.
Fumaria parvifora, Lank.
Natural Order 9.—Crucifere.
Nasturtium oficinale, Br.
" palustre, DC.
,, montanum, Wall.
Burbarea vulgaris, Br.
Arabis glabra, Crantz.
" alpina, L.
n amplexicaulis, Jdgw.
Cardamine hirsuta, L.
" impatiens, L.
" macrophyla, Willd.
Allyssum canescens, DC.
Draba alpina, L.
incana, L.
", lasiophylla, Royle
\because fladnitzensis, Wulf.
Gisymbrium mollissimum, C. A. Meyer.
" himalaicum, Hf. \& T.
" Thalianum, Gay \& Monn.
" rupestre, Edgw.
" strictum, Hf. \& T.
" Wallichii, Hf. \& T.
" Soplia, I.
\% Colunnæ, Jacq.
" Alliaria, Scop.
Eutrema primulæfolium, Hf. \& T.
Erysimum hicraciifolium, L.
" altaicum, C. A. Meycr.
,, Thomsoni, Hf.
Braya rosea, Bunge.
Brassica nigra, Koch.
" campestris, I.
,. juncea, Hf. \& T.
Fruca sativa, Lamk.
Capsella Bursa-pastoris, Mœench.
Lepidium sativum, L.
" Draba, L.
", capitatum, Hf. \& T.
Megacarmæn polyandra, Benth.
Thlaspi arvense, L.
, alpestre, L.
Iberidella Andersoni, Hf. \& T.
haphanus satimns, L., eultivated.
Goldhachia lævigata, DC.
Cborispora tenelha, DC.
Natural Order 10.-Capparidece.
Cleome viscosa, L.
Gyuandropsis pentaphylla, DC.

Nutural Godev 10.-Capparidea-(concld.)
Mærua arenaria, HIf. \& T.
Capparis spinosa, L.
\Rightarrow horrida, L. f.
Cratera religiosa, Forst.
Natural Order 11.-Violacer.
Viola biflora, L.
\rightarrow Patrinii, DC.
" scrpens, Wall,
". kunawarensis, Royle.
Ionidium suffruticosum, Ging.
Natural Order 12.—Biaince.
Cochlospermum Gossypium, DC.
Flacourtia Ramontchi, L'Herit.
" sepiaria, Roxb.
Xylosma longifolium, Clos.
Natural Order 13.-Pittosporea.
Pittosporum foribundum, W. \& Λ ", eriocarpum, Royle.

Natural Order 14.—Polygalca.

Polygala triphylla, Ham.
" crotalitrioides, IIam.
" abyssinica, Firesen.
" leptalea, DC.
", persicariæfolia, DC.
" chinensis, L.
" sibirica, L.
Salomonia cantoniensis, Lour.

Nataral Order 15.-Caryophyllea.

Gypsophila ccrastioides, Dom.
Saponaria Vaccaria, L.
Silene inflata, Sm.
" conoidea, L.
" Fatconeriana, Benth.
" Griffithii, Boiss.
" gallica, L.
" Moorcroftiana, Wall.
", Wehbiana, Woll.
", Stracheyi, Edgw.
Cucubalus bacciferus, L .
Lychnis apetala, L.

> brachypetala, IIort. Berol.
multicaulis, Wall.
inflata, Wall.
indica, Benth, var. fimbriata, Wall. nutans, Benth.
" $\quad \begin{aligned} & \text { nutans, } \\ & \text { pilosa, Edgw. }\end{aligned}$
Cerastium dahuricum, Fisch. $n \quad$ vulgatum, L .
\because Thomsoni, Hf.
Stellaria crispata, Wall.
" paniculata, Edgw.
", semivestita, Edgw.

Natural Order 15.-Caryophyllea(concluded).

Stellaria aquatica, Scop. media, L. Webbiana, Wall. latifolit, Benth. longissima, Wall. saxatilis, LIam. glanca, With. decumbens, Elgm.
Areuaria foliosa, Royle. festucoides, Benth. serpyllifola, L. orbiculata, Royle. glanduligera, Eugw. Stracheyi, Edgw. holosteoides. Edgw. Bent bami, Edgw.
Sagina procumbens, L .
Spergula arvensis, L., in fields. pentandra, L., ditto.
Drymaria cordata, Willd.
Polycarpæa corymbosa, Lamk.
Natural Order 16.-Portulacea.
Portulaca oleracea, L.
Natural Order 17.-Tamariscinese.
Tamarix gallica, L . dioica, Roxb.
Myŕicaria germanica, Desv. " clegans, Royle.

Natural Order 18.—Ehatinca.

Bergia ammannioides, Roxb.
Natural Order 19.-IIypericinea.
Hypericum cernuum, Roxb.
:, cordifolium, Chois.
" lysimachioides. Wall.
$\because \quad$ patulum, Thunb.
" perforatum, I. " elodeoides, Chois. " nepaulensc, Chois.

Natural Order 20.-Ternstraniacece.

Earya japonica, Thunb.
Actinidia cillosa, Lindl.
Samanja nepaulensis, DC.
Camcliia Thea, Link. Tea, introducod and cultivated.

Natural Order 21.-Dipterocarpca.
Shorea rolbusta, Gertn., Sál.

Natural Orater 22.—Malvacra.
Malva verticillata, L.
" silvestris, L.
", rotundifolia, L. parvillora, L.
Sicta rhombifolia, L.
" cordifolia, L.
Abutilon polyandrum, Sch1.
, indicum, G. Don.
" graveolens, H. \& A.
Urena lobata, L.
, repanda, Roxb.
Hibiscus Trionum. L.
furcatus, Roxb.
" Solandra, L'IIerit.
" ficulneus, L .
" pringens, Roxb.
" Abelmoschus, I.
" cancellatus, Roxb.
", esculentus, L., nuturalized.
Thespesia Lampas, Dalz. \& Gibs.
Gossypium herbaceum, L., introducced.
Kydia calycina, Roxb.
Bambax malabaricum, DC.
Natural Order 23.-Sterculiacce.
Sterculia villosa, Roxb.
:, Roxburghii, Wall. fulgens, Wall.
Helicteres Isora, \mathbf{L}.
Pterospermum accrifolium, Willd., rare.
Melochia corchorifolia, L.
Waltheria americana, L.
Abroma augusta, L, probably intro. duced.

Natural Order 24.-Tiliacec.

Grewia oppositifolin, Roxb.
" vestita, Wall. tiliæfolia, Vahl. asiatica, L. sapida, Roxb. scabrophylla, Roxb. polygama, Roxb. levignta, Vahl.
Orchorus fascicularis, Lamk , acutangulus, Lamk.
Triumfetta pilosa, Roth. rhomboidea, Jacq. annua, L.

Natural Order 25.—Linea.
Linum usitatissimum, L.
, mysorense, Heyne.
Reinwardtia trigyna, Planch.
Natural Order 26.-Mralpighiacca.
Hiptage Madablota, Gærtn.
Aspidopterys Wallichii, HI. " nutans, Hf

Natwral Order 27.-Zygophyllavec.
Tribulus terrestris, L.
Natural Order 28.-Geraniacca.
Geranium palustre, L.
" collinum, M. Dicb.
" Wallichianum, sweet.
nepalense, Sweet.
polyauthes, Edgw, \& Hf.
rotundifolium, L.
molle, L.
Robertianum, L.
lucidum, L.
ocellatum, Camb.
Oxalis corniculata, L.
, Acetosella, L.
Biophytum sensitivum, DC.
Impatiens Reinwardtii, Walp.
Impatiens Roylei, Walp.
" Thomsoni, Hf.
; sulcata, Wall.
" amplexicaulis, Edgw.
" Belsamina, L., Mujethi.
" scabrida, DC.
", bicornuta, Wall.
" amphorata, Edgw.
Natural Order 29.-Rutucce.
Bænninghauscuia albiflora, Reichl). Dictamus albus, L.
Xanthoxylon alatum, Roxb.
: oxyphyllum, Ldgw.
Toddalia aculcata, Yors.
Skimınia Laurcola, Lf.
Glycosmis, pentapylla, Corr.
Limonia acidissima, L.
Murraya exótica, L.
Kænigii, Spreng.
Clausena pentaphylla, DC.
Citrus medica, L.
Aurantium, L.
Figle Marmelos, Corr.
Feronia Elephantum, Corr.
Natural Order 30.-Simarubece.
Ailanthus excelsa, Roxb.
Picrasma quassioides, Benn.
Natural Order 31.—Ochnacca.
Ochma pumila, サam.
Natural Order 32.-Burseracca.
Boswellia scrrata, Roxb.
Garuga pinnata, Roxb.
Nutural Order 33.—Meliacece.
Melia Azedarách, L., Bukain.
" composita, Willd.
Azadinachta Indica, Juss, Nim.
Cedrela scriata, Royle.
" Toona, Roxb.

Natural Order 31.-Olacinca.
Olax nana, Wall.
Natural Order 30̆.-Ilicinca.
Ilex dipyrena, Wall.
" excelsa, Wall.
", oderata, IIam.
Natural Order 36.—Celustrinca.
Euonymus penclulus, Wall,

$"$	echinatus, Wall.
$"$	grandidorus, Wall.
$"$	Irmiltonianus, Wall.
$"$	lacerts, Ham.
tingens, Wall.	

Celnstrus paniculata, Willd., Malkagni. Gymnosporia rufa, Wall.
", montana, Roxb.
Eleo'dendron glaucum, Pers.
Natural Order 37.—Rhamnese.
Ventilago calyculata, Tulasne. Zyzyphus Jujuba, Lamk.
" Enoplia, Mili.
" vulgaris, Lamk.
" xylopyia, Willd.
" nummularia, W. \& A.
", oxyphylla, Ldgw.
Berchemia noribunda, Wall.
Rhamaus purpurcus, Edgw.
" procumbens, Edgw.
" virgatus, Roxb.
" triquetcr, Wall.
Sageretia oppositifolia Brongn.
$\#$ theezans, Brongn.
Scutia indica, Brong.
Gonauia leptostaclya, DC.
" nepalcnsis, Wall.
Hovenia clulcis, Thunb.
Natural Order 38.—Ampelidia.
Vitis capreolata, Don.
" latifollia, Roxb.
" vinifera L., introduced.
". Linneci, Wall.
" adrata, Wall.
" lanata, Roxib.
, himalayaua, Brand.
, parvifolia, lioxb.
obtecta, Wall.
", divaricata, Wall.
Leen sambucina, Willd.
" robusta, Roxb.
" alata, Edgw.
" aspera, Wall.
Nateral Order 39.-Sapindacca.
Assculus indica, Colebr.
Schleichera trijuga, Willd.
Sapinclus trifoliatus, L.
" Mukorossi, Gærtu., probably introduced.

Natural Orter 39.-Sapindacea(concluded).

Sapindus Danura, Voigt., probably introduced.
Acer oblongum, Wall.
, cxsium, Wall.
" lævigatum, Wall.
:, pictum, Thunb.
" villosum, Wail.
" caudatum, Wall.
Melianthus major., L., introduced.
Staphylea Emodi, Wall.
Natural Order 40.-Sabiacca.
Sabia paniculata, Edgw.
campanulata, Wall.
Meliosma simplicifolia, BI.
" dilleniæfolia, Bl.
Natwral Order 11.-Anacardiacea.
Rhus vernicifera, DC .
, acuminata, DC.
" semialata, DC.
" Cotinus, L.
\because succelanea, L.
" parviflora, Roxb.
Spondias Mangifera, Pers.
Mangifera indica, L .
Buchanania latifolia, Roxb.
Odina Wodier, Roxlu.
Semecarpus Anacardium, L.
Natural Order 42.-Coriarica.
Coriaria nopalcosis, Wall.
Natural Order 43. Moringea.
Moringa pterygosperma, Gertn.

Natural Order 4.-Leguminosa.

Piptanthus nepalensis, Don.
Thermopsis barbata, foyle.
Crotalaria prostrata, Roxb.
, alata, Roxb.
" sericea, Retz.
" juncea, L.
" tretragona, Roxb.
" albida, Heyne. neglecta, W. \& A .
Argyllobium flaccidum, J. ct s . roseum, J. et S.
Parochetus coromunis, Пam.
Trigonella Fœnum-Grecum, L. gracilis, Benth.
Medicago lupulina, L.
" laciniata, All.
") sativa, L., culticuled.
Melilotus parvifora, Desf.
" alla, Lamk.
" officinalis, L.

Natural Order 44.—Leymiansa(continued).

Trifolium repens, L. pratense, L.
Iotus corniculatus, I.
Indigofera linifolia, Retz.
" trifoliata, L .
$\Rightarrow \quad$ trita, L .
tinctoria, I .
pulchella, lloxb.
Dosua, Ham.
atropurpurea, Ham.
hirsuta, L.
Girardiana, Wall.
heterastha, Wall.
Tephrosia purpurea, Pers.
, tentis, Wall.
Millettia auriculata, Baker.
Caragana brevispina, Royle.
Colutea nepalensis, Sims.
Astragalus graveolens, Ham.
trichocarpus, Grals.
adesmixfolitis, Penth.
Iencocephalus, Grah.
hasackioides, Benth.
rhizanthus, Royle.
Weblianus, Grah.
multiceps, Wall.
Oxytropis microphylla, DC.
Fischynomencirudica, L.
Smithia sensitiva, dit. ciliata, Royle.
Zornia diphylla, Pers.
Ourcinia dalbergioides, Benth.
Desmodium oxyphyllum, DC.

> " gangeticum, DC.
" laxilorum, DC.
" gyrans, DC.
" podocarpum, DC:
" tifiæfolium, Don.
" Horibundam, G. Don.
" concinnum, DC.
" polycarpum, DC.
" parvifolium, DC.
, triflorum, 1 DC .
Uraria picta, Desv.
" lingopus, DC.
" lagopocloides. DC.
Alysicarpus vaginalis, DC.
bupleurifolius, DC.
Lesperloza elogans, Camb.
" sericen, Miq.
" eriocarpa, DO.
" juncea, Pers.
Vicia sativa, L.
rigidula, Royle.
" hirsuta, Koch.
, tenara, Grah.
" tenuifolia, Roth.
, tetrasperma, Moench.
Lens esculenta, Moench, cultivated.
Latligrus sativus, T .
" \quad Iuteus, Bak.
$n \quad$ Aphaca, L.

Natural Order 44.-Legumimasa-(concld.)
Pisum sativum, L., introduced.
Abrus precatorius, L .
Clitoria Ternatea, L.
Dumasia villosa, DC.
Shuteria involucrata, W. \& A.
Glycine Soja, s. et Z.
Erythrina arborescens, Roxb.
, resupinata, Roxb.
" suberosa, loxb.
Mucuna pruriens, DC. " atropurpurea, DC.
Butea frondosa, Roxb.
Spatholobus Roxburghii, Benth.
Pueraria tuberosa, DC.
Phaseolus Mungo, L.
, aconitifolius, Jacq.
Vigna Catjang, End.
Dolichos Lablab, L.
Cajanus indicus, L.
Atylosia scarabroides, Benth.
, mollis, Benth.
Rhynchosia minima, DC.

$$
\because \quad \text { Falconeri, Baker. }
$$

Flemingia semialata, Roxb.
D strobilifera, R. Br.
n vestita, Benth.
Dalbergia Sissoo, Roxb.
" lanceolaria, L.
, hircina, Benth.
" volubilis, Roxb.
Pongamia glabra, Vent.
Sophora mollis, Wall.
Cæsalpinia Bonducella, Flemm.
sepiaria, Roxb.
Cassia Fistuti, L.
" Tora, L.
" occidentalis, L.
"Absus, L.
, pumila, Lamk.
, Wallichiant, DC.
Banhinia racemosa, Lamk.
" variegata, L.
" relusa, Roxb.
" Vahlii, W. \& A.
" purpurea, L .
Mimosa rubicaulis, Lamk.
, pudica, J. Sensitive plant, naturlized.
Acacia Catechu, Willd.
" pennala, Willd.
" casia, W. and A.
" Farnesinna, Willd, naturalized.
" eburnea, Willd.
Albizzia lucida, Menth.
Lebbek, Benth.
" odoratissima, Bentlı.
; procera, Bentll.
" Julibrissin, Boiv.
" stipulata, Boiv.
Natural Order 45.—Rusacce.
Pruaus Puddum, Roxl.
" Padus, L.

Natural Order 15.-Resacea-(concll.)
Prunus domesticn, L. Aluchin, Plum, introduced.
" armeniaca L., Zard Alu, Apricot, cultirated.
Amygdalus persica, L., Aru, Peach, introdueed.
Prinsepia utilis, Royle.
Spirat canescens, Don.
" callosa, Thumb.
" Kamtschatica, Pall.?
" sorbifolia, L.
" Aruncus, L.
Rubus acuminatus, Sm . " paniculatus, Sm .
" parvifolius, L.
" concolor. Wall.
() niveus, Wall.
" fruticosus, L. flavus, Ham. lasiocarpus, Sm. rosefolius, Sm. biflorus, Ham. asper, Don.
Geum elatum, Wall.
Fragaria indica, Andr. vescr, I .
Agrimonin Eupatorium, Linn.
Potentilla fruticosa, L.
" microphylla, Don.
" multifolia, L.
" Leschenaultiana, Sm.
" fulgens, Wall.
" nepalensis, Hook.
" atrosanguinea, Lorld.
, supina, L.
" (Sibbaldi:) procumbens, L.
Rosa Lyellii, Liudl.
moschata, Mill.
Brunonii, Lind.
macrophylla, Lind.
Webbiana, Wall.
sericea, Tind.
Pyrus Aria, Ehrh.
baccata, L., Gwála Mehal.
variolosa, Wall, Mchal.
communis. L, Naslıpáti, I'ear, cullitated.
Malus L., Heo, Apple, calticutsd.
ursina, Wall.
foliolosa, Wall.
Cydonia, L.. introducerd.
Cratagus Pyracantha, Pers.
Cotoneaster acuminata, Lindl.
" microphylla, Wall.
" bacillaris, Wall.
" nummularia, F. et M.
Natural Oreler 46.—Saxifragece.
Astilbe rivulitris, Don.
Saxifraga ligulata, Wall.
D Stracheyi, Hf. \& T.
" imbricata, Royle.

Natural Orler 16.—Saxifragea-(concld.)
Saxifraga ramulosa, Wall.
n granulata, L.
, odontophylla, Willd.
" micrantha, lidgw.
" pallida, Wall.
" flagcllaris, Willd.
" Brunonis, Wall.
" filicaulis, Wall.

- luachypoda, Don.
" diversifolia, Wall.
" Jacquemontiana, Dene.
Chrysospleuium nepalense, Denc.
Paruassia Wightima, Wall.
uubicola, Wall.
Hydrangea altissima, Wall.
Deutzia corymbosa, R. Br.
, staminea, R. Mr.
Philadelphus coronarius, L.
Iter nutans, Royle.
Libes Grossularia, I.
, glaciale, Wall.
" rubrum, L .
" nigrum, L.
Natural Order 17.-Crussulacea.
Tillæa pentrandra, Royle.
Crassula indica, Dene.
Bryophyllum, calycinum Salislo., in gardens.
Kalanchœ varians, Haw.
Cotyledon Oreades, Bentl. et IIt.
Scdum crenulatum, Hf. \& T. quadrificlum, Pall. Himalense, Don. crassipes, Wall. clongatum, Wall. linearifolium, Royle. pauciflorum, Edgiv. trificlum, Wall. rosulatum, Edgw. adenotrichum, Wall. Ewersii, Ledel. multicaule, Wall. Rhodiola, DC.

Natural Order 48.—Droseraeca.
Drosera peltata Var. lunata, Ham.
Natural Order 49.—ITaloragacea.
Myriophyllum spicatum, L.
Natural Order 50.-Combretacca.
Tcrminalia belcrica, Roxb. Baharia.
" Chebula, Relz Har.
\% citrina, Roxb. Harinia.
" Arjuna, Bedd., Arjan.
\because tomentosa, Roxb. Saj.
Anogeissus latifolia, Wall.
Combretum decandrum, Roxb.

Natural Order 51.- Myracece.
Eugènia Jambolana, Lamk, Jáman.
" caryophylli folia, Lanik.
Careya aluorea, Roxb.
Barringtowia acutangula, Gærtn.

Natural Order 52.-Melastomacea.

Osbeckia stellata, Don. :, angustifolia, Don.

Natural Order 53.—Lythraciac.
Ammamia rotundifolia, Ham.
" vesicatoria, Roxl.
Woodfordia floribundi, salish.
Lawsunia alba Lamk., Mehndi, gurdens.
Lagerstromia parviflora, Lioxl).
Punica Granatum, L., wild and culticated.

Natural Order 54.-Onagracicre.
Epilobium tomentosum, Boiss.
" roscum, L .
Enothera rusea, Sims.,
" $\left.\begin{array}{l}\text { simuala. } \mathrm{I} .,, \\ \text { grandillora, }\end{array}\right\}$ naturulized.
Circær Lutetiann, L.
" alpina, L.
Natural Order mõ.—Samydacta.
Casenria tomentosa, Roxl.
Natural Order 56.-Cucurbitacice.
Trichosanthes cucumerina, J. palmatil, Roxb.
Luffia cylindrica, Naud.
Cucumis Melo. L., culticuted.
" sativus, L.
., Hardwickii, Royle.
Citrullus vulgaris, Schril.
Bryonia laciniosa, L.
Mukia scabrelin, Arn.
Zelueria umbellata, Thw.
Natural Order 57.—Begoniacta.
Begonia picta, Wall.
" amcua, Wall.
Natural Order 58.—Datiscacta.
Datisca canmabina, L.

Natural Order 59.—Hicoidece.

Trianthema peutandra, L.
,, crystallina, Vahl.
Mollugo hirta, Thunb.
" pentaphylla, L.
" cerviana, Scr.

Natural Order 60.—Umbellifira.
Hydrocotyle asiatica, L.
Sanicula curopara, L.
Bupleurum tenne, Ham.

$"$	longicaule, Wall.
$"$	Candollei, Wall.
$"$	falcatim, L.
marginatur, Wall.	

Apium graveolens, I., introduerd.
Carum Copticum, Bcuth. et IIf. Ajwáin, culticated.
A cronema tenerum, lidgw.
Pimpinella diversifolia, DC.
Cherophyllum villosum, Wall.
Gmanthe stolonifera, Wall.
Selinum Candollei, Bth. et If. Brunonis, DC.
", Govanianum, DC.
", angelicoide, DC.
IIcracleum candicans, Wall.
nepalense, Don.
Peucedanum gravcolens, L. Sawa.
Coriaudrum sativum, L., cultivated.
Dancus Carota, L., cultivated.
Torilis Anthriscus, Gmel.

Natural Order 61—Araliacees.

Aralia cachemirica, Dene.
Heteropanax fragrans, Seem.
Hedcra llelix, L.
Heptapleurum venulosum, Seem.

Natural Order 62-Cornacex.

Marlea begoniæfolia, Roxb.
Cornus macrophylla, Wall.
" oblonga, Wall.
", capitata, Wall.
Alangium Lamarckii, Thw.

Natural Order 63-Caprifoliacece.

Abelia triflora, R. Br.
Leycesteria formosa, Wall.
Lonicera Myrtillus, Mf. \& I'. parvifolia, Edgw. purpurescens, Hf. \& T. hypoleuca, Dene. orientalis, Lamk. alpigena, L. heterophylla, Dene. angustifolia, Wall. spinœa, Jacquem. , quinquelocularis, Hardw.
Viburnum cotinifolium, Don. " stellulatum, Wall. " integerrimum, Wall, " nervosum, Don. " coriaceum, Bl.

Natural Order 64.-Rubiacec.
Adina cordifolia, Benth. et Hf. Stephegyne parvifolia, Benth. et Hf. Hymenodictyon excelsum, Wall.

Natural Order 64.-Ruliacea-(conch.)
Wendlandia exserta, DC.
" puberula, DC.
Argostemma sarmentosum, Wall.
verticillatum, Wall.
Hed̈yotis Burmanniana, R. Br.
" aspera, Heyne.
", brachypoda, DC.
" gracilis, Wall.
Randia dumetorum, Lamk.
" tetrasperma, Roxb.
, uliginosa, DC.
Knoxia corymbosa, L.
Pavetta tomentosa, Sm.
Gardenia turgida, Roxb.
Coffera bengalensis, Roxb.
Hamiltonia suaveolens, Roxb.
Leptoclormis lanccolata, Wall.
Spermacoce articularis, L.
Galium asperifolinm, Wall. acutum, Edgw. rotundifolium, L. sepylloides, Royle. confertum, Royle. aparine, L.
Rubia cordifolia, L.
Aspernla cynanchica, L.

Natural Order 6ō.-Valerianacea.

Valeriana Wallichii, DC.
" Hardwickii, Wall.
Natural Order 66 -Dipsacce.
Morina Iongifolia, Wall.
" brevilora, Edgw.
Dipsacus inermis, Wall.

Natural Order 67.-Composita.

Vernonia anthelmintica, Willd. " cinerea, Less.
Elcphantopus scaber, L.
Adenostemma viscosum, Forst. " var. elatum, Don.
" var. latifolium, Don.
Enpatorium longicaule, Wall.
, Wallichii, DC.
Solidago Virga-aurea, L.
Cyathocline lyrata, Cass.
Dichrocephala gracilis, DC.
Grangea madraspatana, Poir.
Myriactis nepalensis, Less.
Wallichii, Less.
Aster alpinus, L.
" molliusculns, Benth.

- junceus, Benth.
, Thomsoni, C. B. Clarke.
(= Calimeris flexuosa, Royle.)
, peduncularis, Wall.
Erigeron acre, L.
bellidoides, Benth.
Conyza veroniæfolla, Wall.

Natural Order 67.-Compocita (contd.)

Conyaa absinthifolia, DC.
," viscidula, Wall.
Bhumea lacera, DC.
" runcinata, DC.
, bieracifolia, DC.
Spheranthus hirtus, willd.
Leontopodium alpinum, Cass.
Anaphalis cinnamonea, Rentl.
" triplinervis, Sims.
" nubigena, DC.
" nubigena, var. polycephala,
C. B. Clarke.
chionantha, DC.
armeosa, DC.
Gnaphatium multiceps, Wall.
\because indicum, L .
Cessulia axillaris, Roxb.
Inula vestita, Wall.
" nervosa, Wall.
" barbata, Wall.
" Сарpa, DC.
Carpesium cernurm, I.
, abrotanoides, I .
Siegesbeckia orientalis, L.
Eclipta erecta, L.
Bidens tripartita, L.
Allardia tridactylites, Hf. \& T.
Cotula anthemoides, L.
Tanacetum thibeticum, Hf. \& T. longifolium, Wall.
Artemisia vestita, Wall.
". vulgaris, L.
Senecio denidorus, Wall.
" graciliflorus, DC.
" laciniosus, Wall.
" coronopifolius, Desf.
" alatus, Wall.
" rufinervis, DC.
" Kunthianus, Wall.
" Candolleanus, Wall.
Echinops niveus, Wall.
" echinatus, Roxb.
Arctium Leppa, Willd.
Saussurea obvallata, Wall. taraxacifolia, Wall. Kunthiana, Wall. depressa, Wall. graminifolia, Wall. Candolleana, Wall. carthamoides, Benth. albescens, Hf. \& T, candicans, DC. Roylei, DC.
Jurinea macrocephala, Benth.
Serratula pallida, DC.
I'richolepis elongata, DC.
Leucomeris spectabilis, DC.
Ainsliæa pteropoda, DC.
, aptera, DC.
Gerbera lanuginosa, Benth. et Hf.
Berniera nepalensis, DC.
Tragopogon junceum, Wall.
Youngia lyrata, Cass.

Notural Order 67.-Composita-(concluted).

Lactuca graciliflora, Wall.
" Brunoniana, Wall.
" hastata, DC.
" macrantha, Benth. et Hr.
" longifolia, DC.
" auriculata, DC.
" sagittats. Hf. \& T.
", Tatarica, Benth.
Prenanthes hispidula, DC.
Taraxacum Dens-leonis, Desf.
Crepis fretida, L .
Mulgedium Tataricum, DC.
Microrhynchus sarmentosus, DC.
Gynura nepalensis, DC.
Emilia sonchifolia, DC.
Doronicum Roylei, DC.

Natural Order 68.-Campanulacea.

Cyananthus integer, Wall. linifolius, Wall.
Wahlenbergia agrestis, A. DC.
Campanula latitolia, T. sylvatica, Wall.
", syavatica, Wall.
" colorata, Wall.
Lobelia trigona, Roxb.
" pyrannidalis, Wall.

Natural Order 69.-Ericaceus.

Pernettya repens, Zoll.
Andromeda ovalifolia, Wall.
Rhododendron barbatum, Wall.
campanulatum, Don.
$"$
$" \quad$ arborenm, Sm.
lepidotum, Wall.
", anthopogon, Don.
Cassiope fastigiata, Don.
Natural Order 70.—Trimulacea.
Primula floribunda, Wall. petiolaris, Wall.
" purpurea, Royle.
" rosea, Royle.
" minutissima, Wall.
" involucrata, Wall.
" silbirica, Jacq.
" denticulata, Wall.
Andoosace sarmentosa, Wall.
" Jacquemontii, Duby.
" rotundifolia, Hardw.
" incisa, Wall.
\% elegans, Duby.
Lysimachia lobelioides, Wall.
3 pyramidalis, WalL
" evalvis, Wall.
" jnponica, Thumb.
Anagallis arvensis, L.
Micropyxis pumila, Duby.
Samolus Valerandi, L.

Natural Order 71.-Myrsinex.
Mesa indica, A. DC.
, argeuten, Wall.
Embelia robusta, Roxb.
Myrsine semiserrata, Wall,
, bifaria, Wall.
Ardisia humilis, Vahl.
" floribunda, Wall.
Natural Order 72.-Sapotacce.
Barsia butyracea, Roxb.
" latifolia, Roxb, at low elecations : planted.

Natural Order 73.—Eberacce.
Diospyros exsculpta, Ham.
Melanoxylon, Roxb.
" montana, Roxb.
", Embryopteris. Pers.
Natural Order 74.—Styracce.
Symplocos cratægoides, Ham.
\Rightarrow spicata, Roxb.
" racemosa, Rorb.
\rightarrow ramobissima, Wall.
Natural Order 75.-Sasminea.
Jasminum laurifolium, Rovb.
pubescens, Willd.
punctatum, Wrall.
arborescens. Roxb.
latifolium, Roxb.
dispermum, Wall.
revolutum, Sims.
pubigerum, Don.
officinale, L .
grandiforum, L.
Zumbac, Ait., cultivated.
Nyetanthes Arbor-tristis, L.
Natural Order 76.-Oleacea.
Fraxinus floribunda, Wall.
Ligustrum nepalense, Wall. compactum, Hf \& T.
Oleả cuspidata, Wall.
glandulifera, Wall.
Chionanthus macrophylla, Wall.
Syringa emodi, Wall.
Natural Order 77.-Apocynew.
Carissa diffusa, Roxb.
Ophioxylon serpentinum, Willd.
Tabernæmontana coronaria, R. Br.
Vinca pusilla, Murr.
Vallaris dichotoma, Wall.

Natural Order 77.-Apocynes-(concld).
Wrightia mellissima, Wall.
Holarrhena autidysenterica, Wall.
Alstonia scholaris. R. Br.
Nerium odorum, Solander.
Chonemorpha macrophylla, G. Don.
Ichnocarpus fragrans, Wall.
frutescens, R. Br.

Natural Order 78.-Asclepiadaces.

Cryptolepis elegans, Wall.
Vincetosicum canescens, Done. montanum, Dene.
Calotropis procera, R. Br.
Dæmia extensa, R. Br .
Periploca calophylla, Fale.
Tylophora carnosa, Wall.
Marsdenia Roylei, Wight.
Pergularia odoratissima, L.
Orthanthera viminea, Wight.
Hoya parasitica, Wall.
Ceropegia longifolia, Wall.
" lanceolata, Wight.
Nativeral Order 79.-Lagarinaeos.
Gardneiia angustifolia, Wall, Buddleia paniculata, Wall.
: asiatica, Lour.

Natural Order 80.-Gestianacem.

Exacum tetragonum, Roxb.

- ,: peclunculatum, L.

Canscora clecussata, R. et S.
". diffusa, R. Br.
Gentiana tenella, Fries.
,. pedicellata, Wall.
,. argentea, Royle.
" capitata, Ham.
", decemficla, Ham.
", marginata, Griseb.
", venusta, Wall.
$\because \quad$ clepressa, Don.
, Kurroo, Royle.
Crawfurdia fasciculata, Wall.
Ophelia corclata, Don.
, lurida, Don.
" purpurascens. Don.
$\because \quad$ nervosa, Wall.
" pulchella, Don.
: angustifolia, Don.
, Chirayta, Griseb.
Halenia elliptica, Don.
Swertia speciosa, Wall.
Natural Order 81.-Bignoniacea,
Calosanthes indica, Bl.
Stereospermum chelonoides, DC.
", suaveolens, DC.

Nutural Order 32.—Pedaicacece.
Martynia proboscidia, Glox, naturalized. Sesamum indicum, L., Tili, cultivated.

> Natural Order 83.-C'onvolvulacea.

Argyteia speciosa, Swect.
" capitata, Choisy.
" setosa, Choisy.
Quamoclit coccinea, Monch, $\{$ eseaped " vulgaris, Choisy, from gardens.
Patatas pentaphylla, Choisy.
Pharbitis Nil, Choisy.
Calonyction speciosum, Choisy.
Ipomoea Pes-tigridis, L.
" Turpethum, R. Br.
" vitifolia, Sweet.
" pilosa, Sweet.
", sessilitiora, Choisy.
Convolvulus pluricaulis, Vah1.
Porana paniculata, Roxb.
racemosa, Roxb.
Evolvulus alsinoides, L.
Cuscuta refexa, Roxb.

Natural Order 84.—Boraginacea.

Gynaion vestitum, A. DC.
Cordia Rothii, R. et S.
" Myra, L.
" latifolia. Rórb.
Ehretia lævis, Roxb.
serrata, Roxb.
Rhabdia viminca, Dalz.
Heliotropiam ovalifolium, Yahl. strigosum, Willd.
Macrotomia Benthami, DC.
Mertensia echioides, Hf. and T.
Myosotis crespitosa, Schult. rotundifolia, R. Br.
Eritrichium rotundifolium, DC. sericeum, Royle.
" spathulatum Rocle.
Echinospormum glochidiatum, DC.
Cgnoglossum furcatum, Wall. micranthum, DC. ", longitlorum, Benth ", grandifiorum, Royle.
Trichodesma indicum, M. Br.

Natural Order 85.-Salanacea.
Solnnum tuberosum, L., Potato, intro. daced.
Solanum nigrum, L.
, verbascifolum, $\mathrm{I}_{\text {. }}$
", sanctum, L.
., xanthocarpum, Schr.
" indicum, L.
Physalis minima, L.

Physalis Peruviana, L., introdwaed and almost naturalized.
Capsicum frutescens, L., LAhl-mirelı, Chilli, introluced and naturalized.
Nicandra physaloides, Gærtn, naturalized.
Withania somnifera, Don.
Nicotiana Tabacum, L., Tamáku, introduced and naturalized.
Datura Stramonium, L.
" fastuosa, \mathbf{L}.

Natural Order 86.—Scrophulariacea.

Verbascum Thapsus, L.
Celsia coromandeliana, \mathbf{L}.
Linaria raunosissima, Wall.
Antirrhinum Orontium, I_{L}.
Mimulus nepalensis, WalI.
, gracilis R. Br.
Mazus surculoaus, Don.
tugosus, Lour.
Lindenbergia grandiflora, Bemth. " urticæfolia, Lehm. " macrostachya, Bentl.
Limnopbila gratioloides, R. Br.
Herpestis Hamiltoniana, Benth. " Monnieria, H. B. K.
Torenia cordifolia, Roxb.
Vandellia crustacea, Benth.
Bonnaya brachiata, Link. " veronicæfolia, Spr.
Hemiphragma heterophyllum, Wall.
Scoparia dulcis, L., naturalized.
Veronica Anagallis, I .

", deltigera, Wall.
", lanosa, Benth.
, alpina, L .
", biloba, I.
", agrestis, L.
Buchnera lispida, Lamk.
Striga euphrasioides, Bentl. " densiflora, Benth. ,. hirsuta, Benth.
Leptorhabdos parviflora, Benth.
Sopubia trifida, Don.
Euphrasia officinalis, L.
Picrorbiza Kurrooa, Royle.
Pedicularis tubiflora, Fiseh. " carnosa, Wall.
" pectinata, Wall.
", pyramidata, Royle.
" gracilis, wall.
" porrecta, Wall.
" abrotanifolia, Bieb.
" megalantha, Don.
Nutural Order 87.-Lentibularia.
Utricularia flexuosa, Vahl.

Natural Order 88.-Orabanchea.

Phelipæa indica, G. Don. Sginetia indica, Roxb.

Natural Order 89.-Gesneracta.

Didymocarpus subalternans, Wall. " atomaticus, Wall. " macrophyllus, Wall , pedicellatus, R. Br. " lanuginosus, Wall.
Chirita bifolin, Don.
Rhyncloglossum obliqumm. Bl.
Platystemma violoides, Wall.
Lysionotus ternifolius, Wall.
Natural Order 90-Avanthacea.
Thunbergia grandiflora, Roxb. coccinca, Wall.
Ebermaiera glauea, N. ab. E.
Hygrophila polyspema, T. Anders. spinosa, 'T. Anders.
l'etalidiam barlerioides, N. ab E.
Hemigraphis Pavala, T'. Anders.
Strobilanthes auriculatus, N. ab E. :, glutinosus, T. Anders.
" alatus, N. nb E. ", Wallichii, N. ab E. " isophyllus, T. Auders. anisophyllus, T . Auders.
Fehmanthera Wallichii, N. ab E.
Dedalacanthus nervosus, T. Anclers.
Barleria cristata. I.
Lepidagathis cuspidate, N. ab I. " purpuricaulis, N. ab E. " hyalina, N. ab F. ., fasciculata, N. ab IV.
Phlogacanthus thyrsillorus, N. ab E.
Justicia Achlatoda, L. , peploides, T. Anders.
\because procumbens, I .
Rungia pectinata, N. ab E. \because repens, N. ab L.
Dicliptera Roxburghiana, N. al, E.
Peristrophe bicalyculata. N. ab E.
" speciosa, N. ab E.

Natural Order 91.-Verbezacer.
Verbena officinalis, L.
Lippia nodiflora, Rich.
Lantana alba, Mill.
Premna viburnoides, Wall. mucronata, Roxb.
" barbata, Wall.
: herbacea, Roxb.
Callicarpa arborea, Roxb.
., macrophylla, Vahl.
Clerodendron serratum, Spr.
infortunatum, L.
" Siphonanthus, R. Br.

Natural Order 91.-Verbenacre. -(concluded).

Caryopters Wallichiana, Schauer. Gmelina arborea, Noxb. Vitex Negundo, L.
Holmskioldia sanguinea, Retz.

Nateral Order 92.-Labiata.

Ocimum canumi, L.
sinctum, L , naturalized.
Orthosiphon rubicundus, Benth.
Plectranthus scrophularioides, Wall.
" striatus, Benth.
" Coctsa, Don.
" ternifolius, Dou.
" cordifolius, Don.
Colcus larbatus, Benth.
Pogostemon plectranthoides, Desf.
Dysophyla cruciata, Benth. pumila, Benth.
Colebrookia oppositifolia, Sm .
Elshotzia polystachya, Benth.
" Glava, Henth.
" incisa, Benth.
:, eriostachya, Benth.
, strobilifera, Benth.
Mentha arvensis, L.
", incana, Willd, rar. Royleann, Benth.
Origanum normale, Don.
Melissa calamintha, L.
Nicromeria biflora, Benth.
Hedeoma nepalensis, Benth.
Salvia glutinosa, I.
:, Mooreroftiana, Wall.
., lanata, Roxb.
") plebeja. R. Br.
Nepeta spicata, Bentl.
" distans, Royle. ciliaris, Royle. ruderalis, Itam. Leucophylla, Benth. Govaniana. Benth.
Lälemantia Royleana, Benth.
Anisomeles ovata, R. Br.
Prunella valgaris, L .
Scutellaria grossa, Benth.
, repens, Ham.
", linearis, Bentir.
$\%$ scandens, Don.
Carniotome versicolor, Benth.
Leonurus Royleanus, Benth.
" pubescens, Benth.
", cardiacus, L.
Lamium amplexicaule, L.
petiolatum, Royle.
Colquhounia coccinea, Wall.
Stachys sericea, Wall.
splendens, Wall.
Roylea elegans, Wall.
Leucas urticæfolia, R. Br.
(" lanata, Benth.
," mollissima, Wall.

Natural Order 92.-Labiate -(concluded).

Leucas diffusa, Benth.
" hyssopifolia, Benth.
, cephalotes, Spr.
Leonotis nepetwfolia, R. Br.
Phlomis Jamiifolia, Royle.
Eremostachys superiba, Royle.
Ajuga remota, Benth.
" bracteosa, Wall.
Teucrium Royleanum, Benth.
" quadrifarium, Ham.
Natural Order 93.-Plantaginea.
Plantago major. L .
" Ispaghula, Roxb.
Natural Order 94.—Chenoponiacea.
Chenopodium album, L.
, Botrys, L.
Natural Order 95.-Basellacea.
Basella rubra, L. enttivated and naturalized.

Natural Order 96.-Amarantacea.
Deeringia celosioides, Mon.
Rodetia Amherstiana, Muq.
Celosia argentca, Moq.
Amaranthus caudatus. I. cultivated and naturalized.
Amaranthus paniculatus, Mor. : Gangeticus, L.

- frumentacens, Roxb, Rámclana, Anárclana, cultirated and naturalized.
spinosus, L.
Erua scandens, Wall.
, lanata, Juss.
Achyranthes aspera, I..
Digera arvensis, Forsk.
Pupalia lappacea. DC.
Cyathula prostrata, Bl.
Alternanthera sessilis, R. Br.
Natural Order 97.-Nyetayinca.
Boerhaavia diffusa, L.
Mirabilis Jalapa, L., introduced aud naturalized.

Natural Order 98.-Phytolaccacece.

Pircunia Latbenia, Moq.

> Natural Order 99.-Polygonacece.

Rumex Wallichi, Meissn.
, nepalensis. Spr.
$"$
hastatus, Don.

Natural Order 99.-Poitygonacea. -(concluded).

Rumex vesicarius, L.
Konigia Islandica, L.
Rheum emodi, Wall.
himalense, Royle.
Polygonam Roxburghii, Meissn.
, plebeim, R. Br.
\% herniarioides, Del.
" recumbens, Royle.
" aviculare, L .
" barbatum, L.
., amphibium, L.
" lapilhifolium, L.
, sphærostachyum, Mcissn.
" amplexicaule, Don.
: vaccinafolium, Wall.

- affine, Dor.
: nepalense, Meissn.
" splerocephalum, Don.
:, capitatum, Ham.
" chinense, L.
" pterocarpum, Wall.
" rumicifolium. Royle.
Fagopyrum esculentum, Muench.
cymosum, Meissu.
tataricum, Gertn.
Natural Order 100.-Laurinct.
Cinnamomum Tamala, N. ab E., vat. albiflorum, 'Tejpát.
Phobbe lanceolata, N. ab E. n pallicla. N. ab H.
Machilus odoratissimus, N. ab E.
Tctranthera Roxbuyghi, N. alj E.
" monopetala, Roxl.
Liteæa consimilis, N. ab E.
" lanuginosa, N. able E .
Natural OVder 101.—Thymelacea.
Daphne papyracen, Wall.
Wikstræmia virgata, Meissn.
Natural Order 102.-Loranthacere.
Loranthus ligustrinus, Wall.
" pulverulentins, Wall.
" vestitus, Wall.
" longifiorus, Desv.
" cordifolius, Wall.
Viscum album, L.
" articulatum, Burm.
" attenuatum, D.C.
Natural Order 103.-Eleagnece.
Hippophaë salicifolia, Don.
Elæagnus umbellata, Thumb.
" latifolia, L.
Natural Order 104.-Santalacw.
Osyris arborea, Wall.

Natural Order 105.-Aristolochia cea.
Aristolochia bracteata, Retz.

Natural Order 106.-Hiphorbiacece.

Pbyllanthus nepalensis, Miill.
," parvifolius, Wall.
, velutinus, Mäll.
", Miruri, L.
" Finblica, L.
Antidesma diandrum, 'The.
Securinega obovala, Mïll.
Iencopyrus, Miill.
Putranjiva Roxburghii, Wall.
Andrachne cordifolia, Müll.
Bischoffia javanica, Bl.
Briedelia montana, Willd.
, stipularis, Bl .
Groton oblongifolins, Roxb., introduced.
Trewia nudillora, Willd.
Mallotus philippineusis, Müll, (Rottlera tinctoria, Roxht.
Ricinus communis, L., cultivaled.
Homonoza riparia, Lour.
Baliospermum polyandrum, Wight.
Excoccaria insignis, Miill.
Euphorbia indica. Lamk. pilulifera, L.
" \quad neriifolia, L.
", Sikkimensis, Boiss.
" longifolia, Don.
" Helioseopia, I.
, nepalensis, Boiss.
", Nivulin, Ham.
", Royleana, Boiss.
Sarcococoa priniformis, Lindl.

Natural Order 107.-Cupulifora.

Quercus semecarpifolia, Sm.
" Ilex, L.
" dilatatin, Lindl.
", lanuginosa, Don.
" incane Roxb.
" amıulata, Sm.

Nutural Order 108.—Myricacere.

Myrica sapida, Wall.

Natural Order 109.—Betulacea.

Betala Bhojpattra, Wall.
,, acuminata, Wall.
., nitida, Don
Alnus nepalensis, Dou.

Natural Order 110.- Curylacea.
Crupinus viminea, Wall.
" faginea, I,indl.
Corylus Colurna, Linn.
Nutural Order 111.—Juglandra.
Juglans regia, I.
Engelhardtia Colebrookiana, Iindl.
Natural Order 112.-Salicinca.
Salix tetrasperma, Roxb.
,, babylonica, Is., introduced.
," elegans, Wall.
" daphnnides, L.
, Habellaris, Anders.
, Lincleyana, Wall.
Populus ciliata, Wall.
Natural Order 113.-Urticacea.
Ulmus integrifolia, Roxb. erosa, Roth.
Celtis caucasica, Willd.
, australis, L.
Sponia politoria, Planch. " orientalis, Planch.
Cannabis sativa, L.
Urtica parvifora, Roxb.
Girardinia heterophylla, Dene.
Pilea scripta, Wedd.
Lecanthus peduncularis, Wedd.
Elatoslemma sessile, Forst.
, diversitolium, Wedd.
" Stracheyanum, Wedd.
Bcelımeria rugulosa, Wedd.
" macroplylla, Don.
" platyplyyla, Don.
Pouzolzia indlica, Gand.
" viminea, Wedd.
Debregeasia longitolia, Wedd.
" bicolor, Wedil.
Memorialis pentandra, Wedd.
, lirta, Wcld.
Villebrunea frutescens, Bl .
Maoutia Puya, Wedd.
Cudrania javanensis, Trec.
Streblus asper, Lour.
Morus atropurpurea, Roxb, introduced.
" lærigata, Wall.
, indica, L.
" alba, Willd, cultivated.
Ficus bengalensis, L., Bar. infectoria, Willd.
, religiosa, L., Pipal
" cordifolia, Roxb.
" nemoralis, Wall. candata, Wall.
scandens, Roxb.
" foveolata, Wall.
", tuberculata, Wall.
" Roxburghii, Wall.

Natural Order 113.- Urticarea. -(concluded).

Ficus hispida, I. f.
" Cunia, Ham.
" glomerata, Willd, Gular.
" Carica, L. introduced.
" virgata, Roxb.
Natnral Order 114.-Piperaced.
Peperomia reflexa, Dietr.
Natural Order 115.--Gnetaces.
Ephedra vulgaris, Rich.
Natural Order 116.—Conifera.
Pinus longifolia, Roxls.
" Gerardiana, Wall.
n excelsa, Wall.
Abies Webbiana, Lindl.
, Smithiana, Forbes.
Cedrus Deodiara, Loud.
Cupressus torulosa, Don.
Juniperus communis, L.
," excelsa, Bieb.
" recurva, Ham.
Taxus bnccata, L.

Natural Order 117.-Palmacea.

Phœenix acaulis, Roxb. sylvestris, Roxb.
Chammrops Martiana, Wall.
Calamus Royleanus, Griff.
Wallichia densiflorn, Mart.

Natural Order 118.-Aroidea.

Arisæma Jacquemontii, Bl.
" utile, Hf. \& T.
" costatum, Mart.
" speciosum, Mart.
" curvatum, Kunth.
Sauromatum guttatum, Schott.
Remusatia viripara, Schott.
Amorphophallus cempanulatus, Bl.
Colocasia, species.
Scindapsus officinalis, Schott. decursiva, Schott.
Typhonium, species.
Pothos scandens, L.
Acorus calamus, L.

Natural Order 119.-Lemanacea

Lemar minor, L.
, polgrrhiza, L.

Natural Order 120.-Typacee.
Typha eleplantina, Roxb.
Natural Order 121.-Juncaginacere.
Potamogeton pectinatus, L.
Aponogeton monostacliyus, Roxb.
Natural Order 122.-Sisitaninece.
Globlia Orixensis, Roxb.
Zingiber capitatum, Roxls.
" Caisumunar, loxb.
" ligulatum, Roxb.
Curcuma angustifolia, Roxb.
, Zerumbet, Roxb.
Roscoen elata, sm.
, alpina, Roxb.
" spicata, sm.
" purpurea, Sm.
Amomun subulatum, Roxb.
Hedychium coronarinm, L., in gardens.
" spicatum, sim.
" coccineum, Ham.
Costus speciosins, J .
Musa paradisiaca, L. plantain, culticuted.
" acpalensis, Wall.
Natural Order 123-Orchiducea.
Oberonia iridifolia, Lindl.
Dienia cylindrostachya, L.
Liparis obcordata: Vahi.
Ccelogyne cristata, lindl.
, ocellata, Lindl.
. ovalis, Lindl.
Eria convallarioides, Lindl.
" alba, Lindl.
" flava, Lindl.
Dendrobium erixforum, Grift.
, ajpestre, Royle.
Otochilus, species.
Apaturia Smithiana, Lindl.
Eulophia, campestris, L.
n harbacea, lindl.
Cyrtopera fusca, Wight.
Vanda eristata, Lindl.
Saccolabium guttatum, Lindl.
Gharwalicum, Reichb. f.
Aerides affine, Wall.
" odoratum, I.owe.
" Hystrix, Lincll.
" difforme, Wall.
Calanthe puberula, Lindl.
Orehis latifolia, L.
Gymandenia cucullata, Rich.
" spathulata, Lindl.
Aceras angustifolia, Lindl.
Platanthera orchidis, Lindl.
" clavigera, Lindl.
" obcordata, Lindl.
" Susanna, Lindl.

* candida, Lindl
" acuminata, Lindl.

Natural Order 123.-Orchidacea -(concluded).

Gamoplexis orobanchoides, Falc.
Epipactis latifolia, Sw. macrostachya, Lindl.
Spiranthes australis, M. Br.
Habenaria pectinata, Lindl.
" intermedia, Don.
" marginata, Lindl.
" longifolia. Lindl.
Peristylus Goodycroides Jindl.
Herminium Monorchis, Sw. species.
Satyrium nepalense, Don.
Monochilus flarus, Wall.
Tripleurn pallida, Lindl.
Goodyera marginata, Lindl.
Cypripedium cordigerum, Don.
Natural Order 124.-Iridaceac.
Iris sulcata, Wall.
" decora, Wall.
", Ramaonensis, Wall.
, nepalensis, Wall.
Natural Order 120̆-Amaryllidacea.
Crinum toxicarium, Roxb.
amœenum, Roxb.
Curculigo recurvata, Roxb.
Hypoxis aurea, Lour.
" orchioides, Kz.
Natural Order 126.—Divseorac.
Dioscorea deltoidea, Wall.
" \quad eagittata, Royle.
" pentaphylla, L.
Natural Order 127.-Liliacea.
Tulipa stelleta, Hook.
Gagea thesioides, Fisch.
, elegans, Wall.
Iphigenia indica, Kth.
Lloydia serotina, Reichb.
Fritillaria cirrhosa, Don.
" verticillata, Royle.
Lilium giganteum, Wall.
" Wallichianum, H. ct. S.
" nepalense, Wall.
" 'Thomsonianum, Hf.
" roseum, L .
Gloriosa superba, L.
Allium. Victoriale, L.
, Wallichii, Kth.
: tuberosum, Roxb.
" Govanianum, Wall.
" consanguineum, Kth.
? rubens, Schræd.

Natural Order 127.-Liliacea.-(concld.)
Urginea indica, Kunth.
Asphodelus clavatue, Roxb.
A sparagus racemosus, Willd.
flicinus. Ham.
Polygonatum multiforum, All
, sibiricum, Red.
, verticillatum, All.
Flüggea intermedia, Sch.
" Wallichiana, Eth.
Smilax maculata, Roxb. " elegans. Wall.
" macrophylln, Roxb.
, ovalifolia, hoxb.
Paris polyphylla, Sm.
Trillidium Govanianum, Kth.
Disporum Pitsutum, Don.
" calcaratum, Don.
Natural Order 128.-Alismacea.
Alisma Plantago, L.
, reniforme, Don.
Sagittaria sagittifolia, L.
Natural Order 129.-Pontederswe.
Monochoria hastata, Presl.

Natural Order 130.-Commelynacex.

Cyanotis axillaris, R. et S . barbata Don.
Commelyna salicifolia, Roxb.
., bengalensis, L.
" obliqua, Ham.
Aneilema herbaceum, Wall.
Natural Order 131.—Junoaoea.
Juncus concinnus, Don. leucomelos, Royle.
", castaneus, L.
", bufonius, L.
", effusus, L.
" leucanthus, Don.
Notural Order 132.-Restiacea.
Eriocaulon quinquangulare, L.
" trilobum, Ham.
is sexangulare, L.
Natural Order 133.-Cyperacta.
Carex rigida, Good.
" Thomsoni, Boot.
" mitis, Boot.
" nubigena, Don.
n foliosa, Don.

Natural Order 133.-Cyperacea(concluded.)

Carex longipes, Don.
, Moorcroftii, Falc.
," alopecurioides, Don.
" Wallichiana, Presc.
", seligera, Don.
" cruenta, Nees.
" uncinoides, Boot.
", vesiculosa, Boot.
" flicina, Nees.
" condensata, Necs
", bengalensis, Roxb.
Rhynchospora aurea, Necs.
Wallichiana, Nees.
Fimbristylis quinquangularis, Nees. dichotoma, Vilhi. æstivalis, Vahl. complanata, Link.
Scirpus juncoides, Roxb.
, afinis, Rotl.
i, mucronatus, L.
Abilgáardia monostachya, Vald.
Eleocharis uniglumis, in. Br . palustris, R. Br.
" ovata, R. Br.
Isolepis setacen, R. Br.
" trifida, Nees.
" supina, R. Br .
, Roylei, Nees.
Kyllingia monocephala, L.
" brevifolia, Rottb.
" triceps, Nees.
Eriophorum comosum, Wall.
Cyperus pygmaus, Vahl.
", alopecuroides, Rottb.
" compressus, L.
" niveur, Retz.
" difformis, L.
", Iria, L.
". rolmulas, T .
Mariscus panicens, Vall.

Natural Order 131.-Graminca.

Oryza sativa, L., Rice, cultivated.
Zea Mayf, I., Makai, Bhuta, Indian Corn, introducen and cultivated.
Coix Lachryma, L. gigantea, Koen.
Milium effusum, L., introduced.
Paspalum pedicellatum, Nees.
" scrobiculatum, L. cultivated.
$\because \quad$ Royleanum, Nees.
Coridochloa semialata, Nees.
Panicum sanguinale, I. ciliare, Retz.
", miliaceum, L., cultivated. maximum, Jacq. ovalifolium, Poir. longipes, W. \& A. miliare, Lamk. vestitum, Nees. plicatum, Roxb.

NaturalOrder 134. - Graminere - (contd.)
Panicum prostratum, Lamk.
, repens, L .
Oplismenus colonus, Kth.
" compositus, H. \&. S.
" frumentaceus, Kunth, culivated.
stagninus, Kth.
Sctaria glauca, leaur.
" italica, Kth., naturalized; cultirated.
verticillata, Beaur.
Penicillaria spicata, Lamk, Bajra, cuitivated.
Pennisctum cenchroides, Rich.
, triflorum, Nees.
Gymnothrix flaccida, Munro.
Arundinella setosa, Trin.
Sporobolus diandra, Beauv.
" elongatus, R. Rr.
Agrostis alba, L.
, ciliata, 'Trin.
Miihlenbergia sylvatica, Trin.
" geniculata, Nees.
" viridissima, Nees.
Polypogon littoralis, L.
Calamagrostis Epigejos, Roth.
Orthoraphium Roylei, Nees.
Piptatherum æquiglume, Munro.
Alopecurus pratesis, L.
Phleum arenarium, L.
Phragmites Roxburghii, Kunth.
Chloris barbata, Swartz.
Eleusine indica Gertn
" Coracana, Gærtn, cultivated.
" verticillata, Roxh.
Cynodon Dactylon, Pers, Dúb.
Avein fatua, L.
" pratensis, L .
Pon anmua, I .
" pratensis, L.
" bulbosi, L .
Eragrostis plumosa, Link.
" pilosn, L.
" verticillata, Bcauv.
" unioloides, Nees.
" posooides, Beauv.
", nardoides Trin.
," diandra, Roxb.
Melica ciliata, L.
Kœleria cristata, Pers.
, phleoides, Pers.
Dactylis glomerata, L.
Festuca duriusccla, L.
Bromus squarrosus, L .
" arvensis, L
" giganteus, L .
Arundinaria falcata, Nees.
" Falconeri, Kz.
Thamnocalamus spathifiorus, Munro,
Bambusa arundinacea, L.
Dendrocalamus strictuf, Nees.
Hordeum hexastichon I., Jau, Barley,
cultivated.

Natural Order 134,—Graminc-(concld.)
Hordeum volgare, L., cultivated.
Elymus sibiricus, L.
Lolium speciosum, Stev.
temulentum, L .
Triticum vulgare, Vil., Gehún, Wheat, cultieated.
Mnesithca lævis, Kth.
Rottbcellia exaltata, L.
Ophiurus corymbosus, Grtn.
Manisurus granularis, Sw.
Andropogon Gryllus, L.

$"$	acicularis, Retz.
involutus, Stend.	
$"$	montanus, Roxb.
"	Ischæmum, L.

Heteropogon contortus, R. \& S.
Roylei, Nees.
Sorghum vulgare, Pers., Joar, cultivated. Halepense, L .
Apocopis Royleanus, Nees
Batratherum molle, Nees. lancifolium, Trin. echinatum, Nees.
Anatherum muricatum, Beauv.
Cymbopogon laniger, Desf.
" flexuosus, Nees.
" Martini, Munro.
" Schœenanthus, L.
, Nardus, L.
Androscepia gignntea, Brongu.
Anthistiria arundinacea, Nees.
-) Anathera, Nees.
"̈ scandens, Roxb.
Apluda aristata, L.
" geniculata, Roxb.
Imperata arundinacea, Cyrill.
Saccharum spontaneum, I.
" procerum, Roxb.
" officinarum, L., Sugarcane cultivated, introduced.
" Sara, Roxb.
" filifolium, Nees.
Erianthus Ravennæ, Beauy.
" japonicus, Beauv.

Cryptogams.

Filices or Ferns.

Woodsia elongata, Hk.
," lanosa, Hk.
Dicksonia appendiculata, Wall. scabra, Wall.
Davallia pulchra, Don.
" divaricata, Bl.
" immersa, Wall.
" nodosa, Hk.
Adiantum lunulatum, Burns.
" caudatum, \mathbf{L}.
" Capillus-Veneris, L.

Filices or Ferns-(continued.)

Adiantum venustum, Don.
Cheilanthes Dalhousiæ, Hk.
" farinosa, Kaulf.
Onychium auratum, Kaulf.
, jeponicum, Kunze.
Pcllea, calomelanos, Link.
Pteris longifolia, L.
" cretica, L.
" quadriaurita, Rez.
", aquilina, L.
"Wallichiana, Agdh.
Woodwardia radicans, Sm.
Asplenium, alternans, Wall.
n varians Hk. and Gr.
" viridie, Huds.
" Trichomanes, L.
" planicanle, Wall.
" fontanum, Bernlı.
" bulbiferum, Forst.
" tenuifolium, Don.
" Filix fœemina, Bernh.
" polypodioides, Mett.
" dilatatum, Wall.
" esculentum, Persl.
" Ceterach, I.
" australe, Brack.
Aspidium auriculatum, Sw.
" aculeatum, Sw.
, Thomsoni, Hk.
," aristatum, Sw.
" falcatum; Sw.
Nephrodium unitum, R. Br. prolixum, Bak. sparsum, Don. molle, Desv. cicutarium, Bak. polymorphum, Bals Filix-mas, Rich. cochleatum, Don. odoratum, Bak.
Oleandra Wallichii, Ik. neriiformis, Car.
Polypodium erubescens, Wall.
" proliferum, Presl.
" lineatum, Colebr.
" amcenum, Wall.
" lachnopus, Wall.
" malacodon, Hk.
" trifidum, Don.
Lingua, Sw.
stigmosum, Sw .
fissum, Bak.
flocculosum, Don. lineare, Thunb. normale. Don. membranacenm, Don. propinquum, Wall. juglandifolium, Don. quercifolium, L. himalense, Hook. leiorhizon, Wall.
Acrostichum virens, Wall.
Gymnogramme vestita, Hk.

Filices or Ferns-(concld.)
Gymnogramme Andersoni, Bedd. javanica, Bl.
" lanceolata, Hk .
" involuta, Don.
Osmunda Claytoniana, L.
Schizæa digitata, Sw.
Lygodium, scandens, Sw.
japonicum, Sw.
Botrychinm daucifolium, Wall.
Lunaria, Sw. Virginianum, Sw.

Lycopodiacea.
Selaginclla Jacquemontii, Spring-
" setacea, Spring. subulifolia, Spring.

Marsiliacere.
Marsilea quatifolia, L.
Characea.
Chara veticillata, Roxb.

PLANTS OF KUMA0N:. ${ }^{2}$

Thes following list gives the names of all plants known to have
Area under notice. been found in Kumaon, Garhwál and the Bhábar, three of the districts which are included in the Commissionership of Kumaon. Plants of the plains of India, plants growing in Tibet, and plants only found in the Independent States of Nepál and Tihri, do not appear in this list. The words, "common," "frequent," and "rare" have been employed to denote the comparative occurrence of the various species; but as the European stations of Almora, Naini Tall, and Ránikhet are all situated at a height of between 5,000 and 7,000 feet above the level of the sea, it will be easily understood that plants growing about that level are more likely to meet an observer's eye than plants which grow either at a very high, or at a very low elevation. Plants which are marked "rare" without any locality being given, are those which have been found by former observers, but which have never been seen growing within the limits of the division by Colonel Davidson, Mr. Waterfield or Dr. Watson. In the arrangement of the orders, genera, and species, Hooker's ' Flora of British India,' has been followed as far as published, that is to say, to the end of Polypetala. 'With regard to the other groups the books chiefly consulted have been Brandis' Forest Flora, Madden's Papers in the Journal of the Asiatic Society, Royle's Illustrations of Himalayan Botany, C. B. Clarke's Composite and Commelynaceæ, Steudel's Grasses, and Cyperaceæ, Hooker and Baker's Ferns, Mitten's Mosses.

Synonyms have rarely been given except wherc the namo adopted in the list is different from that given by Royle. Royle's Illustrations, published in 1839, is still a standard work on Himálayan Botany, and most of the plants figured in it are found in the Commissionership of Kumaon. There are, however, in Royle's book a certain number of plants which are common near Mussooree, where the book was written, but which are not found east of the Alaknanda river, the

[^106]boundary between the Kumaon Commissionership and the Native State of Tihri. As examples of these Mussooree plants not found in Kumaon may be quoted-

Dictamnus albus, Berberis Lycium, Rosa Lyelli, Sonerila tenera, Gentiana Kurroo, Picrorhiza Kurroo, Eremostachys superba.
On the other hand, the common phalel tree of Eastern Kumaon (Bassia butyracea) is apparently not found at Mussooree, as it is not mentioned by Royle as occurring there. The same remark applies to the very common and very beantiful Silang tree of Kumaon (Olea acuminata). This tree, conspicuous from its sweet scented yellow blossoms, is never alluded to by Royle, so that he probably never met with it near Mussooree. It is found in Kumaon at all elevations from 3,000 to 7,000 feet. There are fine trees of it at Debi Dhúra at a height of 6,800 feet, and at Kapkot at a height of 3,400 feet.

The Kumaon Division includes a tract of country varying much in elevation. On the south, the Bhábar strip along the foot of the hills has a mean height of about 1,400 feet, whilst the passes that lead into Tibet have an elevation exceeding 18,000 feet. It might be expected that European forms would be more abundant towards these passes than in the Bhábar, and this, on the whole, is the case. There are, however, some European plants that are only found at low elevations and are never seen above Eastera depression, 6,000 feet. The most common of these are :-Ranunculus sceleratus, Geranium molle, Veronica Anagallis, and Verbena officinalis, and it is difficult to assign an adequate reason for this phenomenon. Another remarkable fact connected with the montane flora is the eastern depression of many Himálayan plants. By this term is understood that plants which occur only at high elevations near Simla are found to grow at lower elevations at Mussooree and at still lower heights near Naini Tál. The following plants may be named as affording examples of eastern depression-
(a) The shrub Coriaria nepalensis, which gives its name to the station of Mussooree, is said by Royle not to grow under .5,000 feet at Mussooree. In Kumaon, howerer, it descends as low as 2,000 feet.
(b) Hemiphragma heterophylla, one of the Scrophulariaceos, is never found at Simla below 10,000 feet, whilst it occurs in Kumaon at 7,000 feet, and is common there at 8,000 feet.
(c) The Tilonj oak, Quercus dilatata, is found at Simla about 7,000 feet, and near Naini Tal it grows abundantly down to 3,000 feet.
(d) Dipsacus inermis is one of the most common plants at Almora (5,500 feet), but is not found towards Simla at elevations below 8,000 feet.
(e) Elsholtzia polystachya, another common Almora plant, is found in Kumaon as low down as 4,000 feet, but near Simla it is not met with under 7,000 feet.
(f) Senecio densiflorus and S. rufinervis, with auricled leaves, are common all over Kumaon in November as low as 4,000 feet, but are not found in the neighbourhood of Simla under 7,000 feet.

It does not follow, and is not apparently true, that the higher limit of these plants follows the same law as their lower limit, but of the existence of the law of eastern depression of the lower limit of Himálayan plants, there can be little doubt. There is no example, so far as is known, of the converse, that is to say, of a plant confined to the higher ranges in Kumaon and growing at a low level near Simla.

With regard to certain plants being confined to particular rock formations, sone interesting observations were made by Major Madden; thus he found that Trigonella gracilis, Argyrolobium roseum, . and Argyrolobium flaccidum were confined to limestone rock. Thymus serpyllum, on the contrary, is only found on micaceous rock formations.

One of the most intcresting facts for investigation in the Flora of Introduced plants. any country is the number of introduced plants which have become wild. Of these, two may be noticed in Kumaon. The deodár tree, which is really a native of the Himálaya west of the Alaknanda, but being a sacred tree, it has for many generations been planted round almost every Kumaon temple. There are now magnificent groves at Gangolihát,

Lohaghát, Champháwat, and Bála Jageswar, and there is a tree at Wán in Garhwál which is certainly many hundreds of years old. Still the deodár is undoubtedly not indigenous. The other plant is a weed and is of comparatively recent introdnction. It is the Erigeron canadense, known to the natives as the locust weed, (sallo) because it is believed to spring from soil where locusts have alighted. This plant is not mentioned by Major Madden, who published his papers in the year 1840, and it has therefore in all probability made its appearance since that date. It is now a most common and a most troublesome weed in cultivated fields.

Many of the Kumaon plants are collected by the villagers and sold to herbalists to be used in medecine. The chief marts are Indigenous drugs. Haldwáni, Barmdeo, and Ramnagar in Kumaon, and Kotdwára in Garhwál. The articles most in demand are the fruit of Terminclia Chebula, the roots of Curcuma longa, Kyllingia triceps, Piper silvaticum, and the various species of aconite; the bark of Myrica sapida and Cinnamomum Tamala; the rind of the fruit of the pomegranate; the powder from Mallotus philippinensis, and the various species of chiretta, all of which will be noticed hereafter in the chapter on 'Economic Botany.'

Dr. Watson desires to record and acknowledge the assistance that he has received in the preparation of this list from his friends Dr. King, Director of the Royal Botanical Gardens, Calcutta; Colonel Davidson, R.E., and Mr. W. Waterfield of the Bengal Civil Service.

PLANTS OF KUMAON.

DIVISION I.-POLYPETAL®.

DIVISION I.—POLYPETALE—(continued).

No.	Scientific name.	Vernacular name.	Note.	
	ORDER 1.-RANUNCULACEE-(concluded).			
39	$\begin{aligned} & \text { Oxygraphis glacialis } \quad . . \\ & \text { polypetala } \ldots \\ & \text { Caltha palustris [Govaniana, } \\ & \text { Royle], } \end{aligned}$...	Above 15,000 feet.	
40			Cor 10,000 "	
41		...	Common.	
42	Trollius acaulis	\ldots	Above 10,000 feet.	
43	", pumilis	" 12,000 "	
44	$\begin{array}{lll}\text { Isopyrum grandiflorum } & . . . & \ldots \\ \text { Aquilegia vulgaris } & \ldots & . . . \\ & \end{array}$...	Cobr	
46			Common.	
	Delphinium denudatum [pauciforum, Royle.]	Múníla	$"$	
47 48	" cæruleum ...		A bove 15,000 feet. China hill 8,000 feet. " 8,000 "	
48	" elatum ...			
49		...		
60			$\begin{array}{rrr} \hline, & 8,000 & \prime \prime \\ \hline 0,000 & \prime \prime \end{array}$	
51	$\begin{array}{ccc}\text { A.jacis } \\ \text { Aconitum Lycoctonum } & \text {... } & \text {... } \\ \text { A }\end{array}$	Múnila	Naturalized. Above 8,000 feet.	
53		Bish		
64	", ferox	...	" 10,000 "	
6556	", $\begin{aligned} & \text { Napellus } \\ & \text { heterophyllum }\end{aligned}$	Atis ...	" 8,000 ",	
57	Actera spicata	Rare.	
$\begin{aligned} & 58 \\ & 59 \end{aligned}$	Cimicifuga foetida Pæonia emodi	Bhánya madín,	Young shouts eaten.	
	ORDER 2.-DILLENIACE.			
1	Dillenia indica ...		Rare.	
	ORDER 3.-MAGNOLIA	正.		
1	Michelia Kisopa	Ban champa,	Common; Beripul and Ukhimath. Frequent; G̛ágar. Common.	
$\begin{aligned} & \mathbf{2} \\ & \mathbf{3} \end{aligned}$				
234	Polyalthia Korinti [Guatteria Korinti, Mudden.]	\cdots	Swampe. Bhábar.	
	Anoua squalnosa Miliusa velutina Saccopetalum tomentosum	Beha Kangri	Ditto Rare. Kotdwára.	
	ORDER 5.-MENISYERMACE .			
1	Tinospora cordifolia \ldots \ldots Cocculus laurifolius \ldots \ldots villosus \ldots \ldots Stephania elegans \ldots \ldots rotunda [Roxburghiana] \ldots Cissampelos l'areira $[$ [convolvulacea],	Gúrcha Tilbara panyáli and kakra:	Common.$\begin{aligned} & \text { fe"t. about 4,000 } \end{aligned}$	
2				
3			Rare.	
4				
6		Ganjíra	Common.	
6		Pári		

DIVISION I.—POLYPE'IALAB—(continued).

DIVISION I.-POLYPETAL AE-(continued).

DIVISION I.-POLYPETALAE-((ontinued).

DIVISION I.-POLYPETALE—(contimed).

DIVISION I.—POLYPETALÆ—(continued).

No.	Scientific name.	Vernacular name.	Note.
	ORDER 19.-'TAMARISCLNES.		
1	Tamarix gallica dioica		Bhábar.
3			
	Myricaria germanica		Frequent, above 10,000 feet.
4	"		Frequent, above 11,000 feet.
	ORDER 20.-HYPERICINEE		
1	Hypericum (Andro\&mmum) ceruuam,	Ulua-bena ...	Common, April.
23	" cardifolium		Rare, Rámoni.
	" lysimuchioides	Frequent above 8,000 feet.
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	" Patulum [uralum, Don].		Common, September.
	(Euhypericul.(perfora- tum.		" "
6	", elodeoides	\ldots	, August, and Séptenlber.
7	" nepaulenee		August, and September.
8	" (Brathys) japonicum [pusillum].		Low elevations.
	ORDER 21.-TERNSTREMIACEA		
1	Eurya acuminatia	Deura	Common.
2	Actinidia callosa.	...	Bhábur and banks of Sarju.
:	Saurauja nepaulensis ...	Goganá	Common.
4	Camellia thea	Chíl	Introduced.
	ORDER 29.-DIPTEROCARPEA.		
1	Shorea rolousta ...	Sál Sákhu ...	Common up to 4,500 feet, March.
	ORDER 23.-MALVACL		
	Tribi: Malyest.		
1	Mulva verticillata		Frequent.
2	" silvestris, [mauritiana, Mad-	Tilchoni ...	Gardens and wild.
4	" rotundifolia ...		Common.
1	parvitora Sida rhombifolia	Bhoa Kálabali	Up to 2,000 fect. Common.
6	Sida rhomhifolia cordifolia \quad...		
7	Abutilon polyaudrum ...	\ldots	Bhábar and up to 3,000 feet.
8	" indicum ...		
	Tribe Ureneat.		
9	Urena lobata	Sújiya Chat-	Common, banks of streame.

DIVISION I.—POLYPETALE——(continued).

No.	Scientife name.	Vernacular name.	Note.
	ORDER 23.-MALVACES-(concluded). Tribe Hibiscraf.		
10	Hibiscus (Furcaria) furcatus ...		Introduced.
11	" (Lagunea) solandra ...		Common.
12	" (Abelmoschus) ficulnens ...		"
13	" pungens ${ }^{\text {canculatus }}$... ...	Háo Kapásya	
14	$\begin{array}{ccc}\text { cancellatus } \\ \text { Thespesia lampas } & \text {... } & \ldots\end{array}$	Knpásya ${ }^{\text {... }}$	"
	Tribe Bombacef.		
17	Kydia calycina Bombax malabaricnm [Bombax heptanhyllum, Roxb.]	Patí	Common, September. Bhisur, up 4,800 feet.
		Semal	
	ORDER 24.-STERCULIACEIE.		
1	Sterculia urens \ldots \ldots villosa $"$ (lirmiana) lichii, Madden.] \ldots 	Katira	Bhábar.
2		Udyal	
3		Budalá ...	Common.
4	Helictercs isora	Maror phal,	Bhábar, May,-September.
5	Pterospermum acerifolinm lanccofolium [P. suberifolin… Madden]	Muchkunda,",	Introluced. Bháber.
c			
7	Melochia corchorifolia, [Riedlcia corchorifolin, Dec.]		Up to 4,000 feet.
8	Waltheria indica, [Melochia corchorifolia, Wall.]		" "
	ORDER 25.-TILIACEJ.		
1	Grewia oppositifolia	Bhekla, bhengál.	Common.
2	" tiliæfolia $\quad .$.		Frequent, valcys. Common, cultivated. Common.
3 4	", asiatical [clastica, Royle, III.]	I'harsiya \ldots	
5	", sapida [nana, Will] scabrophylla [eclerophylla,		
	" scabrophylla [eclerophylla,	Gar bheli ...	Comnon.
${ }_{7}$	" laevigata [didyua, Roxb] ...	Bhimul	Bhábar.
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	Triumfetita pilosa [oblongata, Waili]	Leshwa, kumariya. Chat kura ..	
			Common.
9	" rhomboidea [angulata,		Up to 4,000 feet.
10	Corchorus fascicularis? ," acntangulus? Elœeocarpus Varımua	Jalpai	Introduced.
12	ORDER 20.-LINETE.		
1	Linum usitatissimum	Alsi	Introduced.
2	Reinwardtia trigyna	lyyura	Very common, March.
3	\# tetragyua		Rare.

DIVISION I.—POLYPETALE—(contimued).

DIVISION I.-POLYPETALAL-(continued).

No.	Scientific name.	Vernacular name.	Note.
1	(RDEN 30.-RUTACES. Tmide Idtese.		
	Bxnninghausenia albiHora, [Ruta albiHora, Wall.]	Pisu glás and upanyá ghís.	Very common, autuma.
	Tribe Zanthoxymesa.		
2	Zanthoxylum alatum, [Z. hostile, Wall.]	Timur and tejhal.	Common.
3	" acanthopoidum [hostile, Wall. $]$	Sibiur ...	Rare, Budh Jugeswar.
4			Frequent, Gágar. Rave.
	Thine Toddaliea.		
6	Toddalia aculeata	Kluaseru	Blábar and valleya.
7	Skimmia [Limonia, Wall. AnqueTilia Dece.] Laureola. Thibe Aurantief.	Nehar, knetúri, gúral pata.	Vcry common.
8	Glycosmis pentaphylla	Potla	Common.
,	Murraya exotica ${ }^{\text {a }}$-.	Juti	
10	", (Bergera) Kænigii ...	Gani	Very common.
11	Clausena pentaphylla		Lhálbar.
12	Limonia acidissima [L. crenulata, Roxb.]	\ldots	"
13	Citrus medica	Bijaura ...	"
	var. limonum ...	Jamíra	
14	," aurantium ...		Rare.
15	Feronia Elephantum ...	Kait	Bhábar.
16	Itgle Marmelos -..	Bel	"
	ORDER 31.-SIMARUBET.		
1	licrasma quassioides 1		Valleys ; frequent.
	ORDER 39.-()CHNACE		
	Ochna pumila \|		Rare.
1	ORDER 33.-BURSERAC Thire Aurantilefe.		
1	Boswellia serrata [thurifera, Roxl.] \| Sale, gurar...		Bhábar.
	$\begin{array}{ccc}\text { rur. glabra } & \text {... } & . . \\ \text { Garaga pianata } & \ldots & \ldots\end{array}$	Gugai \ldots Eharpat \ldots	",
2	ORDER 34-MELIACETE.		
1	Melia Azadirachta [indica]		Introduced. Bhábar.
2	, Azadarach [sempervirens Roxb],	Betain	Common.
3	Heynea trijuga, ['Janthoxylon connaroides, W. \& A.]	...	Bhábar.
4	Cedrela Toona	Tún	Valleys.
5	" serrata ...	Dál	Very common.

DIVISION I.-PULYPETEA-(rontinued).

DIVISION.-POLVPETALE-(continued).

No.	Scientific name.	Vcrnacular name.	Note.
	ORDER 39.-AMPELIDEAE.		
1	Vitis (Simplicifolix) quadrangularis [Cissus edulis].	Harjora ...	Bhábar.
2	\# pailida		Rare.
3	", repanda [rosen, Royle Ill.]		Frequent; Bhábar.
4	", admata \ldots.		Rare.
5	pedicel!ata		
6	" lanata	Purpin	$\begin{gathered} \text { Common, } \\ \text { " Juy. } \\ \text { Duy. } \end{gathered}$
	var. rugosa ...	Assínja ...	
7	latifolia $\quad .$.	lan-laguli ...	Wild ? Bhábar.
8	" vinifera		Wild?
10	parvifolia ...	Barain	Common.
11	" (Trifulata) carnosn \ldots.		Common.
	[Ampelopsis, Wight] himalayana.	par-tang,	
12	" divaricata [tomentosa, W. and A.]	Amila	*
13	" (Digitate) obtecta \ldots		*
14	(Pedatæ) cnpriolata [Cissus serrulata, Roxb.]		"
15	" lanceolaria [Cibsus feminea, Roxb.]	Panj-pata ...	Ránibagh.
16	Leea (Simplicifoliæ) macrophylia ... (Pinnatx) alata		Frequent.
17			
18	" пspera ..	Kurmali .	Common.
19	" (Bipinnatæ) sambucina ..	兩...	Rare.
	ORDER 40.-SAPINDAC		
1	Cardiospermum FIalicacabum Asculus (Pavia) indica	Pänkar, pangri.	Bhíbar. Common.
2			
944	Sckleichera trijuga $\quad \ldots$Sapindns Mukoroesi $\quad \ldots$" var. detergensAcer (Integrifoliz) oblongum	Kusam Ríta. \qquad ... Patangtiya.	Bhábar.
			Comiron.
5			Common; cups are made of the wood.
6	levigatum		Common.
8	Acer (Trilobata) pentapomicum ...		Bhábar.
8	, (Quinquelobatw) cxaium ...	Kilu ...	Frequent.
9	" Villosum [sterculacium Wall?]...	...	8,000 feet; cups made of the wood.
1011	, caudatum [pectinatum Wall.]... " (Septemlobate) pictum [cultratum, Wall.]	...	10,000 feet. Very common.
		\cdots	
	Tribe Dodonem.		
12	Dodonær viscosa	.	Rare ; Bhábar.
	Tribe Melinithede.		
13	Melianthus major	...	Introduced.

DIVISION I.-POLYPETALA—(continued).

DIVISION I.-POLIPETALE-(continued).

DIVISION I.-POLYI'ETALAR-(continued).

DIVISION 1.-POLSPE'IALE-(continued).

No.	Scientific name.	Vernacular name.	Note.
	```ORDER 45-LE:UUMINOSIL-(continued). Imibe Hedysarese-(concluded). Sectio: Stipmdatata-(concluded).```		
78	Alysicarpua (Microculycinar) rugosus,	Saindan asainda. ...	Common to 4,000 feet.
79	Ougeinia dalbervioides [Dalbergia onjeinensis, hexb.]		Up to 4,000 fect, March.
80	Desmodium (Phyllodium) pulchellum,		Bhábar.
81	" (P'tero'onal triquetrum,		Common.
82	" (Scorpiurus) laxiflotam,		Rare
83	(Po'öarpiu:) po'ocarpirn.		Rare.
84	(Jo'linera) floribundum [multifiora $\because$ D. C.]	..	Very common, August,
85	$\begin{aligned} & \text { ", oxyphyllum } \\ & \text { [po'ycarpum, Wall.] } \end{aligned}$		Common ; Binsar
86	tiliolo'ium [nutune, Wall., argenteum Wall.]		Very common, July.
87888990	,. (Hetero'oma) Gangeticum,		Va'leys.
	", ", latifolinm ...		Frequent.
	" $\quad$ \% ${ }^{\text {sequar }} \begin{aligned} & \text { concinnum }\end{aligned}$		Common up to
	[pantuliflorum, Wall.]		feet.
91	(Nico'sonia) polycarpim   D. C. [anculatum, Wall.]		"
02	(Sagotia) trifiorum ...		Very common, autumn.
93   0.4	" Parviflorum ...		
	", (Pleuro!obium) gyrans ...		Comiron. Buábar
9.5	" gyroice...		
	Timbi Vicicas.		
96	Acrus precatorius	Gunchi rakti,	Bhábar and valleys.
97	pulchellus	Laguli-imli,	
98 98	Cicer arietinem sooneraricum [microphyllum	Chana	Cultivated ; Bhábar.
99	" $\begin{gathered}\text { aonenaricum } \\ \text { Royle.] }\end{gathered}$ [microphylum,		Abont J2,000 fcet ; rute.
100	Vica (Errum) tetrasperna - ..		Rare.
101	" (Cruca) hirsuta	Kuri	In cultivated fields.
102	" (Cracca) tonera		Frequent ; Adwani, April.
103	", ,. mollis		High levels ; rare.
104	", ", pallida		Common.
105	", ", rigirula		I are.
106	., (Euricia mativa ...	Kur-kosha ...	Cultivated.
107	Lathyrus (Tialathyrus) aphaca ...	Ghora-kolon,	Common.
108	, $\quad$, sativus $\quad .$.	Matar ...	Cultivated.
109	" $"$ spharicus [angulatus, Royle.]	Ningla-koglıa,	Common.
110	\# (Orcbus) lutens ...		Frequent.
111	Pisum sativum	Kolai	Cultivated.
112	", alvense		Cultivated and wild.

DIVISION I.-POLYPETALA——(contimued).


DIVISION I.-POLSPETALAL-(rontimert).

No.	Scientific name.	Vernacular name.	Note.
	ORDER 45.-LEGUMSNONA-(continued).   Thime Phasbones-(concluded).   Shector Cajanea.		
138	Atylosia (Atylia) mollia $\quad \ldots$ )		Common.
139140	$\begin{aligned} & " \\ & " \quad \text { grandiHora } \\ & \text { [Cantharospcrimam] } \\ & \text { searabooides. } \end{aligned}$		Rare: Bagesliwar.
			Common: Bhábar und outer hills.
141	Cajanus flavas "...platyen		liare.
142		Arhar	Culcivated; Bhábar.
	ITriosema chinense [Crotalaria tuberosa, Don.]		Common; Simtotahill.
144	Rhynchosia pseudo-cajan	Shiali, phụ́ sarpata.	"
345	$\begin{array}{ccc} " & \text { minima } & \ldots \\ \text { himaicnsis } & \ldots & \ldots \\ \text { Flemingia } & \ldots \\ \text { (Ostryodium }) & \text { strobolifca, } \\ & \text { var. fruticulosa } & \ldots \end{array}$		Low elcrations; rare.
147			
		$\ldots$	Very common.
148			Rare.
149 150	" (Chalaria) paniculata ...		At low elevations.
	", (Flemingiastrum) congesta [semialata].	Bhatua	Common.
151	$"$	Muskila	Common.   Edible tuber; common.
	T'ribe Dalbpregief. Section Aliternifoliolat		
152	Dalbergia Sissoo ... ...	Sisu	Bhílbar and valleys.
153	" rimosa $\quad .$.	...	Frequent
154	" lanccolaria $\begin{gathered}\text { lioxb.] } \\ \text { [frondosa, }\end{gathered}$		Frequent.
15	volubilis ...	Bhatia	Cownon.
156	Pterocarpus marsupium ..	Rijui-rál	Near Marmdeo.
	Segtion Oppobitifoliolate.		
157	Pongania glabra	Pit pipar	Bhábar, April.
158	Derris robusta	Baru	Up to 5,000 feet.
159	Sophora mollis [Edwardsia mollis, Royle].	Pahár-gungri,	Very common, Marel.
	Tmide Crabitinitex.		
160	Cæralpinia [Guilandina] Bonlucella,	Karonj ...	Up to ${ }^{\text {a }}$, 500 feet.
161	" [Poinciana] pulcherrima,	Krishna chu-	Garden.
162	" \#, sepiaria ...	Aira $\quad$.	Common.
163	Parkingonia aculeata ... ...	Wiláyati kikar.	Introduced.
164	Poinciana regia		Gardens; rate.

LIVISION 1.-YOLYPETALAL-(rominmed).


DIVISION I.-POLYPETALA—(contimued).


DIVISION I.-POLYPETALAE-(continued).


## DIVISION I.-POLYPE'l'ALA—(continued .



DIVISION I. -POLYPETALA-(continued).

No.	Scientific name.	Vernacular name.	Note.
	ORIIER 46.-ROSACER-(cou   'Cum : Pompas (concludei)	luded).	
76	Cotoncaster (Planifolia) acuminata ...	Ralis, rois ...	Common. Walking sticks made of the wood
77	" multifora ...	$\ldots$	Ihare ; Niti pass.
78 79	" ${ }^{\text {a }}$ mommularit...		Colonei lavidson.
79	" (Recurvifolia) microphylla.	(iarí	Very common crerywhere.
80	,. " thymitolia ...		Common.
81	", buxifolia	" $\quad$.	",
	OIRDER 47.-SAXIFRAGAC   T'ripl Saxipragest.	LT.	
1	Astilberivalaris [Sipirea barbata, Wall],		Common.
2	Saxifraga (Nerprophyllum) diontoplyyla.		Above 10,000 feet.
3	" (Hirculus) palpebrata ...		Rare; found near Rálam at 13,000 fect.
1 5	", saginoides ...		" 10,000 "
0	(Boraphiar micrantha ...		" 10,000 "
7	", (Microphylla) imbricata		" 10,000 ",
8	" (Spinulasx) brachypodin...		" 10,000 ",
9 10	", ", fumbriata ...		", 11,000 ",
10	" $\quad$ flica:dis ...		"dari.
11	," (Flagellares) Brunoniana*,		Chima peak.
12	", (Bergenia ligulata ...	Silphora ...	March ; very common.
	Chor vir. ciliata, Royle	-	Very conmon.
13	Chrysospleniam(Oppositifolia) ucpalctise.	...	Common.
	" $\quad$, rar. sulcatmm,		"
15	" (Alteruifolia) trichosper, um,		Near Kedár Kánta.
16	Parnassia nubicola		Comulon.
	Thine Hyorangex.		
17	Hydrangea (Truncatæ) altissima ...		Frequent.
18	" $\quad$, aspera ...	Blajhata ...	
19	tita. " (Coronabis)ves-	" ...	"
20	Dentzia corymbosa ...		May, compon, high clevations.
23	staminca		May, very common.
29	" macrantha		May, rare.
23	Philadelphus coronarius, var. tomentosus.	Bukyal, dhaniyali.	June, frequent at high elevatione. Wân.
	Timbe: Escalminilifg.		
24	Iter nutiuns	Gurkath	('ommon at low elcrations.

DIVISION I.-POLYPETALE—(continued).

No.	Scientific name. $\begin{array}{c}\text { Vernacular } \\ \text { natac. }\end{array}$	Note.
	ORDER 47.-SAXIFRA(9ACES-(concluded). Trime Riluisteme.	
25	Ribes (Grossularia) grossularia $\quad . . \mid$	Common about 10,000
20	" (Ribesia) glaciale [acuminatum, Kokaliya ... Wall].	$\begin{aligned} & \ddot{\prime} \text { feet. above } 10,000 \\ & \text { foll } \end{aligned}$
27	" ${ }^{\text {\% }}$ nigrom .... .8 Píphar	$\begin{aligned} & \text { '". abont } 10,000 \\ & \text { fect. } \end{aligned}$
28	" ", rubrum ... ... "	", "
	ORDER 48.-CRASSULACEAL. T'ribe I sostemones.	
1	Tillma pentandra	Comis on.
2	Crassula indica	Frequent, Gágrar.
3	Cotyledon oreales	Above 13,000 fect.
	'letbe Imphiostimunus oppositifunda.	
4		Bhálar ; introduced.
	Kalanchoe spalhulata [variame, Wa'l], Bakal patta,	Very common. Goats poisoned by eating this plant.
	Trime Diplust monls atteritfolita.	
6	Sedum (Rhodio!a) Rholiola [rosea,	Common alove 12,000 feet.
7	" $\quad$, crenulatum..	Frequent above 12,000 feet.
8	" ", quadrifilum ...	Common above 12,000 fect.
9	" $\quad$, asiaticumı ...	$\begin{aligned} & \text { above } 11,000 \\ & \text { f"ect. } \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{array}{cc} " & \text { lincarifoiumi ... } \\ \text { atum, Roylci] } & \text { trifilum }[\text { sinu- } \end{array}$	,, on trece.
		September. "
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	Scilum [Eusedum) adcnotrichum $\ldots$	Coumoin, April May.
		Co mon, April, and May.
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	", " $\quad \begin{aligned} & \text { trnllipetalum } . . . \\ & \text { Ewersii [rubrum... }\end{aligned}$	Alouve 11,000 fect.
		Froquent.
16		Com mon, July.
18		Above 10,000 fect. , 10,000 fect.
1	$\left.\begin{array}{cc} \text { Drosera Burmanni } & \ldots \\ " & \text { peltata } \\ & \text { ( RDER } \end{array} \right\rvert\,$	Blábar.   Very common.
1	Myriophyllum spicatum ...   Callitriche verna	Nuini 'Tál lake. "

DIVISION I.-POLYI'ETALIE—(comtinum).


## DIVISION I.-POLYPE'IALAE-(rontinued).



DIVISION I.-POLYPETALA—-(continued).


DIVISION I.-POLYPETALIE-(continued).


DIVISION I.—POLYPETAL.


## DIVISION II.-MONOPETALA.



DIVISION II.-MONOPETALE— (continut $)$.


DIVISION II.—MONOPETAL®-(continued).


DIVISION II.-MONOPETALEE-(continued).

No.	Sc'entific name.	Vernacular name.	Note.
	ORDER 5.-COMPOSIT不-(con	tinued).	
28	Blumea Wightiana ... ...		Spring ; Bhíbar.
29	" lacera	...	" very common.
30	" hieracifolia	...	May, common.
31	" runcinata [laciniata, Roxb.],	...	" frequent.
32	" onydonta ... ...	...	
33	Blumea densiflora	$\cdots$	November; Col. Davidson.
34		Amdok	October ; common.
35			Spring;
36	Sphæranthus hirtus [mollis, Roxb.], Filago arvensis, var. lutescens a		Common.
37	Leontopodium alpinum ... ...	Jhula, bokla,	A bove 12,000 feet.
38			Autumn ; common.
39	" triplinervis ...		" ${ }^{\prime}$
40	" nubigena ...	$\ldots$	" above 9,000 feet.
41	mucronata		above 12,000 fect.
49	" tenella [contorta,		" very common.
43	" margaritacea		" Col Davidson.
44	" adnata		" common.
45	" $\quad \begin{aligned} & \text { araneosa } \\ & \text { var. senlidecurrens }\end{aligned}$		very common.
46	Phagnalon niveum ...		June ; banks of Dhauli near Níti pass.
47	Gnaphalium hypoleucum	$\cdots$	Autumn; very common.
48	Casulia axillaris ... ...		October ; rice fields ; Ganai.
49			
50	Inula [Corvisartia] Royleana	...	A bove 10,000 feet.
51	" (Bubonium) vestita	$\ldots$	Spring ; up to 3,000 feet.
52	" nervosa [nitidr, Edgw.]		Autumn ; frequent.
54	", (Cappa) Cappa $\quad .$.		November ; very common.
555656	, cuspidata ... ...		October ; common.
	", rubicaulis ...		March ; frequent.
57	Vicoa indica		Common.
58	```Carpesium cernuum var. nepalense ... " var. pedunculosum, " var. trachelifolium, Ẅall].```		Autumn ; common.
69			Autumn ; rare.
	Tribe Helianthoidefe.		
60	Adenocaulon himalaicum	$\ldots$	September ; rare.
61	Xanthium strumarium ...   Zinnis elegans		Up to 5,000 feet. Naturalized.
62	Zinnia elegans   ,, multiflora		
64	Seigesbeckia orientalis ... ...	Gobariya ...	October ; very common.

## DIVISION II.-MONOPETALT-(continued).



DIVISION II.-MONOPETALAB-(continued ).

No.	Scientific naple.	Veruacular name.	Note.
	ORDER 5.-COMPOSI'TA-(con   'Irible Slenlciemida-(conclu	tinued).   ded).	
93 94	$\begin{array}{cc}\text { Senecio (Synotis) rufinervis } & \ldots \\ \# & \#,\end{array}$		November, frequent.   Scplember, above 10,000 feet
95	" ${ }^{\prime}$ C Candolleadus ...	..	
96	", (kusenecio) grac littor "E, ...		October, high levels. Pindiari.
98	$" \quad$ " $\quad$chrysanthenoides,   pallcns   Wriolancus,	Rat patiya...	March, June, very common.
99	" (Ligularia) sibiricus ...		Scptember, Pindari.
100 101	", Cacalia) quinquelobus $\begin{gathered}\text { arnicoider } \\ \text {, }\end{gathered}$		Above 10,000 feet
	Tribe Criaroideai.		
102	Echinops niveus ... ...	Kanaila, jaokanda.	Very common.
103	Carduns nutans ...		Alove 8,000 feet, Jhelam near Níti.
104	Cuicus arvensis ... ...		Rare.
105	" eriopiorus var. involucratus,		Autumn, commen.
106 107			May. commmon.
108	", var. nepalensis ...		October, common.
109	" Wallichii (arachmoidea, Wall),		
110	Sanssuren (Bracteate) obvallata ...		$\begin{aligned} & \text { Scptember, a b o } \nabla \text { e } \\ & 10,000 \text { feet. } \end{aligned}$
$111$	" (Acaules) Kunthiana ...		
$112$	" (Congestæ) gossypina (sacra,	Kanwal	September, common above 10,000 feet.
113	grammifolia ...	$\ldots$	10,000 feet.
114	" (Coarctata pterocaulon ...		$\begin{aligned} & 10,000 \text { feet. about } \end{aligned}$
115	" (Corymbosæ) cundicans ...		Very common.
116	" $\quad$, var. вcaposa.		Common, April, Panwa Naula.
117	" albescens ...	$\ldots$	September, frequent.
181	" . denticulata,	$\ldots$	September, common.
119	," " hypoleuca ...		"
120	Jurinea macrocephala (Dolomixa macroceplala, D. C.).	Kálá tagar ...	" Pindari.
121	Serratula pallida ...	...	May, June, very conmon.
122	Tricholepis furcata ...	...	November, Pindari.
123	, clongata ... ...		October, common.
124	Volutarella divaricata ...	...	March, Haldwáni.
125	Carthamus tiuctorius ..	Kusam ...	" Cultivated, Blábar.
	TRIBE MUTISLACE		
	Section Sudagualiflo		
126	Leucomeris spectabilis ...		May, common.
127	Ainsliæa pteropoda     " aptera ...  	...	Spring, very common.

DIYISION II.—MONOPETALE—(continued).

No.	Scientific name.	Vernacular name.	Note.
	ORDER 5.-COMPOSITE-(con Section Lablatefefors.	luded).	
128	Gerbera lannginoga (Chaptalia gossypina, Royle).	...	June, high elevations.
129	, nivea ...		Scptember
130	" macrophylla (Chuptaiia maxima, Don).		" "
	Trime Cichoraceze.		
131	Cichorium intybue		Cultivated.
132	Picris hieracioides		Maiput near Lohághít, (setroler.
132	Crepis (Barkhausia) fetida ...		May, June, very common.
133	; (Youngia) iyrata [runcinata Wall].		Very common. An Lactı ca?
134	Taraxacum Dene leonis ...		Very common.
	", var. eriopodium $\begin{aligned} & \text { var. parvulunt } \\ & \text { ", } \\ & \end{aligned}$		IIigh clevations.
135	Lact:ca (Brachy ramphus) obtusu...	Jangli gobhi,	Arril, May, very common ; yellow.
$\cdots$	, [Microrhynchus nudicaulis and patens, D.C.]		
136	;" (Scariola) scariola		Low elcrations ; yellow. Coltivated
137	", (Cicerbita) muriculata ...		May, July, very common; blue.
138	" " longifolia ...		October, flelds, common; blue.
139	" (Lactucopsis sagittarioides,	$\cdots$	February, common ; blue. An Crepis?
140	" $\begin{array}{r}\text { Brunoniana }\end{array}$	$\ldots$	August, October, common; bluc.
141	," (Melanoscris) bastata ...		Autumn, common, Lohba; blue or white.
142	,, lmvigata [macrorhizon, Royle.]		September, very common; blue.
143	, violafolia ...		Scptember, high elevations; blue.
144	" " Lessertiana ...	$\ldots$	
145	" dubyæa [Dubyæa   hispida, D.C.]	$\cdots$	September, very common; yellow.
146	, (Ixeris) glabra ...		Winter, low elevations; yellow.
147	Prensthes hispidula polycephala $\ldots$	...	
148	Prenanthes hispidula ... ...		Rare.
149	Sonchus asper ... ...	Ufat kancla nalsha.	Spring, very common.
150	oleraceus	"	Spring, common, edible.
151	arvensis ...	"	Spring, common.
152	Michrorhynchus secundus	...	Rare; Royle.
153	Tragopogon junceum ... ...	...	Junc, July, very common.

## DIVISION II.-MONOPETAL.巴—(continued ).

Ne.	Scientific name.	Vernacular name.	Note.
	ORDER 6.-LOBELIACEE.		
1	Lobelia trigona,   Don.]     " Roxb., [trialata,     " pyramidalia, Wall   rosea, Wall $\ldots$ $\ldots$$\|$		Common.
$\stackrel{2}{3}$			Frequent.   Rare: Malwa Tél.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Cephalostigma hirsuta ... Wahlenbergia viridis, Edgw. " agrestio ...	Gol ghanna, ...	Frequent.
			Wácham, near Pindari.
			lirequent, Bunks of Kobi.
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	Campanula latifolia   " sylvatica[integer rima Don].	$\cdots$	Rare.
			Common under trees,
67	" canescens ... ${ }^{\text {a }}$,		Very common.
	" argyrotricha [pallida,		"
8	" co'orata ramuloba, Wa		Rare.
	ORDER 8.- ERICACEA.		
1	Gualtherla nummularia ... ...	Bhalu bor	Common, Dákuri, Bhatkoi.
2	" trichoihylla ... ...		Frequent, above 10,000 fect.
3	Andromeda (Picris) ovalifolia,	Aiyâr	Very cou mon.
4	(Carsiope fastiginta" [ $\overline{\mathrm{A}}$ cupressiformis, Wall].	Kamba	Milam and Pihdari, 12,000 feet.
5	$\begin{array}{cc}\text { Rhododendrin arboreuin ... } & \ldots \\ \text { var. roseum } & \ldots\end{array}$	Buráns	Very common.
	" $\begin{aligned} & \text { campanulatum } \\ & \text { anthopogon }\end{aligned}$	Chimul	A bov 8,000 fcet. ", 10,000 .,
6 7 8		Talisfár	", 12,000 ",
8	lepidutum .		" 12,000 ",
	ORDER MONOTROHEA		
1	Monotropa nepalensis	Cbháo	Binsar, Septem ber; found by Mrs. Govan.
	ORDER 10.-LENTIBUL	RIF.	
2	Utricularia flexuosa [stell aris, Wight].   Pinguicula alpina		Common.
2			Rare.
	ORDER 11.-PRIMULAC		
1	Primula (Sphondylia) floribunda ...		Down to 2,500 feet.
2	["\#na, (Primulastrum) petiola ris		Above to 10,000 feet.
3	" (Athritica) purpurea ...		"

DIVISION II.—MÖNOPETALE—( continued $)$.


DIVISION II.-MONOPETALE-(continued).


## DIVISION II.-MONOPETALT-(continued).

No.	Scientific name.	Vernacular name.	Note.
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	ORDER 18.—APOCYNAC. $\therefore$ I - (concluded).   Tribe Albtonieme.		
	Alstonla scholaris   Blubeæjus I..cidus	Dúdhi ${ }^{\prime}$	Bhábar.   Common.
	Thibe Echitef.		
8	Holarrhena nutidysenterica $\begin{gathered}\text { nubescens } \\ \text { nen }\end{gathered}$	Kuer ...	"
10		Kanyür ...	"
13	Cnonemorpha macrophylla, [Lichites macrophyl'a, Roxb,]	Garbadru ...	Bhíbar.
12	Ichmocarque frute scens ... ...	Dúdhi	Common
	ORDER 19.-ASCLEPLAD		
	'Tidre Pbililucke.		
1	Cryptolepis reticulata ... ...	Rui kosa ...	$\mathrm{U}_{\mathrm{p}}$ to 4,000 feet.
2	Perpluca caiophylha [Strıptocauion \| Dúl bhengla, caluphyllum, Wright.]   Tribe asclejphdea.		Common.
9	Vincetoxicum canescens [Cyuanchum g:ancuw, Hall.」		Common.
4	montanuur [V. kunawarense, Madden.」   Calotrepis gigantea		Frequent.
5		Ak, madár ...	Common, Bhábar.
7	( ${ }^{\text {a }}$ procera [Hamiltoni] ...		Rare, Bhábar.
	Cynauchum 1.alhousia   Thibe Stapeile.   Sue-thide Pergulafine.		Frequent.
8			Frequert t .
9	" Wovanii ['Tphisia Govaniana, Wight.]		
10	Maradenia Roylei ... ...	Murkila	Cummon.
11	" Lucida, Edgw.	Dúdhi	Frequent.
12	\# tenacissima ... ...		Up to 4,000 reet.
14	Pergularia pallida ... ...	Súrkila	Common, Bhábar.
	Gongronema nepalense ...		Frequent on rocks.
	Sud-timil Cliropegias.		
15	Orthanthera viminea ...	Cbapkiya ...	Bhábar.
16	Hoya lanctolata -..		Common, Bháb?r, and up to 7,000 feet.
17	Ceropegia longifolia ... ...		Rare.
18 19			$\therefore$ requent.   "

DIVISION II.-MONOPETALE— (continued ).

No.	Scientific name.	Vernacular name.	Note.
	ORDER 20.-LOGANIACEAS.		
1	Gardneria ovata   anguatifolia ... Buddleia crispa [paniculata, Roxb.]...	Banjáhi ...	Frequent.
$\stackrel{2}{3}$			Common.
		Dhiriya, bháti, dhaula.	Common.
4	tica [neama, Han	...	"
	ORDER 21.-GENTIANACEA.		
	Thine: Chironiem		
1	Exacum tetragonum	Uda, titkána,	Frequent, Brgeswar.
	Tribe Chloras.		
234	Pladera pusilla Canscora dilfusa [Firgata, Roxb.]		Common.
		...	Bhábar.
	Tribl: Swerticese.		
5	Gentiana (Chondrophyllum) pedicillata.		Common.
6	" capitata ...	$\ldots$	
7	", aprica...	$\cdots$	Bhábar.
8	", decem6da $\ldots$...	...	Common.
9 10	narginata Ophelia panicriata	Chiretta Tit-	Autumn annual
10	Ophelia panicriata ${ }^{\text {a }}$	hiretta Iitkála.	Autumn annual.
11	" purpuresecns ...	"	" "
12	" cordata...		
13	" var. floribus dilute roseis ...		W. Waterfleld, Naini 'Tál.
14	" (Agnthotes) angustifolia ...	" ...	Autumn annual.
15	" $\quad$ chirata	"	" perennial.
16	" alata	"..	" ammual.
17	Halenia elliptica ...		Above 10,000 feet.
18	Swertia cudeata - . . .		Rare.
19	" speciosa [perfoliata, Royle],		
20		Simariga ...	Common, above 10,00 feet.
	ORDER 22.-BIGNONIACE开.		
1	Calosanthes indica ... ...	Pharkath ...	Bhábar.
2	Millingtonia hortensis [Bignonia suberosa, Roxil).	Nim chambeli	Introduced.
3	Stereospermum [Bignonia, Roxb.] suaveolens.	Pátal	Bhábar.
4	Amphicome arguta ...	...	Banks of Patálganga.
6	Tecoma undulata ...	$\cdots$	Ganai valley. May.

DIVISION II.-MONOPETALE—(continued).


DIVISION II.—MONOPETALA-( cortimued).


## DIVISION II.-MONOPETALAE— (confitued $)$.



DIVISION II.-MONOPETALAE--( continted).


DIVISION II.-MONOPETALA-(continued ).


## DIVISION II.-MONOPETALAE-(continued).



## DIVISION II.-MONOIETALAE-(continued).



DIVISION II.-MONOPETALAE—(concluded).


## DIVISION IIT.-APETALA.

No.	Scientific name.	Vernacular name.	Note.	
1	ORDER 1.--PHYTOLACCACl A.		Cultivated up to $\mathbf{1 0 , 0 0 0}$ feet.	
	Phytolacca, decandra, car. acinosa, ...	Jirrag ...		
	ORDER 2.-CHENOPODIACEE.			
123	Beta vulgaris, yar. Bengalensis, Roxb., \ Piang		Cu!tivated. Common.	
	Chenopodit u album ....	Bhatuwa		
	," (Ambrina) Boirys ...	...	,	
	ORDER 3.-AMARANTAC	d.		
	Thime Celjeifa.			
2	Deeringia celosioides Celosia argentea	Kála lohári...	Common.	
		Sirali an n d ghogiya.	"	
	Tbibe Achyranthise			
3	Amarantus caudatus $\quad$ anarduna [furinaceus] $\ldots$,$\quad$...		Gardens.	
4		Ramelána and chua.	Cultivation.	
6	", spinosus ...		Comnon.	
	Frua scandens ...	Sáji		
7	Achyranthes aspera.	...	Not known at Kew	
	Cyathula tomentosa [Pupalia sequax,]   Madken.   " capitata.			
$\begin{aligned} & 8 \\ & 9 \end{aligned}$		Jhat kuri	Very common.	
10			Rare.	
	Tribe Gompireyefe.			
11	Alternanthera nodisora ... 1	Bhinrráj	Common. Bhim Tál.	
	ORDER 4.-Nyetaginac			
1	Bœerhavia diffusa Mirabilis Jalapa		Com יon. Introduced.	
	ORDER 5.-POLYGONACEA.			
	Tume Tehygocalpem.			
1	Kheum emodi Oxyria e'atior	Dolu	Alove 10,000 feet.   " 9,000 ,"	
	Tribe Aftlrucarpeat.			
34567	Rumex (Lapalium) Wallihchii $\ldots$   nepalensis $\ldots$... $\ldots$   (Acetosa) hastutus $\ldots$   Kenigia monandra or islandica    Polygonum (Avicularia) effusum	Haluniya   Almora	Bhábar.   Common.	
			Common.   Very common.	
		Almar ${ }^{\text {... }}$	Above 12,000 feet.	
		...	Common.	
1	, Roxburghii ... ...		Rare.	
9	" illecebroides ... ...		"	

DIVISION III.-APETALAE-(contimued).

No.	Scientific name.	Vernacular name.	Note.
ORDER 5.-POTMGONACEA-(concluded).   Tride Apterocarperz - (conchaded).			
10	Polyganum		Rare.
11	cognatum		14,500 fect.
12	recumbens		Common. Srptember. Frequent, Bhàbar, November.
13	", (Persicaria) Hamiltonii [hispidum, Don.],	...	
14	" barbatum ... ...	$\ldots$	Bhíbar. Common.   Frequent.   Bhábar.
15	" Donii		
16	" Poermbu ...		
17	" flaceidum[giabrum,Roxb.],	...	Naiń Tál lake.
28	" amphibium... ...		
19	" lanigerum ...	...	Frequent.   Naini Tál lake.
20	" seabrinervam		
21 22	(Bistorta) viviparum [bu'biferum, Royle].   sphærosrachyum	.	
23	", $\begin{aligned} & \text { sphærosrachyum } \\ & \text { amplexicaule }\end{aligned}$		Very common. Common
24	", affine [Brunonis, Wall.],	$\ldots$	At high elevations.
25	emorli ${ }^{\text {[.. }}$	...	
26	(Didymocephalon) delicatalum ...		Rare.
27	" nurmalacifolium,		14,500 feet. Rare.
28	filicaule [ciliatum, Don].	$\ldots$	
29	, humile ...		"
30	perforatum [punctatum, Don].		"
31	" nepalense		Common. Frequent.
32	", epherocephalum,*		
33	$\begin{aligned} & \text { capitatum [repens, } \\ & \text { Wall.], } \end{aligned}$		Frequent.   Very common.
34	" (Cinuatio ...		$\begin{aligned} & \text { 8,500 feet. } \\ & \text { Very coninon. } \end{aligned}$
	" (Crrymbocephalon) chinense,		
35	", (Echinocaulon) horridum ...	$\ldots$	Very cominon. Bhim 'Tál.
	", (Tiniaria) convolvulus ...		Common.
37	", pterocarpuna ... ...	$\ldots$	
38 39	," (Aconogonon) frondosum ...	$\ldots$	7,000 fect. $12,000 \text { feet. }$
39 40	" Folystachyum $\quad$ Fagopyrum esculentum [vul-	Oma	Cultivated,lower hills.
4142	", emare, Madden].	$\xrightarrow{\text { Pápar }}$ Ban-ogal	Higher liills. Common. The native names given by Royle arc incorrect.
	$"$, emarginatum   cymosumı   Madden]  		
	ORDER 6.-LA URINE压. Section Exinvoldcrotfe.		
1	Cinnamomum Tamala, var. albiforum.	Te.jpât, dálchini.	Common. February May.
2	Phæbe lanceolata	Sau kanwal...	Bhábar and valleys, February-May.
		Kanwal ...	Common.
4	\% paniculata ... ...	Kapua kamwal,	Blábar and valleys.
5	Machilus odoratissimus ... ...		$\begin{aligned} & \text { Common. March— } \\ & \text { August. } \end{aligned}$

DIVISION III.-APEIALÆ-(continued).

No.	Scientiff name.	Vernncular name.	Note.	
7	ORDER 6.-LAURINEAL-(concluded)		Valleys. June.   Common. April.	
	Tetranthera lanrifolia [apetala, \| Gar-bijar ...			
	Roxb, var Roxburghii]. monopetala	Katmara,		
89	Litscea lanuginosa   " consimilis [T. pallens, Don.],	rao.		
		Chirita and chirchira.	Rare.   Common, interior of	
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	Daphnidium pulcherriuum $\ldots$    bifarium $\ldots$ $\ldots$	chirchira.	Frequent.   11	
1	ORDER 7.-THYMELACE ${ }^{\text {P }}$.			
	Daphne papyracen[D.cannubina, Wall.],	Barawa ...   Set burusa	Common.	
			Used, for naper-making.	
2	Wikstræmia salicifolia [Daphne sericea, Madden]	Chamliya ...	Common, used for making inferior paper.	
	ORIDER 8.-EL.EAGNACEIE.			
1	Hippophax salicifolia ... ...	Dur chuk ...	Common above 10,000. fect.	
2 3	Elæagnus $\quad$ parvifolia $\quad$ latifolia [ferruginea, $\mathbf{D . C .}$.]	Ghiwain ...	Common. Bhábar.	
1	ORDER 9.-SANTALACES.			
	Osyris arborea, [ncpalensis, Madden.], Bákar dhírí, Thesium himalense   ORDER 10.-ARISTOLOCHIACEA.		Common.	
			Rare, Binsar.	
1	Aristolochia saccata ... ... 1 ORDER 11.-EUPHORBIACES. Taibe Phyllantuee.		Frequent ; about 7,000	
1	Andrachne cordifolia [Leptopus cordifolius, Dece].		Very comimon.	
23	Antidesma diundra ... ...	Sarshoti ámli	Blábar.	
	Phylanthus (Hcmiglochidion) nepalensis [Brallcia ovata, Wall. Glochidion bifaria, Royle].	$\begin{array}{cc} \text { Bair mao } & \text {.. } \\ \# & \# \\ \hline \end{array}$	Very common.	
4	,\% velutinus ... ...			
,	" (Emblica) Emblica ...	Amla ...	Frequent.	
${ }_{6}$	(Paraphyllanthus) urinaria ...	Siúlii	Common.	
7	(Euphyllauthus) parvifolius ...		Frequent.	
8	Putranjiva Roxburghii ... ...	P'utrá jivá...	Bhíbar.	
9	Securinega (Fluggea) obovata [Phyllanthus retusus, Wall].	Dháni ...	Common.	
10	$\begin{aligned} & \text { 'l leucopyrus [Phyllanthicans, Wall]. } \end{aligned}$	Ainta	...	
11	Bischoffia Zeylanix [Andrachne trifoliata, Roxil].	Korsa ...		

## DIVISION III-APETALE—( continued).



DIVISION III.-APETALA-(continued).

No.	Scientific name.	Vernacitar name.	Note.
	ORDER 15.-ULMACE®.		
1	Ulmus Wallichiana [erosa, Roth ," parvifulia[virgata, Roxb.] ...	Chambar máya.	Frequent. Flowers precocions.
2		"	Frequent. Flowers coetaneous.
3	Holoptelea integrifo!ia [U!mus integrifolia, Roxbl.	Kanju ...	Commor.
4	Celtis australis [tetrandra, Roxb] ...	Kharak ...	Very common aud rilanted.
5	Sponia politoria [Celtis tetrandra, Wall ?]	Khaoi, kláksi.	Bhábar und valleys.
	OLISER ]6.-MORACESE		
1	Strcbins anper ['Trophis aspera   Plecosp rmum spinesum [Batis spinosa].	Rasa	Bháloar. Rare.
2			
3	Morus indica ... ...	Shalitút	Frequent.
4	" lævigata ...		
5.	," serrata	Kimur $\quad$.	Common. Digecous Valleys.
6	Fiens indica	Bar	
7	" infictoria	Pukar	Bhisbir. Plantes
8	\% Triela	Kathbar ...	
,	" religiosa	Pipal . ...	Valleys.
10	" cordifolia	Kabai pipal,	Cominion. Bhábar.
11	" retusa [nitida] ...		
13	," Carica ...	Anjir ...	Bhábar. Cultivatel
	" virgata	Bera ...	Very common.
14	", parasitica		Valleys.
15	" scandens		
16	" trachycarpa	Kupia	
18	" Cunia	Kupia	Common.   Plauted and banke of Kali.
	" glomerata	Gular	
19	", macrophylla	Timia	Kali.   Fruit eaten.
20	", oppositifolia ...	'I'otmila ...	Common.
	", Luducea ...	Kabhila ...	'"
22	", laurifolia	Dudhila ...	
2324	", ovata. ...	Betuli	",
	", Chincha	Kismira	",
25	" enxatilis		"
27	" laminosa		Bhübar.
	", acuminata	$\cdots$	
	ORDER 17.-ARTOCARPEIE.		
1	Artocarpus Lakoocha	Dháo	
	ORDER 18.-URTICACEE. Tmbe Uhereas.		Bhábar.
1	Urtica parviflora	Slishama	Eaten; very commor. Very common.
2	Girardinia heterophylla...	A wa bichlan,	

DIVISION III.-APETALE--( continued $)$.


## DIVISION LII.—APETALE—( concluded).



## DIVISION IV.-GYMNOSPERMAL.

No.	Scientific name.	Vernacular паше.	Note.
1	ORDER 1.-GNETACEX:		
	Ephedra vulgaris [Gerardiana] ...	$\cdots$	Above 10,000 fect; fruit edible.
	ORDER 2.-CONIFERE.		
1	Pinus longifolia ...	Chír, salla ...	Very common.
2	" Gerardiana	...	Above 12,000 feet.
3	", excelsa ...	Rái salla ...	, 10,000 feet, Kanol, Paiukhanda.
4	Abies Smithiana -..	Rágha ...	Above 10,000 feet.
5	" Brunoniana [dumosa] ...	"	Rare; found by Captain Webb.
6	Picea Pindrow	"	Common above 10,000 fect.
7	" Webbiana ...	"	$\begin{array}{ll} \text { feet. } \end{array}$
8	Cedrus Deodara ...	Diyár ...	Introduced.
	ORDER 3.-CUPRESSINE ${ }^{\text {E }}$.		
1	Cupreasus torulosa ...	Sarai ...	Naini Tál and Jobhimath.
2	" sempervirens		Introduced.
3	Jıniperus (Oxycedrus) communis, ...	Chichiya ...	Milam and Niti, 12,000 feet.
4	" ", recurva ...	Bhedara ...	Rare.
	", var. squamata ... ...	Bel bhedara,	Iláni Páni, 8,000 feet.
5	" (Sabina) excelsa ...	Padam ...	Milam, 12,000 feet.
6	" ", Wallichinna ...	Bhedara ...	Milam and Níti.
	Var. aquamosa, Madden ... ...	Bcl bhedara,	Pindari, Painkhanda, Rikholi gudri. A. kind of yeast is made from this plant.
	ORDER 4.-TAXACES.		
1	Taxus baccata ...	Thuner ...	Common.
2	" nucifera ... ...		Rare ; only found by Royle.

DIVISION V.-ENDOGENR.

No.	Scientific name.	Vernacular nime.	Note.
	ORDER 1.-ZINGIBERACES.		
1	Curcuma angustifolia	Ban haldi	Up to 6,00n feet ; May.
2	" longa [inuchsor, Luyle] ...	Haldi	Cultivated up to 4, veu foet.
3	Hedychium apicatum ...	Kachír-kac-	Common.
4	" $\begin{aligned} & \text { cocciacum } \\ & \text { villosmm [ }\end{aligned}$		
6	" tenuihornm Murdan Ali]	Rakt $\ldots$	Ra"̈, Pigúra.
7	" coronarium [fiarum,	$\ldots$	
	Madden].	...	Gardens.
8	Roscoca purpurca $\#$ alpina	$\ldots$	Common; autumn.
10	", lutea [gracilis] ...	...	"
11	" elatior ...	...	
19	Zingiber capitatum ...	...	Dákuri bináyak.
13	" ligulatum ...	...	Bhábar.
	" rav. chrysanthemum ...		
14	" cassumumar [elatum, Madden?].	...	Bliom Tál.   Bhábar ; caten by pige.
35	,, officinale ...	Adrak	Cultivated.
16	Anomum subulatum . ..	Haichi	Gardens
17	Costus speciosus - ...	...	Rave: valleys, Autumn.
18	Globba seciunda .	...	Bhábar.
	" Orixenais?	...	"
	ORDER 2.-MARANTACEX.		
1	Canna speciosa ...	Kiwára ...	Fardens.
	ORDER 3.-MUSACEA.		
1	Musa sapientum " nepaleдsis		Cultivated.
			River bankf, Askot to Dlá:chúla.
	ORDER 4.-AMARYLLIDACEJ.		
1	Crinum toxicarium	Chandar kanwal.	Common; July.
2	\% species		Introduced.
	ORDER 5.-HYPOXIDACEA.		
1	Curculigo recurvata	Pitári	Bhím Tál.
2	orchioides	"	Common up to 6,400 fect.
3	Hypoxis minor -..		Very common.
	ORDER 6.-IRIDACE.Æ.		
1	Pardanthus sinensis -..	Katár pata...	Very common.
2	Iris nepalensis	Nil-kanwal	Common.
3	, kumaonenais ...	...	
4	,', decora ...	...	Frequent.
5	Tígridia pavonia ...	...	Introduced.

## DIVISION V.—ENDOGENA—( continued).



DIVISION V.-FNDOGRNE-( continued ).

No.	Scientific name.	Vernacalar name.	Note.
	ORDER 8.-ORCHIDACES-(concluded).		
	Tribe Opurydese.		
25	Orchis lotifolia	...	Phulsain near Joshimath, June.   Very common.
26	Aceras angustifolia ... ...	$\ldots$	
27	Platanthera Susanna ... ...	...	Ramgár, Septernber.
28	, obcordata ... ...	...	Near Naini Tal Brewerv. September.
29	\% acuminata ...		Naini Tal. Co'one 1 Davidson.
30	Hemipiliu cordifolia		Near Khairaa, September.
31	Peristylus goodyeroides ... ...		Frequent.
32	Herminium Monorchis ...		Top of Lariya Kánta, August.
33	, gramincum ... ...		Rare.
34	Habenaria pectinata ... ...		Common, Stitember.
35 38	" $\begin{aligned} & \text { intcrmedia } \\ & \text { marginata }\end{aligned}$... $\ldots$...		Ver'̈ common, August,
36	" marginata ... ...		September.
37	\% ensifolia ...	$\cdots$	Colonel Davidson.
38	\% plantagiuca	$\cdots$	
39	, rostrata, Madden	...	Perhaps ame as emarginata. No. 36.
40	Gymnadeuia commelynæfolia, Madden.	${ }^{\cdots}$	On Kálimath, 6,000 feet.
41	Satyrium nepalense ... ...	Pakra-dimini,	Very common, August, September.
	Tribe Gagtrodisha.		
42	Epipogiun Grmelini ... ... \|		Colonel Davidson.
	Trime Neottiede.		
43	Spiranthes australis		Very common, Augest, September.
44	Epipactis latifolia ...	...	Common.
454040		$\ldots$	"
	Goodyera repens ... ...	$\ldots$	Binsar, Augast. Winter, Bhábar.
47 48	$\begin{array}{ccc}\text { procera } \\ \text { Zeuxine sulcata } & \text {... } & \text {... } \\ \end{array}$	$\ldots$	
	Tribe Arethuseje.		
49	Cephalanthera acuminata $\ldots 1$Tribe Ciprupidene.	..	Common, ander trees, May.
50	Cypriptdium cordigerum ...	...	Lariya Kánta, May. Colonel Davidson.

DIVISION V.-ENDOGENE— (continued).


## DIVISION V.-ENDOGEN $A$-(continued).



DIVISION V.—ENDOGENAE-( contimucl).

No.	Scientific name.	Vernacular name.	Note.
	ORD 3 R 17.-DIOSCOEEACEJ.		
129945	  ORIDER 18.-AROILETE.   Tribe Dracu.iculeat.		Frequent.
			'Tubers edible.   Tubers elible.   Aloove G,ou0 feet.
1   $\mathbf{9}$   3   4   5   6	Arismma apeciosa ...		Common. Very common.
	" Jacquemoutil ...	" ...	
	", costatum	", ...	Common.
	, curvatum	" ...	
	Arum hastatum ... ...	" ...	Common, July.
	Sauromatum guttatum ,, punctatum?	Kála bank ...	Kátádhúngi.
	Amorphophallus canpa nulatus [Arim companulatum, Roxb.].		Bhábar.
9	Typhonium? $\quad .$.	"	Common, July, very foctid.
	Tuibe Catadieas.		
10	Remusatia vivipara ... ... Baghpintálu,		Up to 4, ${ }^{5} 00$ feet.   A bove 5,000 feet, How. ers, June.   Very common.
$1]$	milum capillifera [Caladium pumilum, Don?	Bánj pindílu,	
32	Colocasia Roxburghii ...	Jangli gwia Gar lápar.	
13	himalensis	Gwia and pi- par.	Cultivated.
	ORDER 19.-ORONIACEAE.		
1	Acorus culinus	Bach bnj ...Hathangliya,	
2	Scindapsus olificinalis, l'otho.s officinialis, Roxb]		Near Blín 'Tál.
3	" decursivas ['Lo.hos decur-	Kelatuiya ...	Binsar.
4	I'othos scandeus ...		
	ORDER 20.-.TYPHACK,		
1	Typha elephantina ,, angustifolia	l'adera, petírict.   Bora $\qquad$	
2			Marshes.
	ORDER 21.-JUNCAGINACEAE.		
1	Potamogeton natams		Bhím Tál and Naini Tál.
2	" mucronatum		, "
3	" crispum ..		" "
4	" pectinaturn	..	" $\quad$ "
5	perfoliatum		"

## DIVISION V.-ENDOGENA-(continued).



DIVISION V.—ENDO(TENAB-( continued).

No.	Scientific name.	Vernacular nawe.	Note.
	ORDER 23.-GRAMINEA-(continued).   Tribe Chloridese.		
29	Chloris decora Cynoilon dactylon Eleusine coracana " indica		Common.
30		Dúb	Very common.
31		Mandawa ...	Cultivated.
32			Common.
	Tribe Avenefe.		
34	Avenr eativa $\ldots$ $\ldots$   $\#$ fatua $\ldots$ $\ldots$	Jai   Jai-ata	Cultivated,
			Common.
	Tribe Febtucear.		
35	Poa annua ... ... ...		Introduced.
96	" bulbosa ... ...		"
37			
38			Common.
39 40	" $\begin{gathered}\text { caudata } \\ \text { nutans }\end{gathered}$		Col', Davidson.
41	") amabilis		
42	". ciliata		Common.
43	" plumosa ...		Very common.
44	") diarrhena ...		Col. Dav.dson.
45	" nardoides ...		Common.
46	, orientalís ... ...		October.
47	Koeleria cristata ... ...		Very common, April.
48	Dactylis glomerata ... ${ }^{\text {a }}$.		Frequent.
4950	Festuca (Brachypodinm) nepalensis, Tripogon (Plagiolytrum) filiforme,	$=$	Common.
			"
	'Tride Bambusefe.		
51	Arundinarla falcata	Ringál and Níngál.	Very common.
52	Thamnocalamus spathiflorus	Rinpál ...	Dúdatoli.
53	" Falconeri ...	Kálí ringál...	Common, May.
54	Dendrocalamus strictus ...	Báng ...	Blábar.
55	$s p$.	"	Dhamas ; cultivated.
	Tribe Hordeacere.		
56	Lolium temulentum ... ...		Bbábar.
67	Triticum valgare ... ...	Lál gehín ...	Cultivated.
58	" striatum ... ...		Rare.
59	Hordeum hexastychum .... ...	Jao ...	Cultivated.
60	" himalayense [cœ.este]	Ua jao ...	:, above $10,000 \mathrm{ft}$.
	Tifie Rottboelliacefe.		
61	Ophiuruf perforatus ... ...	$\cdots$	Very common.
62	Rottbcellia exaltata ... ...	...	Frequent.
63	" hirsuta $\ldots$. ${ }^{\text {a }}$..	...	Rare.
64 65		...	Frequent.
	Manisurus granalaris ... ...		Frequent.

## DIVISION V.—ENDOGFN A-(continued).

No.	Scientific name.	Vernacular name.	Note.
${ }_{6} 67$	Heteropogon contortus, 37 ...	Kumariya	Common.
68		Noniya ...	Frequent.
69	Ischamonea speciosur, 132 ...		Tr
70	Spdiopogon involutup, 117	.	
72	Alocopis himalayensis, Bathratherum lancifolius, 237	$\ldots$	Rare.   Common.
73		$\ldots$	Common.
	Ttibe Andropoconeas.		
74	Bathratherum submuticus 9.40	$\ldots$	Common.
75	Cymborogon pachnoiles, ${ }^{297}$		,
77	", versicolor, 301 ...	Píriyä	Very ${ }^{\text {common. }}$ Naini Tal
78	pendulus, 303		Common.
79 80	Lwarankusa, 306 Martini, 309	Miriya	Blâlır.
81	flexuosur, 310	Bujara... ...	Very common A mora.
82	Andropogon crythrocolcos, 341 ...		Comiron.
$\begin{aligned} & 83 \\ & 84 \end{aligned}$		Pagrimalici..	Very cominon.   Very common, October
85	${ }_{\text {miontanus, } 359}$		Colonel İavidson.
$8{ }_{8} 8$	Sorghum halepensie, 384 $\quad .$.		Common.
88	Anatherum muricatus, 393	Gandar, kaskas,	"
88	Chrysopogon cerrulcus, 404 ...	Gwcriyn, parmal.	"
89	" Trinii, 408		Rare.
90 91	" Royleanus, 425 ...	Salim	Common.
91 92	$\#$ echinulatns   villosulus, 486   427 $\ldots$    $4 .$.	" ... ...	"...
93	glancopsis, 499		Rare.
94	sulrepens, ${ }^{4.90} \ldots$		
95	", parviepica [Rhaphis microstachys,] 4.31 ..	Palkiya, chir aula	Very common
96			Common, Naini Tul, .uly.
$\begin{aligned} & 97 \\ & 98 \end{aligned}$	Anthistiria arunilinacea	Ullu, kanyur, Jyotish-mati,	Bhábar and valleys. Koots luminous.
99		Shiro ...	Rookr
100	Saccharum ppontancum ... ...	Jhansl	
101	", Sara $\quad$ ecmidecumbens $\ldots$	Sarur ${ }_{\text {Tat, mora }} \ldots$	Blấbrr.
103	", exaltatum ... ...		",
104	", Munja ... ...	Munj	
${ }_{106}^{105}$	Erianthus olivaccus, Elgw. ...	Kans	Common.
106 107	vulpinus, Edgw. ...		"
108	",	$\cdots$	"
109	", rufinilum, Stend. $\quad$...	.	",
110	Leptatherum Royleanum		Rare.
111	Pollinis sp.	$\ldots$	Frequent.
112	Eutalia japonica ... ...	.	"

DIVISION V.—ENDOGENAE(continued).

No.	Scientifle name	Vernacular name.	Note.
	ORDER 91.-CYPERACE		
	Tribe Cpperecest,		
2	Cyperur (Pycrens) capillaris ? diaphanus ?	...	$\cdots$
3	", angulatus	$\ldots$	$\ldots$
4	", alopecuroides ? ...	$\ldots$	$\ldots$
5	" (Encyperus) compressus ...	...	$\cdots$
6	" difformis ...	...	$\ldots$
7	" Iria ...	...	Common.
8	Cyperns niveus ... ...		Very common.
9	" tegetiformis ... ...	Motha ...	Culrivated.
10	" tenuilorns ... ...	...	Coumon, August.
11	rotundus Lioxb.] [hexastachyos,	...	"
12	" obliquns $\quad .$.	$\ldots$	"
13	", pusilhus [.prgmæus, Retz.] ...	...	..
14	,, Wallichianus ... ...	...	...
15	" fimbriatus ... ...	$\cdots$	
16	", dilutus ... ...		Yery common.
17	Mariscus cyperínus ... ...	Panmotha and nagatmotha.	Commin.
18	Kyllingir monocephala ... ...	Nirbisi ...	"
19	" triceps	"	"
	Triee Sctrpefe.		
20	Abilgaardia monostachya	$\cdots$	$\cdots$
21	Eleocharis palustris ... ...	...	
22	\# uniglnmis ... ...	...	...
23	Eleogenus ovata $\quad .$.	...	...
34	, capitata ... ...	...	
25	Scirpas juncoides [muticus]		
26	", lacustris ...	$\ldots$	Bhím Tál.
27	" affinis [maritimua] ...	...	...
28	Isolepis sctacea $\quad .$.	...	$\ldots$
29	" supina $\ldots$...	$\cdots$	...
30	" Roylei ... ...	...	
31	", trifida $\quad .$.	$\ldots$	Common.
32 33	Fimbristylis pallescens ...	$\ldots$	
33	" junciformis ...	$\cdots$	crycommon, August.
34	, subtristachya [coummis] ...	$\cdots$	Conmon.
35	quinquangularis	Báber	
36	Eriophorum comosum ...	Bábar ...	Very common, au- tulun.
	Tride Expolittrie.		
37	Lipocarpha argentea $\quad .$.		Very common, July and August.

DIVISION V.—ENDOGENA—( concluded).

No.	Scientific name.	Vernacular name.	Note.	
	ORDER 24.-CYPERACE ${ }^{\text {- }}$-(concluded).			
	Tribe Reyncobparlex.			
38	Rhynchospora chineasis ...		.."	
39	" Wallichiana ...	..	'•"	
	Tribe Caricisea.			
40	Carex (Androgyna) longipes		$\ldots$	
41	" foliosa	$\cdots$	Common.	
42	" nub:gena $\quad .$.	$\ldots$		
43		$\ldots$	...	
45	", hæmatostoma			
46	" 'setigera	..		
47	", myosurus ... ...	...	Above 5,000 feet, May.	
48				
49				
60			"	
51	Good].   Carex notha	$\cdots$	$\cdots$	
52	" acuta [gracilis, Curtis] ...	...	$\cdots$	
53	" (Trifidx), ligulata ...	$\ldots$	....	
54	" cardiolepis ... ...	...		
55	" Royleana ... ...	...	...	
56	" Moorcroftii ...	...	...	
57	", emodorum [alopecuroides Don],	...		
58	" obscura fusiformis $\quad .$.	...	$\ldots$	
59	" $\begin{aligned} & \text { fuaiformis } \\ & \text { Wallichiana }\end{aligned}$	$\cdots$	...	
60	" Wallichiana $\begin{aligned} & \text { cruenta } \\ & \end{aligned}$	$\ldots$	$\cdots$	
61	$\cdots \quad$ cruenta $\quad$ (Incerte) Tlomensonii, Boott.,	$\ldots$	...	
69	: (Incertx) Thomsonii, Boott.,	..'	...	
63	" mitis, Boott. ... ...	$\cdots$	...	
64	" uncinoides, Boott. $\begin{aligned} & \text { vesiculosa, Boott. }\end{aligned}$	...		
65	Vesiculosa, Boott.    Uncinia nepalensis ...	$\ldots$	...	
	ORDER 20.-FRIOCAULONE ${ }^{\text {a }}$.			
1	Eriocaulon sexangulare ... ... 1	-•'	$\begin{aligned} & \text { Very common, } \\ & \text { swampla. } \end{aligned}$	
	ORDER 26.-TRILLIACE®.			
1	Paris polyphylla ...	..'	Common.	
2	Trillium Govanianum, Royle ...	..	Kúlára Pass, feet.	$11,000$

## DIVISION VI.—ACROGEN 厌.

No.	Scientific name.	Vernacular name.	Note.
1	ORDER 1.-FILICES.		
	Thibe Gleichenacesi.		
	Gleichenia dichotoca ... ... 1	...	Common.
	Tribe Dickronieat.		
2	Woodsia lanosa	$\cdots$	Rare, Dudatoli.
	, elongata $\cdots$.. ...	...	Counmon.
	Dicksonia nppendiculata [Sitolobium, J. Smith].	...	\%
5	Tribe Hymleophyleest.		
	Hymenophyllum poyantlus [exser- । tum ?]	..	On trees, Binsar, Octoler. J. H. Batten.
6780	Davallia (Leucostegia) membranulosa,		Frequent,
	$" \quad$ " immersa $\ldots$		Rare.
	mu:tidentata? pulchra.?		
	chacroph ylla [cyst pteris,	...	Common, Binsar.
10			Rare.
	phorus Presl.]		
11	(Endavallin) divaricata (ele-		Very common.
12	, (Microlepia) Honkeriana ...		Bháloar.
13	", ${ }^{\prime}$, speluncx $\quad \cdots=$		
14	," (Stenoloma) tenuifolia ...		Conimin.
	Tribe Ptigride.fe.		
15	Adlantum lunulatum	...	Commion.
16	" caudatum [rhizophorum	...	Very common.
17	" Capillus-veneris ...	Mubáraka ...	Common.
18	" venistura ... ...	Haneráj ...	"
19	, pedatum ... ...		"
20	Cheillanthee Dalhousix ...		Very common
21	, farinosa [dealbata ...		Very common.
22	Onychium auratum ... ...		Common.
23	Pob japonicum ... $\quad$.		
24	Pellæa [Cheiloplecion] gracilis ...		Rare; regembles Cryptogramma crispa.
25	" [Allosorus nitidula ...		Rare.
26	". [Platyloma] ealomelnnos ...	Bish kutra...	On rocks at low levels. Very cowmon.
27	Pteris (Eupteris) longifolia ...	...	Very common.
28	" $\quad$ cretica ${ }^{\text {a }}$.	$\ldots$	
	" " var. stenophylla...	$\ldots$	Cominon.   Very common.
29 30	" (Papia) $\begin{gathered}\text { quadri aurita } \\ \text { aquilina }\end{gathered}$	....	Very common.
31	", (Canpteria) bianrita ...	...	Rare.
32	", Wallichiana ...		Common.
33	", (Litobrochia) inciea ...	$\ldots$	Near Ramghár, J. H. Batten.

## DIVISION VI.-ACROGTN $A$-(continued).

No.	Scientific name.	Vernacular nanse.	Note.
	ORDER 1.-IILLICES-(conti Trid: Blecuntie.	ned).	
34	Woodwardia radicans ... ...		Low levele, very common.
	Trime Asplinies.		
35	Asplenium (Euasplenium) ensifor-		Conmon. Binsar, July.
36	" \# alternans		Very common on walle
37	" " virike ...		Abore 12,000 feet.
38	" $\quad$ trichommes		Common.
39	" $\quad$ resectum $\ldots$		Frequent.
40	", pranicaule		Common.
Al	2adiantum ni...tum.		Rare.
42	" $\quad$ fonturtum,		Frequent.
43	" $\quad$ \% varians ${ }^{\text {buluiterum }}$		
44 45	" " bulbircrım,		Rare.
	" " [concisnum		"
46	(Athyrium) Waclyp te r-		Colonel Davidson.
	oides.		
47	" $\quad$macrocar-   pum $[$ fotio-   pol		Common.
48	losum WaII].   nigripes		Co'onel Davidson.
49	", " filix fivina	...	Common.
	[pectinatum].		
50	$\begin{aligned} & n \quad \begin{array}{l} \text { oxyphyl- } \\ \text { lues. } \end{array} \end{aligned}$		Coionel Davidson.
51	" ", fimbriatum,		
62	" $\quad$ umbro Bum australe]		Rare.
53	" (Diplazium) po! y podioidee.	Lingra ...	Common.
54	" (Anisog\% maximum	n ...	" edible.
55	" (Anisogonium esculcntum.	...	Rare; Vcry like Asple
66	" (Hemidictyum) Cetera ch [Ceter a ch		nium alternans.
57	Actiniopteris radiata ... ...	Morpuchh ...	nagar.
	Tribe Aspidieg.		
68	$\Delta$ spidium (Polystichum) ${ }^{\text {auriculatum, }}$		Common.
59	" ", ilicifolium...	...	
60 61	"r " $\quad$ Thomsoni ...	$\cdots$	Above 8,000 feet. Common.
$\ldots$	"" " $"$ var. rufo bar-	-	Very common.
G2	batum, Wall.   " " Prescottianum,	...	Colonel Davidson.

## DIVISION VI.—ACROGENE—( continued).

No	Scientific name		Note.
64			
65			
60			
67			
68			
0			
70			
71			
72			
73			
74			
75			
76			
77			
78			
79			
80			
81			
84			
85			
80			
87 88 88			
89			
90			
91			
99			
93			
94			
95			
96			
97			
98			
99			

DIVISION VI.-ACROGEN EE—(continued).


DIVISION VI.-ACROGENAE-(continued).

No.	Scientific name.	Vernacular name.	Note.
	ORDER 2-EQUISE'l'ACE®.		
1.		$\ldots$	Bhábar.   Hill streams.
	ORDER 3.-LYCOPODIACE 尼.		
234	Lycopodium tenellam	'**	Very common.Rare.
	, setaceum ...	...	
	", $\begin{aligned} & \text { circinatum } \\ & \text { subuifolium }\end{aligned}$	Tula muka ..	Frequent, 4,000 feet.
	ORDER 4.-MARSILIACETL.		
1	Marsilia quadrifolia ... ...	...	Bhábar.
	OBDER 5.-SALVINIACE		
1	Azolia pinnata ... ...	Tarai .	Common in pools.
	ORDER 6.-CIIARACEA		
1	Chara verticillataORDER 7.--bryaces. ${ }^{\text {a }}$,Tribe Dicravaces.	. ${ }^{\prime}$	Naini Tál and Bhím Tál.
1	Leptotrichum inclinatum, Mitten. \| ...		IJoti. Common.
2	", molliculum, Mittin ...	...	
4	Dicranum himalayanum, Mitten ...	$\ldots$	- ...
5			
6		$\cdots$	-••
	Tribe Leucobryacest.		
7	Octoblepharum albidum ... 1	..'	Blábar.
	Tribe Trichostcmacear.		
8	Tortula squarrosa ... ...	...	Common.
10		...	...
10	Anœetangium Roylei, Mitten ...	$\ldots$	...
11	" Thomsoni, Mitten ...	...	...
12	" Stracheyanum, Mitten ...	...	$\cdots$

DIVISION VI.-ACROGENA-(continued).

No.	Scientific name.	Vernacular name.	Note.
	ORDER 7.-BRYACEF-(continued).   Tribe Taichostomacede-(concluded).		
13	Hymenostylium aurantiacum, Mitten,		$\cdots$
15	Barbula vinealis curirostum ...		$\ldots$
16	, sub-pellucidn, Mitten ...		...
17			...
18	\#\# nigrescena, Mitten ...		$\ldots$
19	Desmatodon Laureri ... ...		$\ldots$
20	$\#$ $\begin{array}{c}\text { Wallieliii } \\ \text { involutus }\end{array}$ $\cdots$ $\cdots$		$\cdots$
22			...
	Eucalypta ciliata ... ...		...
	Tribe Grimmiacefa.		
23	Grimmiaapocarpa   (Rhacomitrium) subsecund $\cdots$, Glÿ̆homitrium tortula, Mitten ...	$\cdots$	Rocks, common.
24		$\ldots$	" :
25		...	\%
	Tribr Onthotrichacest.		
26	$\left.\begin{array}{ll}\text { Orthotrichum IIookcri } \ldots & \ldots \\ \text { Macromitrium Mooreroftii } & \ldots\end{array} \right\rvert\,$		$\ldots$
			...
	Tribe Fuxariacea.		
28	Funaria hygrometrica $\quad .$.		Very common, summer.
29	" leptopoda $\quad$..		
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{array}{cc} \text { Tayloria indica } & \ldots \\ \text { (Dissodon) } & \text { tenella, Mitten, } \end{array}$		October.
	Tribe Bartramiaclas.		
32	Bartramin Halleriana ${ }^{\text {a }}$ -	...	
33	" leptodonta ...	...	Near Ithyphylla.
34	," subpellucida, Mitten ...	...	Kesembles ",
35	Philonotis Turneriana ...	...	Common. "
36	" falcata $\quad .$.	...	"
	Tribe Bryacice.		
87	Mielichoferio himalayana ...	...	Pindari, 11,000 feet.
48	Webera elongata ...	...	
39	Bryum filiforme, Mitten ...	...	
40	, argeuteum ...	...	Very common.

DIVISION VI.—ACROGENAー(continued).


DIVISION VI.—ACROGENAL—(conclutled ).

No.	Scientifle name.	Vernacular name.	Note.
	ORDER 7.-BRYACE.E-(concluded).   Tribl Legiefacist-(coneluded).		
75			On trees, May. Askot.
76 77			
78			Common, May.
$\begin{aligned} & 79 \\ & 80 \\ & 81 \\ & 89 \\ & 83 \end{aligned}$	Fissidens sylvaticus " viridnlus Mnium rhynchophorum...   ", trichomancs ...		$\ldots$
			Common, summer.
	Mnïadelphus humifusus		$\ldots$
	Trine Hyportertg		
84	Cyathophorum intermedium   Tmibe Pulytichaces.		...
85	Atrichum flavisetum ..		
86	Pogonutum himulayanum, Mitten	...	Resemblea urnigerum.
87	" ${ }^{\text {a }}$, micrastomum	$\cdots$	Ground. Binaar, April.
89 89	" aloides $\quad$ \#	$\cdots$	Ground. B.ngar, April.
. 90	Polytrichum perichatialc		" " "
91	Lyellia crispa ${ }^{\text {a }}$		

# CHAPTER VIII. <br> Scientific Botany-(contimed). 

## CONTENTS.

Plants found in Kumaon, Garlwál and the adjoining parts of Tibet by Captain (now (renerai) Richard strachey and Mr. Winterbottom.
'Tue following extract from Hooker and Thomson's "Introductory Fssay ${ }^{2}$ to the Floma Indica" regarding the value of General Strachey's and Mr. Winterbottom's botinical work in India appears to be a fitting introduction to the list of plants discovered by' theme in Kumaon, Garhwál, and in the neighbouring parts of Tibet.
"The collection distributed by Captain Strachey and Mr. Winterbottoma consists chicfly of the plants of Kumaon and Garhwál, and of those of the aljacent parts of Tibet. Captain Richard Strachey was appointed by the Indian Government to make a scientific survey of the province of Kumaon, and was occupied on the task mbout two years, during which time, in addition to the important investigations in physical science which ocenpied his attention, he thoroughly explored the flora of the province, carefully noting the range of each species. He was joined by Mr. Winterbottom in 1848 , and they travelled together in Tibet. Their joint coliections, amounting to 2,000 species, were distributed, in $1852-53$, to the Hookerian Herbarium, the British Museum, the Limnean Socieby, and some foreign musemms; and the scientific results are now in course of publication. The beautiful preservation of the specimens, and the fullness and accuracy with which they are ticketed, render this herbarium the most valuable for its size that has ever been distri. buted from Iudia."

The original printed list was put into Mr. Duthie's hands by General Strachey in 1876, shortly brfore starting for India to take up his duties at the Salharanpur Botanical Garlcns. Not having sufficient time to revise the whole of it by an examination of the specimens

[^107]preserved in the Kew Herbarium, his notes were left behind to be completed by another hand. These notes together with the single copy of the original catalogue were missing for a time. The list however was found, and since then Mr. C. B. Clarke has andertaken to revise it up to the ond of the Polypetale, as well as the willows, the grasses, and the two families of Crticacere and Piperacece. After completing the revision of the polypetalous orders Mr. Clarke remarks, "I may add that the only use of the above verification must be to show how very good the names in the list are ; it would be useless to carry it on further, for in the next order (as Composite) it would be better to name up the Herbarium by the list than to reduce the list by the Herbarium. For unless the order has been specially worked up, as to the Indian plants in the Herbarium, it is not so carefully sorted out as were the Strachey and Winterbottom plants originally."

The following explanatory notes by the same botanist should also be recorded:-" In the above reduction all that is asserted is that I have seen the ticket of Strachey and Winterbottom copied on the left-hand side of the page, and that when I saw it, it was in the new bundle having the name on the right-hand side: nothing beyond this. As regards the missing tickets, it appears that some of the common plants (as Nelumbium, \&c.), were never laid in. Secondly, that where these were duplicates of the same plant under several numbers, some of the duplicate numbers were distributed. Thirdly, that some of the fragmentary or critical species were set aside and named in MS. on the sheets, no printed ticket being placed on the sheet, but the name being carried into the printed list. I only discovered this in the beginning of Leguminosa, and have found several of the written-up sheets since. They are among the most important to find ; but without printed tickets they can hardly be found in a Herbarium of this size unless they are lighted on by a fortunate accident. Lastly, after these three causes have been allowed for, there are certain plants, as Mucuna atropurpurea, which I cannot find anywhere, though I have made a special and long search for them. I can only suppose that Mucuna atropurpurea was named on a flowering specimen or fragment that it was considered useless to paste down."

The arrangement of the revised list has been made to correspond with that of the Flora of British India, as far as that work has been completed; the names of many plants have consequently been altered in accordance with the nomenclature adopted in that work. As the reference number of each species in the original catalogue is given in column 2, the old name is not added except in the case of plants now referred to a different genus.

As the reference number of each species in the original catalogue is given in column 2, the old name is not added except in the case of plants now referred to a different genus.

## ABBRLVIATIONS USED IN T'HIS LIST.

In Column 3.

H.	for	herb	$\ldots$	S. or Sh.	for	shrub.
H. cr.	$"$	creeping herb	$\ldots$	S. H.	"	herbaceous shrub.
H. fl.	$"$	floating herb	$\ldots$	S. P.	$"$	1arasitical shrub.
H. pr.	$"$	prickly herb	$\ldots$	S. sc.	"	elimbing shrub.
H. sc.	$"$	climbing herb	$\ldots$	S. L.	"	arborescent shrub.

Herb S. \& W. per herbarium of Strachey and Winterbottom.
In Column 5.

| Bl. for blue | $\ldots$ | Or. for orange | $\ldots$ | Sc. for | scarlet. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Br. ", brown | $\ldots$ | Pk. ", pink | $\ldots$ | W. | white, |
| Gr. " green | $\ldots$ | Pr. " purple | $\ldots$ | Y. | yellow. |
| Li. " lilac | $\ldots$ | R. ., red. |  |  |  |


Name.						-
I.-RANUNCULA-   CEス.   1. Clematis.						
montana, IIam.    var. wajor $\ldots$	$\begin{gathered} (7) \\ \left(7 \frac{1}{2}\right) \end{gathered}$	$\begin{aligned} & \text { S. sc. } \\ & \text { S. sc. } \end{aligned}$	$\begin{aligned} & 10^{\prime}-12^{\prime} \\ & 10^{\prime}-30^{\prime} \end{aligned}$	w. W.	$\begin{array}{\|ll} \text { April } & \ldots \\ \text { May } & \text {.. } \end{array}$	Naini Tál, \&c., Mádhári l'ass,
barbellata, E'dgen ...	(5)	S. se.	$6^{\prime}$	Y. Pr.	Mry ..	Dwáali, Mádhári page.
grata, Trall.	(12)	S. sc.	$10^{\prime}$	Y. Gr.	October	Almora, \&c.
Gouriana, Rutb. ${ }^{\text {a }}$	(9)	S. se.	$10^{\prime}$	Y. Gr.	lecember,	Kota-dún, Kapkot.
puberula, II/. \&T. ..	(14)	S. se.	$10^{\prime}$	Y. Gr.	March ...	$\begin{array}{\|l\|} \text { Outer hills, } \\ \text { Ukhimath. } \end{array}$
orientalis, $L$. var. acutifolia	(3 ${ }_{8}{ }^{4}$ )	S. sc.	$2^{\prime \prime}{ }^{\prime \prime} 3^{\prime}$	I'r.	August ...	$\begin{gathered} \text { Milam, } \\ \text { Laptel, Gugiti } \end{gathered}$
nutans, Royle ...	(13)	S. sc.	$10^{\prime}$	Y. Gr.	March	Onter hills,
acuminata, DC. ...	(1)	S. sc.	$6^{\prime} \mathrm{LB}^{\prime}$	$\cdots$	July ...	Naini Tál, Bin-
connata, $D C$.	(2 \& 6)	S. sc.	$6^{\prime}-8^{\prime}$	W. Y.		sar. Tál, Rá- Naini Taver, \&c. lam Kin
Buchananiana, DC.	11	S. sc.	$10^{\prime}$	Y. Gr.	Octuber ...	A'mora, \&c. ...
grewiaflora, DC. ...	10	S. sc.	$8{ }^{\prime}$	Y. Gr.	December,	Thal, ©c.
2. Anemone.						
albana, Ster. rupicola, Camb.	$\cdots$	H.	$9^{\prime \prime}$	Wh.	June ${ }^{\text {a }}$	
vitifolia, Ham. ...	4	II.	2'-3' ${ }^{\text {a' }}$	Wh.	July	Naini 'lál, \&cc.,
	4	H.	$9^{\prime \prime}$		June	Námik, Ram- ni,
var. Govaniana, Will,	9	II.	$3^{\prime \prime}-6^{\prime \prime}$	Gr. Pr.	August ...	Bomprás, Rimkim.
rupestrie, Wall. ...   rivularis, Ham.	$\cdots$	H.	$9^{\prime \prime}$	Wh.	August	Rálam
var. hispida, Wail.	7	1.	$1{ }^{\prime}$	Wh.	May	Naini Tál
polyanthes, Dim. var. villusa, Royle.	2	II.	$1^{\prime}-1^{\prime} 1^{\prime}$	Wh.	$\text { May }^{. . .} \text {... }$	Pindari, Rogila Rimkim.
narciseiflora, L. tetrasepala, Rtoyle elongata, Don.	$\dddot{5}$	II.	$1^{\prime \prime}-2^{\prime}$	Wh.	$\text { June } \quad .$	Chechani-khâl,

## Plants.

			\% ${ }_{\text {ar }}$	灾	Remaris.
Forest ...	5,5-7,500	R .		$\ldots$	
Do.	8-10,000	R.	...	...	
Do.	8-10,000	R.	$\cdots$	$\ldots$	
$\begin{gathered} \text { Open bushes ... } \\ \text { Do. } \end{gathered}$	4-6,500 $25-3,500$		$\ldots$	$\cdots$	
Do.	3-4,500	l .	$\cdots$	$\cdots$	
Open ${ }^{\text {.. }}$...	11,500 $\cdots^{15,000}$		$\ldots$	$\cdots$	
Open bushes...	3-4,500	R.	$\cdots$	$\ldots$	
Forest ...	7-8,000	R.	$\because$	$\cdots$	
Do.	7-9,000	R.	...	$\cdots$	
$\begin{aligned} & \text { Open bushes ... } \\ & \text { Do. } \end{aligned}$	3-6,500	R.	$\cdots$	$\cdots$	
Rocks ${ }^{\text {. }}$	10,500-11,000	R.	$\cdots$	$\ldots$	Herb. Winterb., Nos. 797, 770.
Woods	$\left\{\begin{array}{l} 5-7,500 \\ 8-0,000 \end{array}\right.$	$\xrightarrow[\mathrm{R}]{\mathrm{R} .}$		$\cdots$	
$\}$ ppen $\quad \cdots$	\{ 13-15,000	$\cdots$		T'.	
Do. ${ }^{\text {.. }}$		$\ldots$		$\cdots$	Herb. Winterb., No 136.
1)0.	7-11,000				
Do. ${ }^{\text {a }}$...	10,500 $\cdots 14,000$				
Woods ${ }^{\cdots}$	$\begin{gathered} \cdots \\ \cdots \\ 10,000 \end{gathered}$	.. $\cdots$ R.	$\ldots$	... $\ldots$ $\ldots$	=A. polyanthes of Herb. Winterb. Herb. Winterb.



Plants-(continued).



Plants-(continued).

		$H$ $\qquad$   鸽	a-   a. $\qquad$ 客	$\stackrel{+}{\stackrel{\text { ® }}{\stackrel{\circ}{E}}}$	Remarke.
Open Wet Open	10,000 9,500 11,000	R. R. R.	$\cdots$ $\cdots$ $\cdots$	". $\cdots$ $\cdots$	
Do. Do. Fields	14,500 14,500 $1-1,500$	$R$. $R$. $R$.	... $\cdots$ $\ldots$	...	
Open ${ }^{\text {... }}$	7,500-10,000	ㅈ..	$\cdots$	$\cdots$	
Do.	6-9,000	R.	$\cdots$	$\cdots$	
Wet	3-7,000 10,000	R.	$\cdots$	$\cdots$	
Fields	5,000	R.	$\cdots$	$\cdots$	
Open	14,500	R.	$\cdots$	".	
Do.	12,000	R.	$\cdots$ $=$	-••	=Call ianthemum No. 2 in Herb. S. and W.
Wet, open Do.	\% 9,000 8,500	$\xrightarrow{\text { R. }} \mathrm{R}$.	... $\ldots$ $\cdots$	.   $\cdots$   $\ldots$	
Open	11-12,000	R.	$\ldots$	$\cdots$	
Do.	13,000	R.	$\cdots$	$\cdots$	
On rocks	11,500-15,500	$\cdots$	D.	T.	
Do.	11-13,000	$\mathbf{R}$	$\cdots$	$\cdots$	
Woods ${ }^{\text {... }}$	7 \% 500	$\ldots$	$\cdots$	$\cdots$	
Open	10,500	IR.	$\cdots$	$\cdots$	'

List of Kumaon


Plants－（continued）．

		Hi lay - - cen 号 M		苍	Remarks．
$\begin{array}{cc} \text { Open } & \ldots \\ \text { Do. } & \ldots \end{array}$	$\begin{gathered} 5-7,500 \\ 12-1 \overline{5}, 500 \end{gathered}$	R． $\cdots$	$\dddot{\mathrm{D}}$ ．	苛．	
Do．${ }^{\text {a }}$ ．．．	9,500	$\cdots$	$\cdots$	$\cdots$	
Do．$\quad . .$.	11，500	$\ldots$	D．	$\cdots$	
Do．．．．	12－15，000	I．	D．	$\cdots$	
Do．$\quad .$.	12，000	R ．	$\ldots$	$\cdots$	
Do．	14，700	IR．	$\ldots$	．．．	
Near water in wouds．	8－9，500	R．	$\ldots$	－•＇	
Open ．．	12－13，500	R．	D．	$\cdots$	
Do．	13，500	R．			
Do．．－	12，500－15，000		D．	$\dddot{T}$	
Do．．．．	12－13，000	R．		$\cdots$	
Shady woods ．．．	9－1］，000	R．	．．．	$\cdots$	
Woods ．．．	5－8，000	R．	$\cdots$	$\ldots$	
Forest	6－7，000	R．	$\cdots$	$\cdots$	
Open woods ．．．	1－5，000	R．	$\cdots$	$\cdots$	



Plants—(continued).



## Plants-(continued).




Plants-(continued).

				(1ma,	荌	Remarks.
Ficlds ${ }^{\text {² }}$	..	1-6,500	R.	$\cdots$	...	
Open Do.	$\cdots$	$\begin{array}{r} 14-15,000 \\ 17,500 \end{array}$	$\cdots$	$\cdots$	T.	
Do.	$\cdots$	16-17,000	*	D.	T.	
Water Open	$\cdots$	$\begin{aligned} & 1-12,000 \\ & 1-6,000 \end{aligned}$	R.	$\cdots$	$\cdots$	
Do.	..	c-12,000	12.	$\cdots$	...	
**		...	...	$\cdots$	$\ldots$	$=$ Crucifera ignote No. 10 in Herb. S. \& W.
Open	..	11,500	$\cdots$	D.	...	$\begin{aligned} & =\text { Crucifer e iguote Nos. } 11 \text { and } 12 \\ & \text { in Herb. s. } \& \mathrm{~W} . \end{aligned}$
Wet	-•	8-10,000	R.	. ${ }$	$\cdots$	$=$ C'ardamine No. $\overline{\text { i }}$ in Herb.S. \& W .
Open   Do.	$\ldots$	$5-6,000$ $5-7,000$	$\begin{aligned} & \mathrm{R} . \\ & \mathrm{R} . \end{aligned}$	$\cdots$	$\cdots$	$=$ Cardamine No. 3 in Herb.S. \& W.
\}Wet	$\ldots$	6-10,000	R.	...	...	$=$ Arabis No. 5 in Ilerb. S. \& W.
Open	$\cdots$	15,000	$\cdots$	$\cdots$		$=$ Draba No. 5 in Herb. S. \& W.
Do.	...	14-16,000	R.	D.		No. 2 in part Herb. S. \& W.
Do.	-0.	11,500-15,500	$\cdots$	D.		
Do.	,	15-16,500	$\cdots$	D.		$=$ No. 2 (partly] Herb. S. \& W.

List of Kumeton


Plants-(continued).


List of Kumaon

Name.						䔍
17. Capsellı						
Bursa-pastoris, Menez.	**	11.	$1^{\prime}-2^{\prime}$	Wh.	$\left\lvert\, \begin{array}{cc} \text { Alll } \\ \text { year. } \end{array}\right.$	Ubique ...
Thomsoni, H.f.   18. Lepidium	. $*$	$\cdots$	$\cdots$		..	...
Sativum, $L$. capitatum, $\dot{H} . f . \& \quad \ddot{G}, \ddot{\text {, }}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{H} . \\ & \mathrm{H} \end{aligned}$	$\underset{\mathbf{4}^{\prime \prime}}{ }$	Wh.	August ...	Almora   Mi am, Topid hungra.
19. Mәgacarpæa. polyandra Bentt. ...   20. Thlaspi.	...	H.	$5^{\prime}-6^{\prime}$	Wh.	May	$\begin{aligned} & \text { Champwa, Pin- } \\ & \text { dari. } \end{aligned}$
arvense, $L$.   alpestre, $L$.	$\stackrel{3}{1,2}$	H.   H.	$6^{\prime \prime}$	Wh. Wh.	$\begin{array}{\|ll} \text { July } \\ \text { June } & \text {.. } \end{array}$	$\begin{array}{ll} \text { Almora } \\ \text { Rajhoti } \end{array}$
21. Iberidella.						
Andersumi, H. f. \&T. T.	**	II.	$2^{\prime \prime}-4^{\prime \prime}$	Wh.	July	$\begin{aligned} & \text { sagta-deo, Gu- } \\ & \text { GCi. } \end{aligned}$
22. Crambe. cordifola, Ster.	..	1 I.	$4^{\prime}-5^{\prime}$	Wh.	July ..	Rimonn ...
23. Raphanus.						
sativus, $L$.	...	LI.	$1{ }^{\prime}$	..'	March ..	Plains to Al- mora.
24. Chorispora sabulosa, Camb. ..	...	H.	$3^{\prime \prime}$	...	$\text { July } \quad \text {... }$	limkim ...
IX.-CAP'PARIDFATE.   1. Cleome.						
viscosa, $L$.   2. Capparis.	**	II.	3'-4'	Y.	\|August ...	Sarju river, outer hills.
horrida, $L$.	...	Sh.	$10^{\prime}$	W. Gr	March ...	Bhábar ...

Plants-(continued).



Plants-(continued).


Name．						寝
3．Silene．						
infiata，Sm．	1	H．	$1^{\prime}-2^{\prime}$	Wh．	June	Outer hilla，Mi lam，Níti．
conoidea．$L$ ．	2	H．	$1^{\prime}$－2＇	Pk．	March ．．．	Al：ora ．．．
Moorcroftiana．Wall．，	4，10	H．	$6^{\prime \prime}-9^{\prime \prime}$	1＇k．	Angust ．．．	Gothing，Rákas tál．
Falconcriana，Beath，	$\square$	H．	$3^{\prime}$	Gr．Y．	July ．．	Alinora ．．
Griflithii， Bos s．$^{\text {c }}$ ．	7	$\underline{11 .}$	$2^{\prime}$	Wh．	July ．．．	Bampa ．．
Stracheyi，Lidgew ．．	8	II．	$3^{\prime}$	Wh．	August ．．	Piti river ．．
4．Lychnis．						
apetala，$L$ ．$\quad .$.	4，6	II．	$4^{\prime \prime}-7^{\prime \prime}$	Wh．	July ．．	Râlam，Gugé．
macrorhiza，Royle ．．	3	H．	$4^{\prime \prime}$	Wh．	September，	Topidhunga，
brachypetala，Hort．．．	5	H．	$8^{\prime \prime}$	Wh．	July ．．．	Laptel，Rálam，
indica，Benth．   var．fimbriata	$\cdots$	H．	$\cdots{ }^{\prime}$	$W \cdot P r$	August ．．．	Piti river ．．
pilosa，Edyew．	2	${ }_{\text {H．}}$	1＇ーロ＇	Wh．		Ráana，Tung－
5．Cerastium．						
vulgatum，$L$ ．	${ }_{1}^{2}$	H． H.				
Thomsoni，Hook．f．	1	H．	$4^{\prime \prime}$	Wh.	$\begin{array}{ll} \text { May } & \cdots \\ \hline \end{array}$	Mádhári valley，
6．Stellaria．						
paniculata，Edgew．．．．	1，2 \＆ 3.	H．	$l^{\prime}-3^{\prime}$	Wh．	Nay，July， Suptember，	$\begin{array}{lr}\text { Binsar，} & \text { Shai－} \\ \text { devi．} & -\end{array}$
media，$L$ ．	7	H．	$6^{\prime \prime}-12^{\prime \prime}$	Wh．	$\begin{aligned} & \text { All the } \\ & \text { ycar. } \end{aligned}$	Outer hills，\＆c ，
scmivesti ${ }^{\text {a a }}$ ，Edgtw．．．．	9	H．	$1{ }^{\prime \prime}$	Wh．	May ．．	Chaur ．．
Webbiana， 14 all．．．．	．．．	H．	$3^{\prime \prime}-4^{\prime \prime}$	Wh．	March ．．	Almora
latifolia，Benth．．．．	$\cdots$	H．	$4^{\prime \prime}$	Wh．	August .	$\text { Chína, } \quad \text { Naini }$
longissima，Wall．．．	5		$1^{\prime}-2^{\prime}$		May ...	Mádhári Pass， Naini Tál．
uliginosa，$L$ ．$\quad$ ．．	8	H.	$1^{\prime \prime}-6^{\prime \prime}$	Wh．	March ．．	A lmora，Barji－
decumbens，Edgew．．．．	6	H．	$5^{\prime \prime}$	Wh．	August ...	Ming Pass．

Plants-(continued).


List of Kumaon

Name.						家
7. Arenaria.						
foliosa, Royle ${ }^{\text {co }}$		H.	$2^{\prime \prime}$	Wh.	June ...	Jelam
festucoides, Benth. .-	2	II.	$3^{\prime \prime}$	Wh.	Angust ..	Pindari,Karnâli river.
var. imbricata ...	3	H .	$2^{\prime \prime}-3^{\prime \prime}$	Wh.	Ditto ..	Bálam
musciformis, Wall. ...		H.	! ${ }^{\prime \prime}$	Wh.	Ditto ..	Balchha Pass ..
scrpyllifolia, $L$. ...	10	H.	$4{ }^{\prime \prime}$	Wh.	Ditto ...	Jelam. Milam.
glandulifera, Edgew...	13	H.	$1^{\prime \prime}$	Wh.	Ditto ..	
Stracheyi, Edyew. .. holostcoides, Edyew. ..	$\ldots$	H.	2"	$\ldots$	$\stackrel{\text { e. }}{\text { september, }}$	Ríkas-T̈'ál ...
8. Sagina.						
$\underset{\substack{\text { procumbens, } L \\ \text { var. pentamera }}}{ } \quad$...	2	II.	$1^{\prime \prime}-1 y^{\prime \prime}$	...'	June " ..	Jelam, Singjuri,
9. Thylacospermum						
rupifragum, Schrent.,	.."	H.	$1^{\prime \prime}-2^{\prime \prime}$	Wh.	July ..	Hugé ...
10. Spergula						
pentandra, $L$. ...	$\cdots$	H.	$4^{\prime \prime}-6^{\prime \prime}$	Wh.	...	Bhábar ...
11. Drymaria. cordata, $\boldsymbol{u}$ illd.	**	H. cr.	$6^{\prime \prime}$		February.	Kota Dín ...
12 Polycarpæる. corymbosn, Lan.	.'	II.	$6^{\prime \prime}-9^{\prime \prime}$	Wh.	July ..	Almora
$\begin{gathered} \text { XIV*.- PORTULA } \\ \text { CRA. } \end{gathered}$						
1. Portulaca. oleracea, $L$.	**	II.	$6^{\prime \prime}$	Y.	July ...	Do. ...

Plants-(continued).



OF TIIE NORTII-WESTERN PROVINCES.
Planti-(continued).



Plants-(continued).


List of Kumaon


Plants-(continued).


List of Kumaon


Plents-(continued).

				ai. ${ }_{\text {ai }}$	$\stackrel{\dot{\text { ¢ }}}{\substack{2}}$	Remarks.	
Forest	.-	$1-3,000$			...		
Open Do.	...	4,000 4,000	R.	...	$\cdots$		
Open	...	16,500	...	$\cdots$	'T.		
Do.	**	10,500-14,000	R.	$\cdots$	'T.		
Do.	...	$\begin{gathered} 10,500 \\ -13,100 \end{gathered}$	$\cdots$	D.	$\ldots$		
Do.	...	7-12,000	R.	$\cdots$	$\ldots$		
110.	..	$\xrightarrow{11,100}$	R.	...	$\ldots$		
	...	4-6,000   2,100   , 500	R.	$\cdots$	....		
Woods	...	6,500	R.	$\cdots$	$\cdots$		
Do.	...	6,500	R .	...	$\cdots$		
Shiide	...	1,5-1,000	R.	.	$\ldots$		
Open	...	4-7,000	R.	.-	$\cdots$		
Forest	...	7-9,000		$\cdots$	$\cdots$		
Sbade	*.	1,500	R.		...		

List of Kumaon


Plants－（continued）．

		Hi   lay      号   号	4．   a．   客	宽	Remarks．
$\begin{array}{cc} \text { Open } \\ \text { Do. } & \ldots \end{array}$	$\begin{gathered} 4-5,000 \\ 11,5-12,500 \end{gathered}$	R．	D．	$\cdots$	
Do．．．．	8，5－12，000	－	D．	$\cdots$	
Sliacly woods ．．．	5－7，500	R．	．．．	$\cdots$	
Do．	7,000 $4,5-9,500$	R．	$\cdots$	$\because$	
Shade Shade ．．．	$5,-9,000$ $6,-7,500$	R．	$\cdots$	$\cdots$	
Shady woods．．．	9，500	12.	－	．．	
Woods ．．．	4－7，000	R．	$\cdots$	．．．	＝Ruta albiflora in Herb．S．and $\mathbf{W}$ ．
Open ．．．	4－7，000	R．	．．＇	．．．	
Do． ．．．   Forest .	$\ddot{7-8,500}$	$\underset{\text { R. }}{\text { R. }}$	$\cdots$	$\cdots$	
Woods ．．．	1，5，－3，000	R．	$\cdots$	$\cdots$	
lorest ．．．	7，－9，500	R．	－．．	．．．	$=$ Limonia Laureola in Herb．S．and W．
Do．	2，000	R．	．．．	．．．	

List of Kumaon


Plants-(continucd).

			䓵	Remarks.
Open Forcet	$\begin{aligned} & 2-1,500 \\ & 1-2,000 \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { R. } & \ldots \\ \hline \text { R. } & \ldots \\ \hline \end{array}$	...	$=$ Serger.s Kanigii in Herl. S. and
Woods	2-3,000	R. ...	...	
Forest	1-2,000	R....	...	
Open	6,5-8,000	18. ...	$\ldots$	
Forest	1,000	R. ...	...	
Gardens	1-5,000	R. ...	...	
Forest Do.	$\begin{aligned} & 1-\mathbf{3 , 5 0 0} \\ & \mathbf{6}-7,500 \end{aligned}$	$\begin{array}{l\|l} \text { R. } & \ldots \\ \text { R. } & \text {... } \end{array}$	$\ldots$	
Open	4,500	R. ...	...	


flants-(continued).


List of Kumaon


Plants-(continued).

		H  	má-	+	Ren:arks.
Open	4,500	R.		$\cdots$	
$\begin{array}{cc} \text { Do. } & \ldots \\ \text { Forest } & \ldots . \end{array}$	11,500 $3-6,500$	$\dddot{\mathrm{R}}$.		$\cdots$	$=$ Ceunothus No. 2 in Herb. S. \& W.
Do. ...	7 - 8,000	R.		...	
Open	5,500	R.	..'	...	$\begin{aligned} & =\text { Ceanothus No. } 1 \text { in Herb. S. \& } \\ & \text { W. } \end{aligned}$
Do.	67,000	12.	...	...	
Forest ...	$3-5,000$	R .	...	$\cdots$	
Open $\quad .$.	2-5,000	R.	..•	$\cdots$	
Forest ...	1-2,000	R.	$\cdots$	$\cdots$	
Open ...	2-3,000	R.	$\cdots$	$\cdots$	$=$ Gouania No. 1 in Herb. S. \& W.
Woods or open,	4,5-7,000	$\dddot{3}$	$\cdots$	$\cdots$	$=$ Cissus No. 1 in Herb. S. \& W.
$\begin{array}{ll} \text { Open } & \ldots \\ \text { Jorest } & \ldots \end{array}$	$\begin{aligned} & 4-6,000 \\ & 7-8,000 \end{aligned}$	R.	$\cdots$	$\cdots$	
Open ...	3-7,000	R.	-	$\ldots$	
Forest	6-7,500	R.	$\cdots$	...	$=\underset{\mathrm{W}}{\boldsymbol{W}}$.
Do. $\quad .$.	3,000	R.	...	$\cdots$	$=$ Cissus No. 2 in Herb. S. \& W.

List of Kumaon


Plants - (continued ${ }^{\text {. }}$


List of Kumaon

Name.	$\begin{aligned} & \text { Herbarium number } \\ & \text { (Strachey and Win- } \\ & \text { terbottom). } \end{aligned}$					著
2. Meliosma						
dillenixfolia Wal!. .. pungens, Hall.	2 1	T	$40^{\prime}$ $40^{\prime}$	Wh. Wh.	$\begin{array}{\|ll\|} \hline \text { June } & \text {.. } \\ \text { May } & \text {.. } \end{array}$	Nímik, \&c. Kıipkot, Binsar,
$\begin{gathered} \text { XXXV-ANACAR. } \\ \text { DIACEA. } \end{gathered}$						
1. Rhus.						
Cotinus, $L$.	2	Sh.	$30^{\prime}$	1'k.	April ..	Gärar, Almora.
parviflora, Roxb. ...	]	7.	$20^{\prime}$	...	. .	Almura, \&c.
semialata, Murray ...	4	'	$15^{\prime}$	...	June ${ }^{\text {a }}$	Almora, \&c. ...
succedanca, $L$. ..	3	'1.	$20^{\prime}$	...	March ..	Bagesar ...
2. Pistacia.						
integerrima, Stewart,		T.	$30^{\prime}-40^{\prime}$	...	May ...	Thakaio, Kosi River.
3. Mangifera.						
indica, $L$.		Tr.	$40^{\prime}$	Y.	April ...	Bhálbar, plains, Aimura, \&e.
4. Buchanania   latifolia, Roxb.		'I'r.	$30^{\prime}$	Wh.	March ...	Outer Lills ...
5. Odina.						
Wodier, Roxb. ...		Tr.	$30^{\prime}$	Wh.	March ...	Bhábar
6. Semecarpus.						
Anacardium, L.f. ...		'Tr.	$30^{\prime}-40^{\prime}$		Junuary ...	Outer hills ...
7. Spondias. mangifera, $u$ illd. ...		Tr.				Bhábar
$\begin{aligned} & \text { XXXVI.-CORLA- } \\ & \text { RLEA. } \end{aligned}$						
1. Coriaria. nepalensis, Wall. ...	..	Sh.	$10^{\prime}-12^{\prime}$	...	February	Common

Plants-(continued).


List of Kumaon


Plants-(continued).



Plants-(continued).


Name.						烒	
Caragana.							
рygmxa, $\\|$ C.	1	Sh.	$1^{\prime}-4^{\prime}$	Y.	July	Gugé p'ains	
Gerardiana, Ruyle ...	2	Sh.	$3^{\prime}$	Y.	July	Dhauli river ...	
polyacantha, Royle ...	4	Sh		$\cdots$		Pinda	
crassicaulis, Beith. ...	3		$3^{\prime \prime}-4^{\prime \prime}$		Joly ..	Pindari, Milam,	
Astragalus.							
trichocarpus, Grah.	1	H.	37	Pk.	April	Naini Tál	
hosackioides, Benth	...	H.	$1^{\prime}-11^{\prime}$	Y. Or.	March	Naini Tál ..	
strictur, Grah. ...	11	$\stackrel{\mathrm{HI}}{ }$	$4^{\prime \prime}$-6"	Bl .	September,	Sthelong	
melanustachys, Ben h..	12	II.	$0^{\prime \prime}$		July ...	Rajhoti	
inconspicuus, Buker,	10	H.	$\mathrm{i}^{\prime \prime}$	Bl.	August ${ }^{\text {a }}$	R-lam valley.	
hináayanus, Klotzsch.,	13	H .	$6^{\prime \prime}$		August ..	Milanı	
leucoctphalus, Grah.	...	H.	$2^{\prime \prime}$	B1.	Jnly ...	Milam, Niti	
chlorostachys, Lindl.,	5	H.	$2^{\prime}$	Y.	July ...	$\begin{aligned} & \text { Tola (Gori R.), } \\ & \text { IDwáli. } \end{aligned}$	
emodi, Stend. $\quad .$.	4	$\xrightarrow[\mathrm{H}]{\mathrm{H}} \mathrm{H}$	2' ${ }^{\prime 2}$			Gori river .	
graveolens, Ham. Web ianus, Grah.	2	$\xrightarrow[\mathrm{Sh}]{\mathrm{H} .}$	$2^{\prime}-3^{\prime}$ $6^{\prime \prime}-8^{\prime \prime}$	Y.	March   inly   ...   a	Outer hills ..	
Web inuus, Grah. po'yacanthus, Royle	7	Sh.	$6^{\prime \prime}-8^{\prime \prime}$ $11^{\prime}$	$\underline{Y}$	Augy $\quad .$.	Guge plains ...	
multiceps, Wall. ..	8	Sh.	$3^{\prime \prime}-4^{\prime \prime}$	Y.	lugust ..	Milam ..	
Oxytropis.							
lapponica, Guyd	7	H.	$4^{\prime \prime} 6^{\prime \prime}$	Pr.	July	Fajhoti	
Stracheyana, Benth.	5	${ }_{1}$	$9^{\prime \prime}$	B1	+ ugust ...	Gugéplains	
tatarica, Jucquem. ..	3, 4	11.	$2^{\prime \prime}-4^{\prime \prime}$	Pr	$\text { July }-A \text { u- }$	Rajhoti, Gugé plains.	
microphyla, $\boldsymbol{l}$ C. ..	2	H.	$3^{\prime \prime}$	...	July	Gug' plains	
Lezpedeza.							
sericea, Miq.	4	Sh.	$4^{\prime}-8^{\prime}$	Pk.	February,	láangranga ri- ver.	
Gerardiana, Grah. ... eriocarpa, DC.	$\frac{9}{3}$	Sh.   Sh.	$\begin{gathered} 1 t^{\prime} \\ 4^{\prime}-5 \end{gathered}$	$\begin{aligned} & \text { Pk. } \\ & \text { Pk. } \end{aligned}$	Augnst   February,	Almora, \&c. Gágar,Kálimat,	
Hedysarum.							
Kumaonense, Benth...	..•	Sh.	$9^{\prime \prime}$	...	August ..	Gori river ...	
Stracheya.							
tibetica, Tenth. ...	...	H.	$1^{\prime \prime}-2^{\prime \prime}$	' ...	Jnly ...	Tisum ...	

Plants-(continued).



Plants-(continued).



## Plants-(continued).

		H	nıi-	+	Remarike.
$\begin{array}{cc}\text { Open } \\ \text { Da. } & \text {... } \\ \text { Dar }\end{array}$	4,000 4,000	$\underset{\text { R. }}{\text { R. }}$	$\cdots$	$\cdots$	Not found in Herb
Forest $\quad .$.	5-7,000	R .		$\ldots$	Not found in Herb.
Open	4-6,000	R.	$\cdots$	$\cdots$	
Forest Do.	$1-2,000$ $3-4,000$	R. R.	$\begin{aligned} & \ldots \\ & \ldots \end{aligned}$	$\cdots$	
$\begin{array}{ll} \text { Cultivated } & \ldots \\ \text { Open } & \ldots \end{array}$	$\begin{gathered} 1-2,000 \\ 11,500-14,500 \end{gathered}$	R.   ..	$\dddot{\mathrm{D}}$.	$\cdots$	
Ficlds Do.	$1,5-5,500$ $1,5-5,500$	$\xrightarrow[\text { R. }]{\text { R. }}$	$\cdots$	$\cdots$	= Ervam No. 9 in Herb. S. \& W.
Woods $\quad \cdots$	5-7,000	R.	$\cdots$	$\cdots$	$=$ E, vun No. 1 in Herb. S. \& W.
Open \& Woods	5-7,000	R .	$\cdots$	...	
$\begin{array}{ll} \text { Woods } & \text {... } \\ \text { Fields } \end{array}$	1,5-000  	R.	$\therefore$. $\cdots$ $\cdots$	$\cdots$	
Do. ...	1,5-反5,500	R .	$\cdots$	$\cdots$	
Do.	1,000	R.	$\ldots$	$\cdots$	
$\begin{array}{cc} \text { Do. } & \text {... } \\ \text { Woods } & \text {... } \end{array}$	$1,6-5,500$ $8-9,000$	$\begin{aligned} & \mathrm{R} . \\ & \mathrm{R} . \end{aligned}$		$\cdots$	= Orobus luteus in Herb. S. \& W W.
Cultivated ...	1-5,000	R.	$\cdots$	$\cdots$	
$\begin{array}{cc} \text { Woods } & \text {... } \\ \text { Do. } & \ldots . \end{array}$	3-6,000 2,500	R.	… $\cdots$ $\cdots$	$\cdots$	
Oden ...	3,500	R.	$\cdots$	$\cdots$	


Name.						¢
Glycine.						
Mucuna.						
atropurpurea, $D C$. pruriens, $D C$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{array}{\|l} \text { S. sc. } \\ \text { S. se. } \end{array}$	$\left\|\begin{array}{l} 20^{\prime}-30^{\prime} \\ 10^{\prime \prime}-15^{\prime} \end{array}\right\|$	$\begin{aligned} & \mathrm{Pr} . \\ & \mathrm{Yr} . \end{aligned}$	$\begin{aligned} & \text { August ... } \\ & \text { August ... } \end{aligned}$	Kota Dún, \&c., Kuta Lún, \&c.,
Erythrina.						
stricta, Roxb.   suberosa, Roxb.	3 2	${ }_{\text {Tr. }}^{\text {Tr }}$	$30^{\prime \prime}$		June ${ }^{\text {a }}$.	Outer hills    Outer hills $\ldots$
suberosa, Roxb.   arborescens, Ruxb. ..	2	Tr.	30 8 8	Sc. Sc.	$\left\lvert\, \begin{array}{ll} \text { June } & . . \\ \text { August } & \text {... } \end{array}\right.$	Outer hills ...   Almora, Jalat,
Galactia.						
Roxburghii, Benth... $\cdots$ H. sc. $50^{\prime}$  $\cdots$ Bhábar   Butea.						
Pueraria.						
tuberosa, $D C$.   Stracheyi, Buker	...	S. se.   H. sc.	$\left\|\begin{array}{c} 10^{\prime}-20^{\prime} \\ 5^{\prime}-66^{\prime} \end{array}\right\|$	$\mathrm{Bl} .$ R.	March   Angust	Onter hills   Kalimundi
Phaseolus.						
calcaratus, Roxb. ..	..'	H. sc.	**	Y.	August ...	Almora ...
Vigna.						
vexillata, Benth.   Dolichos.	.."	H. sc.	$\mathbf{2}^{\prime}$	Pk.	August ...	Jígesar ...
biflorus. $L$. falcatus, Klein.	$\cdots$	H.	..'	$\cdots$	...	Almora ...
	2	H. sc.	$1_{\prime \prime}-1 j^{\prime}$		Angust ...	Almora ...
	2	H. вс.	$5^{\prime}$	Pk.	August ...	Gangoli, Naini Tal.

Plants-(continued).


List of Kumaon


Plants-(continued).

			má   a.   合	苂	Remarks.
Woods ...	1-4,000	R.	$\cdots$	$\cdots$	
$\begin{array}{cc} \text { Do. } & \ldots \\ \text { Open } & \cdots \cdot \end{array}$	3,000 $4-5,000$			$\cdots$	
Cultivated ...	3,000	R.	$\ldots$	$\cdots$	Not found in Herb S.\& W.
Open ...	5-6,000	R.	$\cdots$	$\cdots$	
D. $\quad .$.	3-4,000	R .	$\cdots$	$\cdots$	
Do. Do.	6-7,000 2-5,500	R.	$\cdots$	$\cdots$	
Do. ...	6-7,500	R.	$\cdots$	$\cdots$	Not found in Herb. S \& W.
Do. ...	3, 5-8,000	R.	$\cdots$	$\cdots$	
Forest ...	2,500	R.	...	$\cdots$	
Do.	1-2,000	1 L .	...	-	
Woods \& open,	3-6,000	R.	...	$\cdots$	
Forest	1-2,000	R .	$\cdots$	$\cdots$	
Do.	1-2,000	R.	....	...	Not found in Herb. S. \& W.
Open ...	3,5-5,000	K.	$\cdots$	$\cdots$	= E'dwardsia mollis in Herb. S. \& W.
Do. ...	2-3,000		$\cdots$	$\cdots$	= Guilandina Bonducella in Herb.   S. \& W.
Do. ...	2-5,000	IR.	...	...	


Name.						䓵
Cassia.						
Fistula, $L$.	1	Tr ,	$25^{\prime}$	Y.	April ..	Outer hills
occidentalis, L. ...	2	H.	$2^{\prime}-3^{\prime}$	$\mathbf{Y}$.	March ..	Bágcear, \&c. ...
Sophera, $L$.	3	H.	$3^{\prime}-4^{\prime}$	Y.	March	Outer hills
Tora, $L$.	4	H.	$3^{\prime}$	$\mathbf{Y}$.	All the 1 year.	Bágesar, \&c. ...
Absus, $L$. ..	Б	H.	$1^{\prime}$	Y.	August ...	Almora, \&c ...
$\underset{\quad \text { var, } W \text { Wallichiana } . .}{ }$	7	H.	$1^{\prime}-1{ }^{\prime}$	Y.	August ...	Do. ${ }^{\text {a }}$...
Saraca.						
indica, $L$. $\quad$.	- ${ }^{\prime}$	Tr.	$25^{\prime}$	R. Or.	March ...	Kota Dún ..
Tamarindus.						
indica, $L$.	...	Tr.	$60^{\prime}-80^{\prime}$		**	Bhábar ..
malabarica, Roxb. ...	**	Tr.	$25^{\prime}$	$\cdots$	.-.	Bhábar ...
retusa, Ham.	**	Tr.	$20^{\prime} 40^{\prime}$	Pk.	September,	Kosi valley ..
Vahlii, W. \& A.	-'	S. sc.	$20^{\prime}-40^{\prime}$	I'k.	January ...	Bhábar, outer hills
variegata, L. ...	...	Tr.	$25^{\prime}-30^{\prime}$	Pk. W.	March ...	Onter hills ...
Mimosa.						
pudica, $L$	1	Sh.	$2^{\prime \prime}$	Pk.	April	Kota Dún ...
rubricaulis, Lam. .. Acacia.	2	Sh.	$6^{\prime}-10^{\prime}$	R.	June	$\begin{aligned} & \text { Ramgarh } \\ & \text { ley, \&sc. } \end{aligned}$
Faruesiana, Hilld. ... eburnea, Willd	2 3	Sh.	10   15	$\underset{\text { Y }}{\text { Y }}$.	June ...	Almora
eburnea, willd. --	3 1	Tr.	${ }^{20^{\prime}-30^{\prime}}$	Wh.	January ..	Bhábar
Intsia, Willd.	4, 6	$\begin{aligned} & \text { Tr. or } \\ & \text { S. se. } \end{aligned}$	20'-30'	$\mathbf{Y}$.	July ...	Lhábar, Báge- вar.
Albizzia.						
Lebbek, Benth. .".	3, 4	Tr .	$20^{\prime}-30^{\prime}$	$\mathbf{Y}$.	May ...	Bágeвяг, Bhábar.
Julibrissin, Durazz.... var. mollis.	$\cdots$	Tr.	20',	W.	May ${ }^{\text {"' }}$...	
stipulata, Boir. $\quad$-.	2		30'-40'	Y.	May	Outer hills, Baisani.

Plants-(continued).


Name.						菷
ROSACEse.						
Prunus.						
persica, Benth. $\$$ Hooh.,		Sh.	$\cdots$	..	Marcli	Almora
armeniaca, L. ...		Sh.	...		March	Do.
Jacquemonntii, Hook.f.		Slı.	$5{ }^{\prime}$		Jnne	Níti
Praddum, Ro.xb. ...		Tr.	$20^{\prime}$	Pk.	November,	Almora, \&c.
Padns, L.		Tr.	$30^{\prime}-50^{\prime}$	Wh.	April ...	Naini Tál, Dwá li, \&c.
nepalensis, Ser. ...	...	Sh.	$10^{\prime}-15^{\prime}$	Wh.	April ...	Cliaur $\quad .$.
nudulata, Ham. $\quad .$.	...	Tr.	20'-30'	...	April	$\begin{aligned} & \text { Naini Tál, Bin- } \\ & \text { sar. } \end{aligned}$
Prinsepia.						
utilis, Poyle		Sh.	$6^{\prime}$	Wh.	January	Almora, \&c. ...
Spiræa.						
vestita, Wall.	5	H.	$2^{\prime}-3^{\prime}$	Wh.	August	Rílam, Sc.
sorbifolia, $L$.	4	Sli.	$10^{\prime}-10^{\prime}$	Wh.	Junc	Dwíli, Níti ...
bella, Sims.	1	Sh,	$6^{\prime}$	Pk.	May	Kíthi]'ass,Chechanicklıal.
canescens, Don.	2	Sh,	10'-15'	Wh.	May	Common ...
vaccinifolia, Don.	3	Sh.	$\mathrm{c}^{\prime}$	Wh.	June	Almora, \&c.
Rubus.						
paniculatus, $S_{m}$. ...	0	Sh.	$10^{\prime}$	Wh.	May ...	Tola (Sarju valley).
reticnlatus, Wall.	8	Sli.	$10^{\prime}$	Wh.	June ...	Láhúr, Dwáli ..
lanatus, Wall.	10	Sh.	15'	Wh.	April ...	Gagar, Binsar,
alpestris, $B l$.	17	Sh.		...		'I'ungráth ...
eaxatilis, $L$.	5	Sh.	$1^{\prime}$		July ...	Martoli
nutaus, Wall.	6	S. cr.	$1^{\prime \prime}-3^{\prime}$	Wh.	May	Láhúr
niveus, Wall. $\quad .$.	4,7	Sh.	10'-12'	Prs.	June	Namik, Ramri, lur l'ass.
macilentus, Camb. ...	1	Sh.	$10^{\prime}$	Wh.	May	Binsar, Mádhári
ellipticus, Sm.	11, 12	Sb.	$\mathrm{c}^{\prime}-8^{\prime}$	Wh.	April-May,	
biflorus, Ilam.					April	Binsar, \&c. Naidi Tál, Bin-
biflorus, Mam.	13,15	Sh.	$6^{\prime}-8^{\prime}$	Wh.	April	$\begin{aligned} & \text { Naidi Tál, Bin- } \\ & \text { sar, \&e. } \end{aligned}$
lasiocarpus, $S m$.	3, 14	S.cr.	$6^{\prime}-12^{\prime}$	R. Pk.	May-February.	Kota Ińn, Naini Tál, Bin-
var.membranaceus	. 13	Sh.	6'	Wh.	June	char, \&c. ${ }_{\text {chiring Pass ... }}$

Plants-(continned).

			a-   a.   合	+ +	Remarks.
Cultivated ...	1-5,000	R.	$\ldots$	$\ldots$	$=$ Persica vulgaris in list. Not found in Herb. S. \& W.
Do.	5,000	R.	$\cdots$	$\cdots$	$=$ Armeniaca vulgaris in list. Net found in Herb. S. \& W.
Open $\quad$..	11,500	B	D.	$\cdots$	= Cerasus No. 5 in Herb. S. \& W.
Do. ...	2,5-6,000	R.	$\cdots$	$\cdots$	=Cerasus No. 4 in Herb. S. \& W.
Forest	7,500-11,000	R.	...	$\cdots$	$=$ Cerasiss No. 1 in Herb. S. \& W.
Oper	6,000	R.	$\cdots$	$\cdots$	=Cerasus No. 3 in Herb. S. \& W.
Forest ...	7-7,500	R.	...		$=$ Rhamnus No. 5 in Herb. S. \& W.
Open ...	3-®,000	R.	B.	..	
Do, ...	9-12,000	R.	D.	$\cdots$	
By streams    IVorest $\ldots$	$7-12,000$ $9-10,000$	R. R.	D.	...	Not found in Herb, S. \& 而.
$\begin{array}{cc} \text { Open } & \ldots \\ \text { Do. } & \ldots \end{array}$	$\underset{\text { 7,5- }}{5,5,500}$	$\underset{\mathrm{R}}{\mathrm{R}} .$	$\cdots$	$\ldots$	
Do. ...	6,500	R.	$\ldots$	$\cdots$	
Woods ...	7-8,000	R.	$\cdots$	...	
Open ..	G-8,000	R.	$\cdots$	'.*	
Woods ...	7,500	If.	$\ldots$	$\cdots$	
Open $\quad \cdots$	11,000	$\cdots$	D.	...	
Open ...	7, 500-10,000	R.	$\cdots$	...	
Forest \& open,	8-10,700	R.	...	$\ldots$	
Woods ...	7-8,000	R.	$\cdots$	$\cdots$	
Woods \& open,	4-7,500	R.	$\cdots$	$\cdots$	
Woods ...	7-7,500	R.	$\cdots$	$\cdots$	
Do. ...	1, 5-7,000	$\boldsymbol{R}$.	$\cdots$	$\cdots$	
Woods ...	7,500	R.	..'	...	


Name.						$\begin{aligned} & \text { 官 } \\ & \text { Е्ट゙ } \\ & \text { Hi } \end{aligned}$
rosefoline, Sm. parvifoline, $L$.   Geum.	${ }_{15}^{2}$	Sh.   sh.	$10^{\prime}$ $8^{\prime}$	$\begin{aligned} & \text { Wh. } \\ & \text { Pk. } \end{aligned}$	$\begin{aligned} & \text { May } \\ & A_{\text {pril }} \end{aligned}$	$\begin{array}{\|l} \text { Nainl Tíl } \\ \text { Naini Tál, Bin- } \\ \text { gar. } \end{array}$
urbanum, $\boldsymbol{L}$. elatun, Wall.	$\ldots$	$\stackrel{1}{\mathrm{H} .}$		$\mathbf{Y} .$	June June	Námik, \&c. ... I'athar, Kori ...
Fragaria.						
indica, $A n d r$.	1	H.		$\mathbf{Y}$.	April ...	Onter hilis ..
$\begin{array}{ll} \text { vesca, } L . & \cdots \\ \text { var. nubicela } & \cdots \end{array}$	1	$\begin{aligned} & \mathrm{H} . \\ & \mathrm{H} . \end{aligned}$		Wh. Wh.	$\begin{array}{ll} \text { May } & \text {.. } \\ \text { May } & \text {. } \end{array}$	Pinclari Rogila, Naini Tal,
Potentilla.					-	1)wali.
purpurea, Royle	$\cdots$	H.	$\mathbf{2}^{\prime \prime}$	Pr.	August ...	Barjikang, \&ce,
albifolia, Wall.	-	H.	$4^{\prime \prime}-12^{\prime \prime}$	Y .	May ..	Námik, Rála
procumbens, $L$.	$\cdots$	H.	$3^{\prime \prime}-9^{\prime \prime}$	Y.	July	Mádhari l'ase, Rálam, \&ic.
fruticosa, $L$. $\quad$.	$\begin{aligned} & 1,2,24 \\ & \& 3 \end{aligned}$	Sh.	$4^{\prime \prime}-3{ }^{\prime}$	Y.	Angust ...	Milam, Niti, Pitti and Gori rivers, Piudari, \&ce.
ambigua, Camb.   eriocarpa, Wall.	5 4	H.	$4 \prime$ $1^{\prime \prime}$	Y.	Angust August	Rálant, Milam, Pindari, Sing-
eriocarpa, wall.	4		$1{ }^{\prime}$		Augurt	Pindari, Singjari.
Mooniana, Wight ...	14	H.	$\left.1^{\prime}-3\right\}^{\prime}$	Y.	August	Kalionundi, Rá-
fulgens, Wall. ...	13	H.	$1{ }^{\prime}$	Y.	July	Naini Tál, Bin-
Legehenaultiana, Ser.		II.				sar. \&c.
Leschenaultiana, , Ner.,	9, 20	II.	$9^{\prime \prime}-2$	Y.	$\begin{gathered} \text { March-Au- } \\ \text { gust. } \end{gathered}$	Naini Tal ...
var. bannehalensis,	15, 16	H.	$2^{\prime}-3^{\prime}$	Wh.	August ...	Jalat, Tola (Gori valley),
peduncularis, Don...   var. obscura,	37	II.	$\cdots$	$\because$	July ${ }^{\circ}$..	Rálam ... ...
leuconota, Don. ..	29	H.	$1{ }^{\prime}$	Y.	Junc ...	Rálanı, Duda-
microphylla, Don. ...	19	H.	$1^{\prime \prime}$-9 ${ }^{\prime \prime}$	Y.		toli.
var. commutata ...	18	H.	$3^{\prime \prime}-4^{\prime \prime}$	Y .	Juny	$\begin{aligned} & \text { Brjikang, \&c. } \\ & \text { Ilo. } \end{aligned}$
bifurca, $D$. $\quad$. ${ }^{\text {a }}$	27	$\stackrel{1 I}{ }$	$\underline{9}^{\prime \prime}-3^{\prime \prime}$	Y .	July ...	Milam, Gugé,
multiflda, $L$.	22, 23	H.	$3^{\prime \prime}-12^{\prime \prime}$	Y .	July ...	Níti pass, Hoti, \&c.
var. Saundersoniana,	23 (in part).	II.	$\cdots$	Y.	July ...	Do. ...
sericen, $L$. nepalensis, Hook.	$\begin{gathered} 21 \\ 10 \end{gathered}$	$\stackrel{\mathrm{H}}{\mathrm{H}}$.	$3^{\prime \prime}-9^{\prime \prime}$	Y.	July $\quad .$.	Malnri, Gagé ..
nepalensis, Hook. ...		н.		R.	April $\quad .$.	$\left\lvert\, \begin{gathered} \text { Naini Tál, Bin- } \\ \text { sar, \&c. } \end{gathered}\right.$

Plants-(continued).

				苍	Remariss.
$\begin{array}{cc} \text { Woods } & \text {.. } \\ \text { Do. } & \text {.. } \end{array}$	7,000 7,500	R.		$\cdots$	
$\begin{array}{cc} \text { Do. } & . . \\ \text { Open } & . . \end{array}$	$\begin{gathered} 7-11,000 \\ 10-11,500 \end{gathered}$	$\underset{\mathrm{R}}{\mathrm{R}} .$		$\cdots$	$=$ Sieversia elata in Merb, S. \& W.
$\begin{array}{lr}\text { Do } \\ \text { Do. } & \cdots \\ \text { Open } & \text { or moods, }\end{array}$	$\begin{gathered} 3-7,500 \\ 11-12,500 \\ 8-10,500 \end{gathered}$	l. R. l. l.	... $\cdots$ $\cdots$	...   $\cdots$   $\cdots$   ..	
	$11-14,500$ $8,5-12,000$ $9,5-14,000$	R. R. R. R.	D.	...	$=$ Sibbaldia No. 4 in Merb. $\$$ \& $W$   $=$ Sibballia No. I in Herb. S. \& W   = Silbaldia No. 3 in Herb. S. \& W
Open, rocky places.	8-16,300	R.	D.	T.	
Open $\ldots$   Open rocks ..	$11-15,000$ $9-12,000$	R.		T.	
Open ...	9-11,500	1 l .	$\cdots$	...	
Do. ..	6-10,000	R.	...	$\cdots$	
Do. ...	6-7,000	12.	$\ldots$	...	
Do. ...	c-11,500	R.	D.	$\ldots$	
Do. ${ }^{\text {.. }}$..	$\stackrel{\square}{13,000}$	i..		$\cdots$	
Do. $\quad$.	10-12,000			...	= Sibbaldia No. 2 in Herb. S. \& W .
Do.	10-14,500	R.	$\cdots$	$\ldots$	
Do. $\quad .$.	10-14,500			$\cdots$	
$\begin{array}{ll}\text { Do. } \\ \text { Do. } & . . . \\ \end{array}$	12-16,000			T.	
Do. ...	Ditto			T.	
Do. $\quad$ -	10-15,500			T.	
	7-8,500			...	

List of Kumaon

Name.		Babit of growth.		$\begin{aligned} & \dot{0} \dot{0} \\ & \underline{3} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
argyrophylli, Иall. .. var. atrosanguinea,	8	$\begin{aligned} & \text { H. } \\ & \text { II. } \end{aligned}$	$\begin{aligned} & 2^{\prime}-3^{\prime} \\ & 2^{\prime}-3^{\prime} \end{aligned}$	Or.   R. Or	$\begin{aligned} & \text { August } \\ & \text { August } \\ & \text { A.. } \end{aligned}$	Sába, Rálam ... Barjikáng, Pin-
var. atrosanguinea,   ,1, leucochron	8	11.			August ..	arjikang, Pin-   dari. \&e.   Barjikáng, \&c
monanthes, Lindl. ...	12, 25	H.	$11^{\prime \prime}$-3"	Y	August ...	Rálam, Barji-
var.	20	H.	$1^{\prime \prime}-2^{\prime \prime}$	Y.	May ..	chang.
Klciniana, W. \& A. ...	11	H.	$1{ }^{\prime}$	Y.	March	Naini-'l'al, Bin-
supina, $L$.	28	H.	$3^{n}-4^{\prime \prime}$	Y.	January ...	Hardwár, Binsar.
8. Chamœerhodos.   sabulosa, Bunge.	...	H.	$2^{\prime \prime}$	Wb.	September	Guge
9. Agrimonia.						
Eupatorium, L.	. ${ }^{\prime}$	H.	$2^{\prime \prime}-3^{\prime \prime}$	$\mathbf{Y}$.	June	Naini-Tál
macrophylla, Lindl....	2, 3, \& 7	Sh.	$6^{\prime}-10^{\prime}$	R.	June-July,	Rálam, Binsar, Tola, Checha-ni-Kláal, \&:
Webbianna, Wall. ... sericen, Lindl.	6 4,5	Sh.	$6^{6^{\prime}}-8^{\prime}$	R. W. Y.	July	Níti ${ }_{\text {Káthi, Milaü, }}$
sericen, Lindl. ..-	4,5	Sh.	$6^{\prime}-8^{\prime}$	W. Y.	May-July,	Kathi, Milam,
moschata, Mill. ...   11. Cydonia.	1	S. sc.	$10^{\prime}-30^{\prime}$	Wh.	April ...	Naini-Tál, Almora.
vuigaris, Fers. ...	...	Tr.	$20^{\prime}$	.."	March ...	Almora ...
beccata, $L$.	7	Tr.	$20^{\prime}$	Wh.	April ...	Naini-Tál, Níti,
kumani, Dene. ...	6	Tr .	$25^{\prime}$	Wh.	March ...	Outer hills ...
lanata, Don. $\quad \cdots$	3	Tr.	$40^{\prime}$	Wh.	May ...	Mádhári Pase, $\& c$.
vestita, Wall. ...	2	Tr.	$40^{\prime}$	Wh.	May ...	Ditto
A ucuparia, Gertn. ...	6	${ }^{\mathrm{T} \times}$	$20^{\prime}$	Wh.	June ...	Milam ...
foliolosa, Wall. ...	4	Tr.	$25^{\prime}$	Wb.	May ...	Dwáli
13. Stransvæsia. glaucesecne, Lindl. ...	$\cdots$	'Tr.	$30^{\prime}$	Wh.	Miny ...	Outer hill
14. Cratægus. crenulata, Roxb. ...	...	Sh.	12'	Wh.	A pril ...	Ditto.

Plants-(continued).

			aa. 台	边	Remaris.
Open ...	9-11,000	R.		$\ldots$	
Do. $\quad$.-	11-14,00	R.	D.	...	
Do.	12-15,000	R.	D.	$\cdots$	
Jo. ...	12-14,500	R .	.*.	...	
Rocks    Open ...	$\begin{gathered} 12,000 \\ 5-7,000 \end{gathered}$	R.	$\cdots$	....	
Do.	1-7,000	R.	$\cdots$	$\cdots$	
Do. -	i5,000	$\cdots$	$\cdots$	T.	
Woods ...	7,500	12.	'.'	$\cdots$	
Open woods ...	7-12,000	R.	D.	$\cdots$	
Do. ...	9-11,500	$\ldots$	D.	'.	
Do. ...	8 -13,000	R.	D.	$\cdots$	
Open ...	2,5-8,500	13.	$\cdots$	$\cdots$	
Cultivated ..	5,000	IR.	..'	$\cdots$	Not found in Herb, S. \& W.
Open woods ...	6-11,500	R.	D.	...	
Open ...	2, 5-8,000	R.	...	...	
Forest ...	9-10,000	12.	...	...	
Do. ...	8-10,000	R.			
Open   Forest	12,010 $9-12,000$	$\ddot{\mathrm{i}}$	D.	...	
Forest $\quad \cdots$	9-12,000		...	...	
Woods $\quad$ -	3-7,000	IR.	$\cdots$	$\cdots$	$=$ Fyrus No. 1, in Herb.S. \& W.
Open woods ...	2,5-7,000	1 R .	...	...	



Plants-(continued).



Plants-(continued).



Plants-(continned).


Name.						容
XLIII.-HALORAGEA.   1. Hippuris. vulgaris, $L$.		H.	$1^{\prime}-12^{\prime}$	Gr.	July	Raj-hoti, Gyar nyima.
2. Myriophyllum. spicatum, $L$.   XLIV.-COMBRETACEN.   1. Terminalia.		H.	$1^{\prime}-2^{\prime}$			Naini Túl, \&c.
belerica, Rozb. Chebula, Retz. tomentosn, Bedd.	4 1 $\cdots$	$\begin{aligned} & \text { Tr. } \\ & \text { Tr. } \\ & \text { Tr. } \end{aligned}$	$\begin{aligned} & 30^{\prime} \\ & 30^{\prime} \\ & 30^{\prime} \end{aligned}$	$\begin{gathered} \text { Ẅ. } \\ \text { v. Gir. } \end{gathered}$	May   August	Bhálar Sarju valley Sarju valley
2. Anogeissus.   latifolia, Wall.		Tr.	$20^{\prime}$		August ...	Blaábar ...
3. Combretum. nanum, IIam. XLV.-MYRTA-   CRA.	"•	S. H.	$1^{\prime}-2^{\prime}$	Wh.	April ...	$\underset{\substack{\text { aúgesar } \\ \text { anth }}}{ }$
1. Psidium.						
Guyarn, $I$. 2. Eugenia.		Tr.	$10^{\prime}-15^{\prime}$		February,	Outer hills ...
Jambolnua, Lam. ...	2	Tr.		Wh. Wh.	March ...	Bhíbar, outer hills. Ditto
3. Careya.   arborea, Ilozb.		$\mathrm{Tr} .$	$30^{\prime}$			Bhábar
XLVI.-MELASTOM- ACE $E$. 1. Osbeckia.						
chincusis, $L$.	2	HI.	$\begin{aligned} & 2^{p} \\ & 3^{r} \end{aligned}$	Pr.	September,	Bagesar, 8tc. ...

Plants-(continued).


| Name. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Plants-(continued).

$\begin{aligned} & \text { ن. } \\ & \text { : } \end{aligned}$	$\begin{aligned} & \text { D } \\ & 0 . \\ & 0.0 \end{aligned}$		máa.		
$\begin{aligned} & \text { "ت } \\ & \text { ت } \\ & 0 \end{aligned}$		宊	$\underset{\sim}{\infty}$	边	
Open ...	4-5,500		$\cdots$		=Ameletia rotundifolia in Herb. S. \& W.
Open and by water.	4,000	R.	...	...	No. 3 not found in Herb. S. \& W
Open ...	3-6,000	R.		...	= Grisles tumentosa in Herb. S. \& W.
Forest ...	1,000	R.	$\cdots$	$\cdots$	
Open woods,cultivated.	$1-5,500$	R.	...	$\cdots$	
Open ...	11,5-13,500	$\cdots$	D.	T.	
Woods ...	6,500	R.	...	$\cdots$	
Open ...	5,000	R.	$\cdots$	$\ldots$	
. ${ }^{\prime}$	$\cdots$	$\cdots$	...	...	
Woorls	6,500		$\cdots$	$\cdots$	
$\begin{array}{ll}\text { Open } \\ \text { Do. } & . . \\ \end{array}$	10,000 13,000		D.	$\cdots$	
Forest	$7{ }^{7,000}$	R.	$\cdots$	$\cdots$	
Do.	9,000	R	$\cdots$	$\cdots$	
Do. ...	1-2,000	R.	...	$\cdots$	-



Plants-(continued).

			má.	咎	Menarko.
Open ...	4,500	R.	$\cdots$	$\cdots$	-
Do.	8,500	R.	...		=Gymnopetatum pedunculosum in Herb; S, \& W.
Do.	5,000	R.	...	$\ldots$	
Do. ${ }^{\text {.. }}$...	6,500	…	....	$\begin{aligned} & \ldots \\ & \ldots \end{aligned}$	-Karivia umbellata in Herb. S. \& W.
Do. ...	5,000	R.	...	$\cdots$	
Do. ...	5-8,000	R.	...	$\cdots$	
	$?$	...	..	...	= Eikfylia trigyna in Herb. S. \& W.
Wet banks ... Trees \& rocks,	$\begin{gathered} 4-6,000 \\ 7,000 \end{gathered}$	R.   h.	$\cdots$	$\cdots$	
River-bed ...	4,000		...	$\cdots$	
Open ...	4-7,000	R.	.	...	


Name.						¢ ¢ ¢ ¢
LIV.-UMBELLIFE-   R压.						
1. Hydrocotyle.   javanica, Thnb. rotundifolia, Roxb. ... asiatica, $L$.	3 2	H, cr. H. H. cr.	6 $\mathbf{6}^{\prime \prime}$ $\mathbf{6}^{\prime \prime}$	....	$\left\|\begin{array}{cc} \text { March } & \ldots \\ \text { March } & . . . \end{array}\right\|$	Gágar, Almora, ? Kota-Dún, \&c.
2. Sanicula. europæа, $L$.		H.	$1^{\prime}-1{ }^{\prime}$		May	$\begin{gathered} \text { Karim, Naíni } \\ \text { Ťál, \&\&c. } \end{gathered}$
3. Vicatia.   eonilfolia, $D C$.	1, 2	H.	$6^{\prime \prime}-1 \frac{1}{2}^{\prime}$	..'	May	Chaur, Láhur...
4. Trachydium						
Roylei, Lind. ...	...	H.	$4^{\prime \prime}$	Wh.	September,	Lanjar ...
5. Buplearam.						
lanceolatum, Wall. ...	4	H.	$3^{\prime}-4^{\prime}$	Wh.	May	Karim
Candollii, Wall. ...	2	H.	$2^{\prime}$	Br.	August ...	Rálam
falcatum, $L$.	6	$\underline{\text { H. }}$	$3^{\prime}-4^{\prime}$		February.	Onter hills ...
var. marginata ...	1	H .	2'-3'	Y.	May, ...	Sarju valley ...
longicaule, Wall. ...	3	H.	1'-2'	Br.	Angust ...	Kálam, Níti ...
tenue, Don	5	H.	$2^{\prime}-3^{\prime}$	...	September,	$\begin{aligned} & \text { Naíni Tál, Gá- } \\ & \text { gar } \end{aligned}$
carui, $L$. ...	...	H.	2'	Wh.	July	
anethifolium, Benth.	...	H.	12'	W.		Naíni Tál, Al-
Falconeri, C. B. Ctarke.	..	H.	2'-3'	'.'	September,	Binsur $\quad$...
7. Pimpinella.						
achilleifolia, C. $B$. Clurke.	$\cdots$	H.	$\cdots$	..	$\cdots$	?
$\begin{gathered} \text { seuminata, } \\ \text { Clarhe. } \end{gathered} \quad \text { C. B. }$	...	H.	$3^{\prime}$	Wh.	August ...	Naini Tál, ¿̇c.
tencra, Benth. ...	...	H.	$1^{\prime \prime}{ }^{11^{\prime}}$	...		Naini Tál
diversifolia, DC. ...	1		2'-4'	Wh.	August ...	Dudatoli, Naini Tál.
Stracheyi, C. B. Clarke.	2		$9 \prime 1$	Wh.	June ...	Dhaoli river ...
сшвріtosa, Benth. ...	...	H.	$3^{\prime \prime}-4^{\prime \prime}$	Wh.	July ...	Níti ...

Plants-(continued).



Plants-(continued).


List of Kumaon

Name.		Habit of growth.	Height of plant.			容
16. Heracleum.						
Brunonia, Benth. ... candicane, Wall. ...   17. Caucalis.	1, $\dddot{2}, 3$	$\underset{\mathrm{H} .}{\mathrm{H} .}$	$\mathrm{I}^{\prime}-1{ }^{11^{\prime}}$	Wh. Wh.	$\begin{array}{\|l\|l\|} \hline \text { August } \\ \text { May } & . . . \\ \hline \end{array}$	Rálam, Milám, Naini T'ál, Rálam.
Anthriscia, Scop. ...   LV.-ARALIACER.	...	H.	$3^{\prime}$	R.	August ...	$\begin{aligned} & \text { Naini Tál, Pá- } \\ & \text { ton. } \end{aligned}$
1. Aralia.						
cissifolia, Griff-   var. scandens	$\dddot{1}$	S. sc.	$\ldots$	...	May ${ }^{\text {.. }}$	Dwáli, Mádhári I'ass.
2. Pentapanax-						
Leschenaultii, Seem.... var. umbellatuin ...	$\dddot{3}$	$\stackrel{7}{\text { Shl. }}$	$\cdots$		May ${ }^{\text {a }}$	Mádhári Pass, Dwáli.
3. Heptapleuram.						
impressum, C. B.		Tr.	25'-30'	...	September,	Chami-binaik,
Clarke.   venulosum, Seem. ...	...	S. bc.	$30^{\prime}-40^{\prime}$	...	March ...	Onter hills ...\|
4. Heteropanax.						
fragrans, Seem. ...	-•	Tr.	$20^{\prime}$	...	December,	Bhábar ...
5. Brassiopsis.						
aculeata, Seem. ...	${ }^{* *}$	Tr.	$4^{\prime}-8^{\prime}$	Wh.	February,	Sarju valley ...
6. Macropanax.						
oreophilum, Miq. ...	$\cdots$	Sh.	$6^{\prime \prime}$	" ${ }^{\prime}$	*'	Naini Tál ...
7. Hedera.						
$\text { Helix, } L \text {. }$	1	S. sc.	$30^{\prime}-40^{\prime}$	Wh.	October ...	Bágesar, Naini Túl.
LVI.-CORNACETE.   1. Marlea.						
begoniæfolia, Roxb. ...	.."	Tr.	$20^{\prime}$	"	June	Páton, outer hills.

Plants－（continued）．

		$\begin{array}{c}H \\ \text { lay }\end{array}$      号   $\underset{\Xi}{\Xi}$	a－ 1. 突	遃	Remarka．
$\begin{array}{rr} \text { Open } & \ldots \\ \text { Do. } & \cdots \end{array}$	$\begin{gathered} 13,500 \\ 6-11,000 \end{gathered}$	$\mathrm{R} .$	D．	$\begin{aligned} & \hline \ldots \\ & \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & =\text { Tordyliopsis Brunonis in Herb. } \\ & \text { S. \& W. } \end{aligned}$
Do．	5，5－6，500	R．	$\cdots$		Probably $=$ Torilis Anthriscus of list， which is not found in Herb． Strachey，though Cuucalis An－ thriscus is there，named in ma－ nuscript without a printed ticket．
Forest ${ }^{\text {a }}$	8， $\mathbf{6 0 0}^{\text {a }}$	ㅈ．．	$\cdots$	$\cdots$	
Do．${ }^{\text {．．}}$ ．．．	$8-10,000$	R．	$\begin{aligned} & \ldots \\ & \ldots \end{aligned}$	$\ldots$	
Forest near wa－ ter	10，000	R．	$\ldots$		＝Hedera tomentosa in Herb S．\＆W．
Forest ．．．	1－3，000	R．	$\cdots$	...	＝Paratropia and Hedera No．6，in Herb．S．\＆W．
Do．．．．	1，000	R．	$\cdots$	．．．	$=$ Panax fragrans in Herb．S．\＆W．
Do．$\quad \cdots$	2，5－4，000	R．	$\cdots$	．．．	$=$ Hedera No． 3 in Herb．S．\＆W．
Do．．．．	6，500	R ．	$\ldots$	．．．	$=$ Hedera No． 5 in Herb．S．\＆W．
Do．．．．	$3-9,000$	R．	$\ldots$	$\cdots$	
Open ．．．	3－6，000	R．	．．．	$\cdots$	

List of Kumaor


Plants-(continued).

			-	+	Hemarks.
Forest   Open \& woods   Open	$\begin{aligned} & 5-7,500 \\ & 4-7,000 \\ & 5-7,000 \end{aligned}$	R. R. IR. R.	... $\cdots$		$=$ Benthamia fragifera in IIerb. S.
Forest ...	7-10,000	R.	...	...	
Do, $\quad .$.	78,500	R.		$\cdots$	
Do.	$8-9,500$ 7,500	IR	...		
Do. $\quad .$.	4,000				
Open and woods	5-8,500	R.			
Forcst ...	7-9,000	R .		...	
Do. ...	9,5-11,000	R.			
Open rocks ...	10,500	R.			
Woods ...	6,-10,500	R.			
Open $\quad .$.	11,000	R.	$\cdots$	."*	
Do. ...	12, $\check{\square}-14,500$	$\cdots$			
Do. ...	13,500			T.	
Forest ...	8-9,000	IR.		$\cdots$	
Open ...	$\stackrel{13,500}{13}$		D	T.	
Do. ...	11,5-13,500	$\ldots$	D.		
Da, ...	12,000				
Do. ...	12,500		D.		
Open \& woods,	3-7,000	R.			
Open ...	8,000				
Open \& woods.	8, 5-1],500	R.			
Cultivated ...	5,500			...	
Vorest ...	7-9,000	R.			



Plants-(continued).

				+	Remapks.
Forest .-	$1,000$	R.	$\cdots$	...	$=$ Nauclea No. 1 in Herb. S. \& W.
Do. ...	1,000	R.	$\ldots$	$\cdots$	$=$ Nauclea No. 2 in Herb. S. \& W.
Do. ...	2,500	R.	$\ldots$	$\ldots$	
On trees $\quad .$.	6-7,500	R.	$\cdots$	$\ldots$	
Forcst ...	2,500	R.	...	$\cdots$	
	4,000		$\cdots$	...	
Do. ...	1-3,000	1 R .	$\ldots$	$\ldots$	
Do. ...	2-3,000	12.	$\cdots$	$\ldots$	
$\begin{array}{cc} \text { Wet banks } & . . \\ \text { Do. } & \ldots . \end{array}$	$\begin{aligned} & 3-4,500 \\ & 3-4,500 \end{aligned}$	$\frac{\mathrm{R} .}{\mathrm{i}}$	$\cdots$	$\cdots$	
Do. ...	4,000	R.	$\cdots$	-•'	$=$ Ophinrrhiza No. 2 in Herb. S. \& W.
Near water ...	4,000	R.	$\cdots$	...	
Open ...	5,500	R.			=Hedyotis No. 2 in Herb. S. \& W.
Do. ...	4 5,500	R .	$\ldots$	...	KKoliautia No. 1 in Herb. S. \& W.
Open grass ...	7,000	R.	...	...	=Kohauhc No. 2 in IIerb. S. \& W.



Plants－（continued）．

		$\substack{\text { Him } \\ \text { lay }}$   品   砍	$\begin{aligned} & a \dot{a}- \\ & a . \\ & \hline \\ & \text { 㖹 } \end{aligned}$	苂	Remarks．
Shady banks ．．．	6－7，000．	R．	＊＊	$\cdots$	＝Hedyotis No． 1 in Herb．S．\＆W．
Wet rocks ．．．	4，000	13.	$\cdots$	$\cdots$	$=$ Ophiorrhiza No． 1 in Herb S．\＆W．
Woods ．．．	3－4，000	R ．	$\ldots$	$\cdots$	
$\begin{array}{ll} \text { Open } & \cdots \\ \text { Forcet } & \cdots \end{array}$	$\begin{aligned} & 4-6,000 \\ & 1-3,000 \end{aligned}$	R．   R．	$\cdots$	．．．	＝Gardenia No． 1 in Merb．S．\＆W．
Do．．．．	1，000	R．	$\cdots$	$\cdots$	
$\begin{array}{cc} \text { Open } & \ldots \\ \text { Do. } & \cdots \end{array}$	$\begin{aligned} & 4-500 \\ & 4,000 \end{aligned}$	$\begin{aligned} & \mathrm{R} . \\ & \mathbf{R} . \end{aligned}$	$\ldots$	$\cdots$	$\begin{aligned} & =\text { Spermacoce No. } 1 \text { in Herb. S. \& } \\ & \text { W. } \end{aligned}$
Forcst ${ }^{\text {．．}}$ ．．	$\xrightarrow{2-3,500}$	R．	$\cdots$	$\cdots$	
Do．．．．	1－2，500	R．	．．．	$\cdots$	
Open ．．．	2，5－6，000	R．	$\cdots$	$\cdots$	
$\begin{array}{cc} \text { Do. } & \text {... } \\ \text { Forest } \end{array}$	$\begin{gathered} 5-8,000 \\ 10,000 \end{gathered}$	R． R.	$\cdots$	$\ldots$	
$\begin{array}{ll} \text { By water } & \ldots \\ \text { Open } & \ldots \end{array}$	$\begin{aligned} & 4,000 \\ & 4,000 \end{aligned}$	$\begin{aligned} & \mathbf{R} . \\ & \mathbf{R} . \end{aligned}$	$\ldots$	．．．	$=$ Borreri，lasiocarpa in Herb．S． \＆W．



Plants-(continued).



Plants-(continued).



Plants-(continued).

			na-   a. s.	+	Remarke.
$\underset{\substack{\text { Opater } \\ \text { Open }}}{ }$	5-6,500		$\cdots$	$\ldots$	
Do.	2-5,500	R.	$\ldots$	$\cdots$	
$\begin{array}{ll} \text { Open } & \text {..! } \\ \text { Woods } & \ldots \end{array}$	$5-8,000$ $5,5-10,000$	$\begin{aligned} & \text { R. } \\ & \text { R. } \end{aligned}$	$\cdots$	$\cdots$	
Do.	6,5-7,500	R.	...	...	$=\begin{gathered}\text { Leptocoma } \\ \text { S. \& W } \\ \text { racemosa }\end{gathered}$ in Herb.
Open	7-11,500	R.		...	$=$ Erigeron, No. 3 in Herb S \& W.
Do.	13,000	R.			$=$ Diplopappus No. $G$ in Herb.   S. \& W.
Do. ...	6,-8,500	R.		...	$=$ Liplopappus No. 1 in Herb- S. \& W.
Woods	6,000	R.		...	$=$ Catimeris flexuosa in Herb. S. \& W.
Open Do.	9,000 15,000	R.		T	
Do. $\quad$...	12-12,500	R.		$\cdots$	= Heterochata No. 2 in Herb.   S. \& W.
Open ${ }^{\text {. }}$...	-.7-7,000	$\dddot{\mathrm{R}}$	$\ldots$		
Do.	14-16,000			T.	
Wools	6,5-7,000	R.	$\text { \| } \cdots$		
Forest	7-9,000		...		
Open ...	14-17,000		D.	T.	$\begin{gathered} \text { Heterchata } \\ \text { S. \& W. } \end{gathered} \text { No. } 1 \text { in Herb. }$

List of Kumaon.


1'lants-(continued).


Name.						守
Anaphalis(concld.).						
$\begin{aligned} & \begin{array}{c} \text { ehionamtha, } \\ \text { var. } \\ \text { aduata, } \\ \text { DC. } \end{array} \\ & \hline . . \\ & \hline . . \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \\ & 1 \end{aligned}$	H.   H.   H.	12" $2^{\prime \prime} 15^{\prime \prime}$	Wh. Wh. Wh.	$\left\lvert\, \begin{gathered} \text { Septenıber, } \\ \text { Do. ... } \\ \text { Do. .. } \end{gathered}\right.$	Tola, Milam Bugdwár Binsur, Nain Túl.
intermedia, DC. ...	11	H.	${ }^{8 \prime \prime}$	Wh	August ...	Dhauli ?
$\begin{array}{ll}\text { sp.-—— } \\ \text { ep.- } & \\ \end{array}$	5	H.	$8^{\prime \prime}$ $6^{\prime \prime}$	Wh.	September, June ...	Dhauli valley,
18. Phagnalon.						
niverm, Edgew. ...		H.	$6^{\prime \prime}$		June ...	Samangentha...
19. Gnaphalium.						
hypoleucum, $D C$... luteo-album, $L$.	3 2	H.	$11^{\prime}$		May $\quad$ March $\quad .$.	Almora, Káthi,
luteo-album, L. ... indicum, $L$. ...	2	H $\mathrm{H}_{.}$	$1^{\prime}{ }^{\prime}$	Y.	$\begin{array}{cc}\text { March } & \text {.. } \\ \text { Do. } \\ \text { D. }\end{array}$	$\begin{array}{ll}\text { Do. } \\ \text { Do. } & \\ \end{array}$
20, Cæsulia.						
vestita, Wall. ...	4	H.	$1{ }^{\prime}$	Y.	March ...	Almora, Hard-
					September	wár.
nervosa, Wall. ...	3	H.	$2 \times$	Pk.	September,	Kapkot, Naini
barbata, Wall. ...	5	H.	$2^{\prime}$	Y.	August ...	Rálan river ...
Cappa, DC.	1	H .	3'-4'		March ...	Pyura, \&c. ...
cuspidata, $H f, \& T$,	6	Sh.	4'-5'	Y.	F'ebruary,	Almora, Naini Tal.
sp,—— $\quad$.	2	H.	212	Y.		
22. Vicoa.   auriculata, Cass. ...	$\cdots$	A.	$6^{\prime \prime}-8^{\prime \prime}$	Y.	March ...	Almora ...
23. Caxpesium.						
cernuum, $L$. ...	1	H.	$3^{\prime}$	Gr. Y.	August ...	Naini T'ál ...
var. pedunculosum, abrulanoides, $L$. ...	3	Н.	$2^{\prime}$	....	August ... ${ }^{\text {a }}$	Mohargári
				- 0		Pass, Binsar.

Plants-(continued).



Plants-(continued).

			má-	安	Remarkg.
Forest	7,000	R.	...	...	
Open	5,500	R.	...	$\cdots$	
Foresta	5-8,500	R.	...	...	
Open	5,500	R.		$\cdots$	
Do.	5-6,500	R.	...	$\cdots$	
$\begin{array}{ll}\text { Do. } \\ \text { Do. } & \ldots . . \\ \end{array}$	$\begin{array}{r} 4,000 \\ 3-7,000 \end{array}$	$\mathrm{R} .$	$\ldots$	$\cdots$	
Do.	4.-6,000	R.	$\cdots$	$\cdots$	
Naturalized in gardens.	5-6,000	R.	...	...	
$\begin{gathered} \text { Open } \\ \text { Do. } \\ \text { Do. } \end{gathered}$	$\begin{array}{r} 16,500 \\ 13-15,000 \\ 16-17,000 \end{array}$	... $\cdots$ $\cdots$	$\dddot{D}$.	T. T. T.	
Do.	1,000	R.	$\cdots$	...	
Do.	2,500	R.	...	...	= Machlis homispherica in Herb S. \& W.


Name.				H 0 0 0 4 H H 0 0 0		蕆
34. Tanacetum. nubigenum, Wall...	2	H.	$1{ }^{\prime}$	Y.	Scptember,	Pindari, Tungníth.
tibeticum, Ilf. \& T.,	3	H.	$1{ }^{\prime}$	Y.	August ...	Milam ...
longifolium, Wall. ...	1	H.	$2^{\prime}$	$\mathbf{Y}$.	September,	Pindari, Tungдáth.
tomentosum, DC. ...	4	H.	$1 '$	Y.	August ...	Gothing . ...
gracile, $H . f \& T \ldots$	16	H.	...	...	September,	$\begin{aligned} & \text { Satlaj river } \\ & \text { in Guge } \end{aligned}$
35. Artemisia.						
	1	H.	$3^{\prime}$		August ...	Háwalbágh ...
stricta, Edgew. ...	11	H.	$\ldots$	...	Do. ...	Milam, Shelong.
maritima, L. ...	5	H.	$2^{\prime}$	$\ldots$	Do. ...	Jelam ...
vestita, Wall. ...	${ }^{4}$	H .	$3^{\prime}$	$\cdots$	Do. ...	Common ...
sacrorum, Ledeb. ...	15	H.	$\cdots$	$\cdots$	September,	Satlaj river
var. - ...	6	Ir.	$2^{\prime \prime}$	Br.	August ...	Tola, Milam ...
vulgaris, $L$.   Roxburghiana, Bess,	2, 8, 9, 14	H.	$1^{\prime}$ - $9^{\prime}$	$\cdots$	Do. $\cdot .$.	Almora, Kedárnath.
var, grata	3, 7	1.	$3^{\prime}$	Br .	Do. ...	Binsar, Rálam valley.
fasciculata, Bieb. ...	17	H.			September,	Satlaj valley in
hypolenca, Edyew...	12, 13	$\cdots$			August ...	Milan, Shelong, Satlaj valley in Guge, Ba- darináth.
Stracheyi, Hf. \& To, macrobotrys, Ledel.	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { II. } \\ & \text { H. } \end{aligned}$	$1^{\prime \prime}$	$\mathbf{Y}$.	September, Do.	Manasarowar... Milam,
日p. $\qquad$ . .4		H.		...		Milam, dhunga. '"
36. Tussilago.						
Farfura, L. ...		H.	$6^{\prime \prime}-12^{\prime \prime}$	Y.	May ...	Dwáli Pindari,
37. Doronicum.						
Roylei, DC. ...	-"4	H.	13'	Y.	August ...	Tungnáth ...

Plants-(continued).

		$\begin{gathered} \begin{array}{c} H \\ l a \\ \hline \end{array} \\ \hline \\ \text { 会 } \end{gathered}$	na-   a. $\qquad$   官	+	Remarks
Open ...	12,000	R.	$\cdots$	$\cdots$	
Do. $\quad$ -	13,000	...	D.	T.	
Do. ...	12,000	IR.	$\ldots$	$\cdots$	
$\begin{array}{ll}\text { Do. } \\ \text { Do. } & \text {... } \\ \end{array}$	$\begin{aligned} & 13,500 \\ & 13,500 \end{aligned}$	...	D.	$\cdots$	
Do. Do. D.	$\begin{array}{r} 4-11,500 \\ 11-12,000 \end{array}$	R.	D.	$\ldots$	
Do. ...	9,000	R .	$\cdots$	$\cdots$	
$\begin{array}{ll}\text { Do. } \\ \text { Do. } & \text {... } \\ \end{array}$	6,000 $12-13,500$	R.	D.	$\cdots$	
$\begin{array}{ll}\text { Do. } \\ \text { Do. } & \cdots \\ \end{array}$	I $\begin{array}{r}\text { I1,500 } \\ 1-\mathrm{Tl,500}\end{array}$	$\underline{\mathrm{R}}$.	$\stackrel{\mathrm{D}}{\sim} \mathrm{C}=$	$\ldots$	
Do. ...	7-9,000	R.	...	...	
Do. ...	13,000	$\cdots$	...	T.	
Do. ...	11-13,500	...	D.	T.	$=$ A Roxburgliana, Bess.
$\begin{array}{ll} \text { Do. } & \text {... } \\ \text { Do. } \end{array}$	$\begin{aligned} & 14-15,500 \\ & 11-15,000 \end{aligned}$	$\cdots$	…	T.	
...	..	$\cdots$	'."	$\ldots$	
Open, débris ...	8-11,500	R.	$\cdots$	$\cdots$	
Woods ...	10,000	R.	...	...	= D. Pardalianches in Herb. S. \& W.


Name.						¢
38 Gynura.   nepalensis, $D C$. ...   39.Emilia.	**	H.	3'	Or.	March ...	Outer hills ...
39.Emilia.   sonehifolia, DC. ...   40. Senecio.	**	H.	$1^{\prime \prime}$	Pr.	April ...	Almora ...
alatus, Wall. ...	8	H.	$2^{\prime \prime}$	Y.	August	Na in i Káthi, Rálam Nán
rufinervis, DC. ...	$T$	H.	2'	Y.	July ...	Naini Ráthi Rál,
	5	II .	$1^{\prime}-7 \frac{1}{}{ }^{\prime}{ }^{\prime}$	Y.	Augurt ...	Rálam river ...
Candolleanus, W'all.,	6	FI.	${ }^{\frac{1}{2}} \frac{1}{\prime}^{\prime}-2^{\prime}$	$\underset{\mathbf{Y}}{ }$	Do. ...	Pindari ${ }^{\text {Pindari, Rálam }}$
gracilifforue, DC., chrysanthemoides,	3 10	H. H.	$5^{\prime}$ $1^{\prime}$	$\mathbf{Y}$.	$\begin{array}{cc}\text { Do. } \\ \text { July } & \text {... }\end{array}$	Pindari, Rálam, Gothing ...
$D C .$		H.	1			
diversifolius, Wall.,	4	H.	$3{ }^{r}$	$\mathbf{Y}$.	August ...	Binsar, \&c. ...
nudicaulie, Ham. '.'	2	H	$12^{\prime \prime}-18^{\prime \prime}$	$\mathbf{Y}$	July	Almora, \&c. ....
coronopifolius, Desf.	9	H.	${ }^{2 \prime \prime}$	$\mathbf{Y}$	September,	Rákas Tál,
pedunculatus, Edgew.	1	H.	$9^{\prime \prime}-12^{\prime \prime}$	$\mathbf{Y}$	July ...	Shelshel Malíri, Níti.
Ligularia, Hook. f. ...	...	H.	$4^{\prime}$	$\mathbf{Y}$.	August ..	$\begin{aligned} & \text { Rálam river, } \\ & \text { Dudatoli. } \end{aligned}$
arnicoides, Wall. ...	-"	H.	$6^{\prime \prime}$	Y.	Do. ...	Rájhoti, Chorhoti, and Níti Pusses.
41. Werneria.   nana, Benth.	**	H.	$4^{\prime \prime}$	$\mathbf{Y}$.	Do. ...	$\begin{aligned} & \text { Rájhoti and } \\ & \begin{array}{l} \text { Chor hoti } \\ \text { Passes. } \end{array} \end{aligned}$
42. Eichinops.						
cornigerus, DC. ...	1	H.	$2^{\prime \prime}$	Bl.	Do.	Bhim-udi y ár, \| Malári.
niveus, Wall. $\quad .0$	2	H.	2'	Bl.	February,	Almora, 8ec. ...
43. Carduus.						
$\begin{gathered} \text { nutans, } \boldsymbol{L} . \\ \text { var. lucida } . . . \end{gathered}$	$\cdots$	$\underset{\mathrm{H}}{\mathrm{H} .}$	$\because$	$\dddot{\mathrm{Pr}}$.	Augast ...	Rálam ${ }^{\text {." }}$...

Plants-(continued).


List of Kumaon


Plants-(continued).



Flants-(continued).



Plants-(continued).



## Plants-(continued).



Name.						\# \# \# H
4. Rhododendron.						
lepidotum, Wall. ...	1	Sh.	$1^{\prime \prime}-11^{\prime \prime}$	Pls.	June	Pindari, Bom-
anthopogon, Dan ...	2	Sh.	$1^{\prime}-2^{\prime}$	Y.	Tune	Ditto ...
campanulatum, Don,	3	Sh.	$10^{\prime \prime}$	Li.	May ...	Pindari, \&c. ...
molile, Wall.	4	Sh.	$8^{8}{ }^{\prime}$	-		Champwa ...
$?$	5	'Jr.	$\mathrm{IN}^{20^{\prime}}$	R .	May ..	Jhnni ...
barbatum, G. Don,	0	'Tr.	$20^{\prime}-25^{\prime}$	IR.	May ...	Mádhári Pass,
arborcum, $S_{m}$. ... var. товеит ...	7	Tr.	$25^{\prime}$	R.	$\text { May }{ }^{\cdots}$	Námik ${ }^{\text {² }}$
" puniceum $\ldots$	8		$25^{\prime}-40^{\prime}$	R.	May $\quad$...	Naini Tál, \&e.
LXV. - PRIMUL-   ACEA.						
1. Primula.						
speciosa, Don	1	H.	$1^{\prime}$-1 $1^{\prime \prime}$	Pr.	January ...	Almora, \&c. ...
denticulata, Sm .	2	H.	$1^{\prime \prime}$	Pr .	March ...	Naini 'tal, \&c.,
capitata, Hook. ...	3	H.	$9^{\prime \prime}$	Pr.	May ...	Pindari, Rajhoti.
Stuartii, Wall. $\ddot{\square}$	4	II.	$1^{\prime \prime}-2^{\prime \prime}$	Pr.	Junc ...	l'indari, \&c. ...
Moorcroftiana, Wall.,	5	$\stackrel{1}{\mathrm{H}}$.	$3^{\prime \prime}-4^{\prime \prime}$	$\mathrm{l}^{\mathrm{p}} \mathrm{r}$.	'July ...	Niti Pags ...
sibirica, Jacquem...	6	II.	$3^{\prime \prime}-1 \frac{1}{2}$	Pr.	July ...	$\underset{\text { Pindari, Níti, }}{\text { \&c. }}$
var. tibetica ...	15	HI .	$1{ }^{\prime \prime}$	Pr .	September,	Gyanima ..
floribunda, Wall. ....	7	II.	$4^{\prime \prime} \mathrm{c}^{\prime \prime} \mathrm{c}^{\prime \prime}$	Y.	January ..	Naini Tál ...
	8	${ }_{\text {II }} \mathrm{H}$	$\mathrm{G}^{\prime \prime}{ }^{\prime \prime}$	$\mathrm{l}^{1} \mathrm{r}$.	April ..	Mádhári Pass,
nana, $\boldsymbol{W}$ all. ...	9	H.	$6^{\prime \prime}$	Pr.	May ...	Champwa, Pindari.
sulphurea, Hook f...	10	H.	$3^{\prime \prime}$	Pr.	February,	Suring . ...
petiolaris, Wall. ...	11	II.	$4^{\prime \prime}-0^{\prime \prime} \frac{1}{2}$	l'r.	May ...	Mádhári pass...
autumnalis, Hork.f.	12	$\stackrel{H}{H}$	$4^{\prime \prime \prime}$	Pr.	October ...	Namik ...
Stracheyi, Hooh. $f$.	13	H.	$\frac{1}{2}{ }^{\prime \prime}$	Pr.	August ...	Barjik áng Pasio,
minutibsima,    quem. Jac-	11	H.	$4^{\prime \prime}$	Pr.	July	Barjikíng Pass, Bowprás.
2. Androsace.						
rotundifolia, Hardw.,	1	H.	$3^{\prime \prime}$	Wh.	February,	Plaine, Báge- sar.
incisa, Wall. ...	2	11.	$3^{\prime \prime}$	Pk.	May ...	Alniora ...
lanuginosa, Wall....	3	H.rn.	$3^{\prime \prime}{ }^{\prime \prime}$	Pk.	May ...	Naini Tál ...
earmentosa, Wall....	5, 10	H.rn.	$6^{\prime \prime}-9^{\prime \prime}$ $1^{\prime \prime}-3^{\prime \prime}$	${ }_{\text {Pr }}^{\text {Pk }}$	July	Ràlam, \&c. ...
Jaequemontii, Duby,	5, 10	H.rn.	${ }^{1 \prime \prime}-3^{\prime \prime}$	Pr. Pr.	August ...	'loyidhunga Lungar.
pedicillata, Royle ...	6	H.	$6^{\prime \prime}$	Pk	May	Dwáli ...

Plants－（continued）．

		Hi   luy      号   島	［ mi．	＋	Remarke．
Open $\quad \cdots$	9－14，000	R．	D．		
Do．	10－14，000	R．	D．	$\cdots$	＝Oanolhamnus in Merb．S．\＆W．
Do． Do．	－10，000	R．		$\cdots$	
Forcet $\ldots$	9，000	R．	．．．	．．．	
Do．．．．	9－10，500	12.	－	．．．	
D．${ }^{\text {．}}$		$\cdots$		$\ldots$	
Do．    Do． ..	$10-11,600$ $4-10,500$	R ．	．	$\cdots$	
Do．．．－	4－10，500			$\cdots$	
Near water ．．．	4－6，000	R．	$\cdots$	$\cdots$	
Woods ．．．	7，5－10，000	R ．	$\ldots$	苗	
Open $\quad \cdots$	12－15， 000	R．	D．	T．	
Do．m．	11，5－14，000	R．	D．	T．	
Do．$\quad . \cdot$	16，800	…	－	$\stackrel{\mathrm{T}}{\mathrm{T}}$	
$\text { Open, wet } \quad \cdots$	11－16．000	R．	D．	T．	
Wet $\quad \cdots$	15,500	．．．	$\cdots$	$\cdots$	
Wet banks $\quad .$.	3－7，000		．．＇	$\cdots$	
Wet rocks    Open $\ldots .$.	8，000	R．	$\cdots$	$\cdots$	
Open $\quad \cdots$	12，000	．．．	$\cdots$	．．．	
Shady banks＇．．．	4，500		$\cdots$	$\cdots$	
Open \＆woods， Woods，wet ．．．	9－12，000 ${ }_{8,000}$	R． R．	．．．	．．．＂	
Woods，wet ．．． Open	14－15，000	R．	$\cdots$	．＂	
Do．．．．	14－16，000	12.		T．	
Fields	1－3，000	R．	－•＇	$\cdots$	
Open－．．．	$5-7,500$		．${ }^{\circ}$	$\ldots$	
Do．banks $\quad$ ．．．．	$\begin{array}{r} 6-7,500 \\ 8-12,000 \end{array}$	R．   L.			
Open	15－17，000	R．	$\cdots$	$\cdots$	
Ranks ．．．	8，000	R．		．．．	


Name.						䔍
2. Androsace(concluded).						
sp. - ...	7	II.	$3^{\prime \prime}-4^{\prime \prime}$	Pr.	July	Bampa, Níti ...
villosa, L. ...	8, 11	H. at.	$1^{\prime \prime}-2^{\prime \prime}$	l'r.	July	Milam, Rogila,
globifera, Dmby. ... 9 17. 1 Pr. July $\ldots$ Barjikang Pass,   3. Lysimachia.						
debilis, Wall. ...	1	H. cr.	$\mathrm{i}^{\prime \prime}$	Y .	June ...	Gígar - ...
pyramidalis, Wall,	2	H.	$4^{11^{\prime \prime}}{ }^{\prime \prime}$	Pk.	July ...	Binsar $\quad .$.
㫙. $\qquad$ ...	3	1.	$4^{\prime \prime}$ - $\mathbf{c}^{\prime \prime}$	Pk.	May -	Miudhini Pase, Dwili.
alternifolia, Wall.,	4	1 H	$\mathrm{G}^{\prime \prime}$	1 k .	July ...	Almuta, \&c. ...
lobelioides., wall.,	5	1.	$12^{\prime \prime}$	Pk.	August ...	dágesar
4. Anagnathis.						
arveusis, $L$. ...	-"	H.	$6^{\prime \prime}$	Bl.	February,	Outer hills ...
$\begin{gathered} \text { LXVI.-MYRSINA- } \\ \text { CEA. } \\ \text { 1. Mæ®Sa. } \end{gathered}$						
argentca, Wall. ...	1	Sh.	5'-6'	".0	May ...	Binsar ${ }^{\text {a }}$-..
indica, A.DC. ...	2	Sh.	15'-20'	- 0	March	Kota, outer hills.
2. Myrsine.						
bifaria, Wall.   nemiserrata, Wall.,	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	Sh.   Sh.	$3^{\prime}-4^{\prime}$	$\mathrm{R} .$	February,   March	Binsar, \&c \&c., Naini Tál, \&ce.,
3. Embelia.						
robusta, Roxb. ...	'*'	Sh.	15'	$\cdots$		Kota- Dún ..e.
4. Ardisia.						
floribunda, Wall. ... humilis, Vahl.	"."	Sh.   Sh.	$\begin{aligned} & 10^{\prime} \\ & 8^{\prime} \end{aligned}$	Pk.	May ....	Below Binsar,   Yunágiri
LXVII.-SAPOTA-						
butyracea, Roxb. ...	1	Tr.	$3{ }^{\prime \prime}$		January ...	Bhábar
¢p.- $\quad$ -	2	Tr.	$25^{\prime}$	...	January ...	Sarju valley ....

Plants-(coutinned).


List of Kumaore


Plants-(continued).



Plents-(continned).



Plants-(continued).

		${ }^{H}$ lay 空			Aemarks.
Near water ...	1-4,000	R.	. $\cdot$	...	
$\cdots$	$\cdots$	R.	...	$\because$	
Open $\quad .$.	1-3,500	R.	-••	...	
Forest ...	4,500	R.	$\cdots$	. ${ }^{\circ}$	
$\begin{array}{cc} \text { Open } & \ldots \\ \text { Do. } & \ldots \end{array}$	$\begin{aligned} & 1-1,500 \\ & 1-1,500 \end{aligned}$	R.   R.	$\cdots$	$\cdots$	
Do. ...	9-10,500	R.	D.	...	
$\begin{array}{ll} \text { Forest } & \ldots \\ \text { Ditto. } & \ldots \end{array}$	$\begin{gathered} 8,500 \\ 5-8,000 \end{gathered}$	R . R.	-.'	$\cdots$	
Open. ...	5-6,500	R.	...	-..	
Shady, wet. ...	3,500	R.	$\cdots$	...	$=$ Marsdenia No. 5 in Herb S. \& W.
Open ...	3-5,000	R.	$\cdots$	-••	
Ditto. ...	8,400	R.	...	...	
67					

List of Kumaon


Plants-(continued).

				+	Remarks.
Oncn	4,500	k.	$\cdots$	$\cdots$	
Jitto.	4,500	12.	$\cdots$	$\ldots$	
Ditto.	5-i,000	1.	$\cdots$	$\cdots$	
Woods.	5-7,500	12.	$\cdots$	...	
$\cdots$	-•	$\cdots$	$\cdots$	...	
Open.	$2-4,000$	12.	$\cdots$	...	
Forcat	3,500	1.	$\cdots$	$\ldots$	
On rocks	3-3,500	1.	...	...	
River beds	1-2,000	İ.	$\cdots$	...	= Orthanthera in Hurb. S. W.
Opelz Do.	4,500 $\mathbf{6}, 500$	k.	$\cdots$	$\cdots$	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\begin{aligned} & 5-8,000 \\ & 1-1,500 \end{aligned}$	R.	$\dddot{\square}$	$\ldots$	
Forest	6,5-7,000	L3.	$\cdots$	$\cdots$	
...	**		...	$\cdots$	



Plants-(continued).


List of Kumaon


## Plants-(continued).




Plants-(continued).


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name. \&  \&  \&  \&  \&  \& 荌 <br>
\hline \multicolumn{7}{|l|}{12. Myosotis.} <br>
\hline pallens, Wull. sylvatica, Hoffm. ... \& 1
2 \& H. \& $\mathrm{C}^{\prime \prime}-8^{\prime \prime}$ \& BI.
B1. \& August
June

co. \& Rálam, Tola
Yindari <br>

\hline | 13. Lithospermum. |
| :--- |
| tenuiflorum, $L$. ... | \& 2 \& H \& ... \& ... \& \& ... <br>

\hline \multicolumn{7}{|l|}{14. Macrotomia.} <br>
\hline Benthami, DC. ... \& 1 \& H . \& 213 ${ }^{\prime}$ \& B1. \& July \& Rálam, \&e. <br>

\hline $$
\text { hracteata, } D C \text { C. ... }
$$ \& 2 \& 1. \& $1^{\prime}-11^{\prime \prime}$ \& B1. \& Jualy .. \& \[

$$
\begin{aligned}
& \text { Pindari, Raj- } \\
& \text { hoti. }
\end{aligned}
$$
\] <br>

\hline 15. Onosma. \& \& \& \& \& \& <br>

\hline | cehioidca, Benth. ... |
| :--- |
| Emodi, Wall. | \& 2 \& \[

$$
\begin{aligned}
& \mathrm{H} . \\
& \mathbf{H} .
\end{aligned}
$$
\] \& $\mathbf{9}^{\prime}$ \& Bl. Pr. \& September, \& Tungnáth <br>

\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{| LXXVII - CONVOL- |
| :--- |
| VULACEA, |
| 1 Ipomæa. |}} <br>

\hline \& \& \& \& \& \& <br>
\hline scesililiora, Roth ... \& 1 \& H. Sc. \& $4^{\prime}-5^{\prime}$ \& Pr. \& Angest ... \& Almora ... <br>
\hline pes-tigridis, $L$. \& 2 \& H. Sc. \& \& Pk. \& Aurust ... \& Do. \&c. ... <br>
\hline Ep. ${ }_{\text {Edgew. }}$ \& 3 \& II. Sc. \& 12', \& \& August .. \& Naini Tál ... <br>

\hline $$
\text { bnya-nox, } L \text {. }
$$ \& ... \& H. Sc. \& 12' \& Pr. \& August ... \& \[

$$
\begin{aligned}
& \text { lámganga val- } \\
& \text { ley, \&sc. }
\end{aligned}
$$
\] <br>

\hline \multicolumn{7}{|l|}{} <br>
\hline arvensie, $L$... \& $\cdots$ \& H. Sc. \& 2'-3' \& Pk. \& Auguat ... \& Níti ... <br>

\hline $$
\mathrm{Nil}, L \text { : } \quad \cdots
$$ \& $\ldots$ \& H. Sc. \& $3^{\prime}-4^{\prime}$ \& Li. \& Angust ... \& Giangoli, \&c. ... <br>

\hline barlerioides, Ham., \& ... \& H. \& $4{ }^{\prime}$ \& Pk. \& Angust ... \& Almora ... <br>
\hline \multicolumn{7}{|l|}{3. Evolvulus} <br>
\hline hirsutus IIam. ... \& ** \& H. cr. \& $2^{\prime \prime}-3^{\prime \prime}$ \& Hl . \& All the year. \& Almora, \&c. ... <br>
\hline \multicolumn{7}{|l|}{4. Porana. $\mid$ 岡} <br>
\hline paniculata, Roxb. ... \& 1 \& H. Sc. \& $20^{\prime}$ \& W. \& March ... \& Outer hills <br>
\hline raccmosa, Roxb. ... \& 2 \& II. Sc. \& $15^{\prime}$ \& W. \& September, \& Almora <br>
\hline 5. Cuscuta. \& \& \& \& \& \& <br>
\hline macrantha, Don ... \& 1 \& H. Sc. \& $6^{\prime}$ \& W. Pk. \& October \& Outer hills ... <br>
\hline rcflexa, Roxh, ... \& 2 \& H. Sc. \& $6^{\prime \prime}$ \& W. \& October . \& Do. ${ }^{\text {D }}$ <br>
\hline capillaris, Edgew.... \& 3 \& II. Sc. \& $6^{\prime \prime}$ \& Pl. \& August . \& Rálam, Níti ... <br>
\hline
\end{tabular}

Plerts-(continued).


List of Kumaoro


Plants-(continued).



Ftants-(continued).

			áa   и. $\qquad$   $\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{*}}$	莒	Remarks.
Open ...	1-3,000	R.	$\cdots$	$\cdots$	
Banke	1-5,500	k.	$\cdots$	$\ldots$	
Fields	1-5,000	R.	$\cdots$	$\cdots$	
Open ...	13,000	$\cdots$	1).	...	
1)o. ...	10,500	$\ldots$	D.	...	
Do.	$5-7,000$	R.	...	$\cdots$	
Wools	6-7,000	R.	$\ldots$	$\cdots$	
Open	8,500	k.	$\cdots$	...	
1 \%.	10-12,000	R.	...	..	
Do.	15,000		$\cdots$	T.	
Do. ...	5,000	R.	$\cdots$	...	
Wet rocks Open Do.	$\begin{gathered} 8,000 \\ 1-5,000 \\ 3-0,500 \end{gathered}$	R. R. R.	… $\cdots$ $\cdots$	... $\cdots$ $\cdots$	
Sliady banks .   Do   Open   ...	$\begin{aligned} & 1-7,000 \\ & 3-5,000 \\ & 1-2,000 \end{aligned}$	R. R. R.	... $\cdots$ $\cdots$	... $\cdots$ $\cdots$	
$\begin{array}{ccc}\text { Wet } & & \ldots \\ \text { Do. } & & \cdots \\ & \ldots & \end{array}$	4,000 $\ldots$ $\cdots$	R.   $\cdots$   $\cdots$   ..	...   $\cdots$	... $\cdots$ $\cdots$	
Do. ...	1-5,000			...	



Plants-(continued).

		H  		$\stackrel{+}{ \pm}$	Remarke
...	...	R.	$\cdots$	...	
Wet	4-7,000	R.	...	...	
$\begin{array}{cc}\text { Do. } & \cdots \\ \text { Do. } & \cdots \\ \text { Shady } & \\ \text { damp }\end{array}$	4,000 4,000 $5-6,000$	R. R. R. R.	... $\cdots$ $\cdots$	... $\cdots$ $\cdots$	
Open	5,500	R.	$\cdots$	$\cdots$	
Do.	7,5-11,000	R.	$\cdots$	...	
Do. Do.	$\begin{gathered} 10-12,000 \\ 12,000 \end{gathered}$	R.		...	
Woods	$\begin{gathered} 7-10,000 \\ ! \end{gathered}$	IR,		$\cdots$	
Wet	5-6,500	IR.	$\cdots$	$\ldots$	
Open	8,500	R .	$\ldots$	...	
Do. Do.	13-15,500	R.		…	
Do.	12,000			$\ldots$	
Woods Walls	9-10,500	R. R. R.	$\ldots$	$\ldots$	
Open	5-7,500			$\ldots$	
Do.	$5-13,000$	R.		$\cdots$	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\begin{gathered} 19,500 \\ 10-13,000 \end{gathered}$		D.	$\cdots$	

List of Kumaton


Plunts (continued).

		H   $\boldsymbol{l}$ (	maya.	荌	Remarks.
Open	3-5,000	R .	$\ldots$	$\ldots$	
Du.	4,000	R.	$\cdots$	...	
Do. Do.	4,000 $4-5,000$	R.	$\cdots$	$\ldots$	
Wet	3-4,000	12.	$\ldots$	...	
Open	5-6,500			$\ldots$	
Do.	6. $-8,000$	12.	$\cdots$	$\ldots$	
Do.	B-12,000	12.		$\cdots$	
Do.	7-1 1000	I.	D.	$\ldots$	
Do...	19,000 $\ldots$	Li.	$\cdots$	$\cdots$	
$\begin{aligned} & \text { INo. } \\ & \text { lo. } \end{aligned}$	$\begin{gathered} 12,500 \\ 5-7,100 \end{gathered}$	$\ddot{\mathrm{R}}$.	D.	$\ldots$	
1\%.	12,000	п.	$\ldots$	$\cdots$	
Do.	$\begin{gathered} 8-9,000 \\ 11-15,000 \end{gathered}$		$\ldots$	'.'.	
Io.	14,700	R.	$\ldots$	$\ldots$	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\begin{gathered} 10,500 \\ 13-16,500 \end{gathered}$	R. $\cdots$	$\cdots$	$\cdots$	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\begin{gathered} 11,000 \\ 13-16,500 \end{gathered}$	R.	$\ldots$	$\cdots$	
Do.	16,500			T.	

List of Kumaon


Plants-(continued).

			京-	范	Remarks.
Open ...	3-4,000	R.	$\cdots$	$\ldots$	
Fields ...	1,000	1.		$\cdots$	
On trees ...	8-10,000	R.	$\ldots$	$\ldots$	
Fields ${ }^{\text {On 'lhymus }}$...	11,500	$\ldots$	D.	...	
On 'Thymus ...	12-13,000		D.	...	
Woods ...	1-3,000	R.	$\ldots$	$\cdots$	
Trees	4,000	R.	...	'...	
Trees \& banks,	2,5-4,000	R.		$\cdots$	
Shady banks ...	1,5-4,500	R.	$\ldots$	$\cdots$	
Trees \& rocks.	6-8,500	R.	$\cdots$	$\cdots$	
Dry rocks Wet rocks	5,000	$\xrightarrow[\mathrm{R}]{\mathrm{R}}$.	$\cdots$	$\cdots$	
Do.	6,5-8,500	R.	$\cdots$	$\cdots$	
$\underset{\substack{\text { Sharly banke ... } \\ \text { Do. }}}{\text { de }}$	$2-5,000$ $4-5,000$	R.	$\ldots$	$\cdots$	

List of Kumaton


P'lents-(continued).

		Hi lag	-	覅	Remarks.
Forest ...	1-3,000	$\cdots$	' ${ }^{\prime}$		
Do, ...	1...3,000	...	$\cdots$	$\cdots$	
Open    On rocks ...	1,500 7,000	$\begin{aligned} & \mathbf{R} . \\ & \mathbf{R} . \end{aligned}$	$\cdots$	$\ldots$	
Open and cultivated	1-5,500	R .	..	$\ldots$	
Forest ...	2,500	R.	-*	$\cdots$	$=$ Heaacentris in Herb. S. \& W W.
'••	2,000	R.	$\cdots$	...	= Hemiadelphis in Herb. S. \& W W.
Shady woods ...	1-5,000	R.	...	$\cdots$	
Forest ...	1,500	R .	$\cdots$	$\cdots$	
Do. ...	2.000	R .	$\cdots$	$\ldots$	
$\begin{array}{cc}\text { Do. } & \ldots \\ \text { Woods } & \ldots \\ \end{array}$	$\xrightarrow{3,000}$	R.	$\ldots$	$\ldots$	
Open $\quad$...	11,000	R.		$\cdots$	
Woods ...	6-7,000	R .		$\ldots$	
$\begin{array}{ll}\text { Open } \\ \text { Woods } & . . . \\ \end{array}$	$\mathbf{6 , 0 0 0}$ $\mathbf{9 , 0 0 0}$	R.	$\cdots$	$\cdots$	
	9,000				

List of Kumaon


I'lants-(continued).


List of Kumaon


Plants-(continued).

			má ${ }_{\text {c }}$	范	Remarke.
Woods	2-3,000	R.	$\cdots$		
Shady woods ...	1-3,000	R.	...	$\cdots$	
Open	$4 \mathrm{4}, 000$	K	$\ldots$	$\cdots$	
Wet open ...	15-16,000	...	..'	T.	
Damp woods ...	6-7,500	R.		$\cdots$	
Open ...	1-3,500	R.	..'		
Wet ..	2-4,000	R.	-•	'"	
Open ...	1-6,000	R.	.*	$\cdots$	
Do. ...	1-4,000	R.	...	...	
	1-3,000			**	
Do.    Do 0 $\ldots$	$\xrightarrow{\text { 4,000 }} \mathbf{4 , 0 0 0}$			$\cdots$	
Forest ...	1-3,500			...	
Do ...	1,000				


$\boldsymbol{H}$ (ants-(continned).

			[	苍	Remarks.
Forest	1,500	R.	$\cdots$	-	
Open	1-4,000	R.	...	$\cdots$	
Forest $\ldots$   Wuods $\ldots$	$\underset{4-3,500}{4-500}$	R   $\mathbf{R}$		$\cdots$	
Open ...	3-4,000	R.	$\cdots$	...	
Woods ..	2-3,000	12.	...	$\cdots$	
Do. $\quad$ -	$1-3,000$	R.	$\cdots$	$\cdots$	
Орен ...	4,000	R.	$\cdots$	$\cdots$	
Lo. Du.	$\begin{aligned} & 3,000 \\ & 4,000 \end{aligned}$	1. R.	$\ldots$	$\ldots$	
1). ...	1-3,000	R.	...		
Do.	5-7,000 $2-6,000$	R.	$\cdots$	$\ldots$	
10 o ...	5,500	R .	$\therefore$	$\ldots$	
Wools   Woods \& Open,	$\begin{gathered} 8,700 \\ 5-7,000 \end{gathered}$	R.	$\ldots$	$\ldots$	
$\begin{array}{ll} \text { Woods } & \ldots \\ \text { Operi } & \ldots . \\ \text { Wet places } & \ldots . \end{array}$	$\begin{gathered} 8-9,000 \\ 5,000 \\ 4,000 \end{gathered}$	R R R. h. L	... $\cdots$ $\cdots$	… $\cdots$ $\cdots$	



Plants-(continued).



Plants-(continued).

		Him lay	-		Remarks.
Onen Do. Do.	${ }_{\text {che }}^{13-15,000} 5$	R.   R.		T.	
Do. -	5-7,000	R.		...	
Near water .	4,500	R.		$\cdots$	
$\begin{gathered} \text { Open } \\ \text { Do. } \end{gathered}$	$\begin{gathered} 12,000 \\ 5-8,000 \end{gathered}$	$\stackrel{\mathrm{R}}{\mathrm{R} .}$	...	$\cdots$	
Woods   Do.	$\begin{gathered} 7,500 \\ 5-6,500 \end{gathered}$	$\begin{aligned} & \mathbf{R} . \\ & \mathbf{R} . \end{aligned}$	...	$\cdots$	
Open	4-8,000	R.	...	$\cdots$	
Open wode	10-11,000		$\ldots$	$\cdots$	
Open	7-11,000	…	D.	$\cdots$	
Do.	1-5,000	R.	...	$\cdots$	
Naturalized	4,000	R.	...	...	
Open	1-5,000	R.	$\cdots$	...	
Do.	8,5-12,000	R.	D.		
Do. Do.	7,000 1,000	R.		$\cdots$	
Do.	8,500	R.	...	$\cdots$	
Do.	¢,500 7,700	R.		$\ldots$	
Do.	11-15,000	...		T.	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\begin{gathered} 15,500 \\ 15-15,500 \end{gathered}$	$\ldots$		T.	
Do.	17,000	$\cdots$	. $\quad$.	T.	


Name.						喿
20. Dracocephalum.						
acrnthoides, Edgeu., speciosum, Benth.	12	II.   H.	$\begin{aligned} & \mathbf{6}^{\prime \prime} \\ & 9^{\prime \prime} \end{aligned}$	$\begin{aligned} & \mathbf{Y} . \\ & \mathbf{B} . \end{aligned}$	$\begin{aligned} & \text { Augnst } . . . \\ & \text { August } \end{aligned}$	Kyungar   Kalájawar
21. Scutellaria.						
discclur, Colebr.	1	1 H	$\mathrm{f}^{\prime \prime}$	Pk.	Anguet ...	Jágesar ...
linearis, Henth.	2	H.	$4^{\prime \prime}$	Rk. Y.	March ...	Alu ora
angulosa, Benth. ...	3	11.	$1^{\prime}-1 \frac{1}{2}{ }^{\prime}$	Yk. Y.	March	Almora, Naini 'Iál.
sp.-—	4	II.	2'	Yk	March	Do. ...
repens, Ham. ...	5	11.	$2^{\prime}-3{ }^{\prime}$	Pr.	March	Kota Dún
prostrata, Jacq. ...	6	H.	$6^{\prime \prime}$	Pr. Y.	Auguat	Milam ...
grossa, Wall ...	7	II.	$3^{\prime}$	Bl.	August ...	Gágar Pass ...
22. Brunella.   vulgaris, $L$.		H.	$6^{\prime \prime}-9^{\prime \prime}$	Pr.	August	Naini Tál, \&c.,
23 Marrubium.						
lanatum, Benth. ...		I.	$6^{\prime \prime}$	Br. P	August ...	Shelshel
24 Craniotome.						
versicolor, Reirh. ...		II.	$2^{\prime}$	$\mathrm{Pr}, \mathrm{W}$.	September,	Almora, \&c. ...
25. Anisomeles.   ovata, Br.		H.	$2^{\prime}-4^{\prime}$	B1.	Angust	Almora; \&c. ...
26. Colquhounia.						
$\begin{aligned} & \text { vestita, Wall. } \\ & \text { 27. } \text { Stachys. } \end{aligned}$	...	Sl.	$4^{\prime}-8^{\prime}$	Sc.	June	Naini 'Tál, Gori valley.
	1	H.		Li.		Almora
splendens, Wrill.	2	$\stackrel{H}{\mathrm{H}} \mathrm{H}$.	$2^{\prime}-3^{\prime}$	Li.	$\left.\right\|_{\text {Puly }} ^{\text {July }}$	Naini Tál
28. Leonurus.						
Cardiaca, L. ...		H.	$2^{\prime}-3^{\prime}$	Wh.	June	Naini Tál ...
29. Lamium.   amplexicaule, $L$.				Pr.	March	
amplexicaule, $L$. ...	1	H.	$9^{\prime \prime}$	Pr.		Almora, Naini '1al,
petiolatum, Royle ...	2	H.	$1^{\prime}$ - $1 \frac{1}{2}^{\prime}$	Wh.	May ${ }^{\circ}$	Naini Tál, Sá- ba.
rhomboidenm, Benth., sp ? - -	4	II.	9'1 6	Wh.	September   Jane	Kynngar, \&c.... Sagtia-deo
30 Roylea.		II.	$6{ }^{\prime \prime}$	...		
elegans, Wall.	...	Sh.	$6^{\prime}-8^{\prime}$	Br.	March	$\begin{aligned} & \text { Almora, Nuini } \\ & \text { Tál. } \end{aligned}$

Plants-(continued).

			苞	Remarks.
Open Do.	$\begin{aligned} & 15,500 \\ & 14,000 \end{aligned}$	$\ldots$ D.   h. $\ldots$		
$\begin{array}{cc}\text { Banks } \\ \text { Open } \\ \text { Do } & \ldots \\ \text { Do }\end{array}$	$4,5-6,500$ 5,400 $4-8,000$	R. ..   R. $\cdots$   R. $\cdots$    $\cdots$	..   ...  	
$\begin{gathered} \text { Do } \\ \text { Wet shady, } \\ \text { banks. } \end{gathered}$	5,000 2,000	R. $\cdots$   IR. $\cdots$    $\cdots$	$\cdots$	
$\begin{array}{ll} \text { Open } & \ldots \\ \text { Woods } & \ldots \end{array}$	11,500 $6 \cdots 8,000$	®.    R. D.   D.	$\cdots$	
OTen	6-10,000	R. ...	$\ldots$	
Do.	16,000	.	$\cdots$	
Bauk	$5-.7,000$	R. $\quad \cdots$		
Open ...	1-6,000	R. ...	...	
Do.	6-8,000	R. ...	$\ldots$	
Do. Woods	$\begin{aligned} & 6 \\ & 7-8,000 \end{aligned}$	R. R.   R. .	$\cdots$	
Do.	6,5-9,000	R. .	$\ldots$	
Open	5,000	R.	$\ldots$	
Do.	7-9,000	R. .	$\cdots$	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\begin{gathered} 13-15,000 \\ 11,500 \end{gathered}$	$\ldots \ldots$ D.   R. $\cdots$	T. $\cdots$	
Do. ...	5,000	R. ...		

List of Kumaon


Plants-(continued).


$P^{\prime}(a n t s-(c o n t i n u e d)$.



Plants-(continued).


Name.						需
lanigerum, $\boldsymbol{R}$. Br . var. indicum	15	H.	2;	$\dddot{P k}$.	July	A1-
flaccidum, Roxb. ...	16	H.	$3^{\prime}$	Wh.	Nay	lágebar, near Náini Tál
Posumbu, Ham.	17	H.	$2^{\prime}$	$\mathbf{R} .$	Jine	Ná ni Tál, \&sc.,
strictum, All. ...	16	H.		Pk.	A agust	Sarja valley ..
Hamiltonii, Spreng.,	19	H .	$3^{\prime}$	Wh.	July	Almora ...
barbatnm, $L$. $\ldots$	20	H.	2'	Pk.	1-tbruary,	Blábar
ачісиате, $L$. var. diffusum	$\ldots$	H. cr.	1;	Pk.	August	Milam
Dryandri, Spreng.	22	II. cr.	$\frac{1}{}{ }^{\prime \prime}$	$\mathrm{P}^{2} k$.	Nay	Naini 'lál, de.
illecebroilles, "nisn....	23	H. er.	\%'	$\mathrm{l}^{1} \mathrm{k}$.	March	Outer hills
quadrifidum, Ham. ...	24	$\stackrel{\mathrm{H}}{ }$	4 '	Wh.	June	Naini Tál
glabrun!, Willh.	25	H.	$2{ }^{\prime}$	1'k.	July	Io., liusi ri- ver.
amplibium, $L$.	20	H.	$4^{\prime}$	Pk.	June	$1{ }^{1} 0$.
pterocarpan, Wall....	27, 28	11.se.	$4^{\prime}-5^{\prime}$		August September.	Almora, Naini T'íl, Dhaul
polystachynm, Wall., var. glabrum	$\cdots$	II.	$3^{\prime}$ - $4^{\prime}$	W.	St	$\begin{gathered} \text { valley. } \\ \text { (ishnganga } \end{gathered}$
						valley
var. pubescens	33	H	$3^{\prime}-4^{\prime}$	${ }^{1} \mathrm{k}$.	Angust ...	Kílaw, Milam.
frondosum. Meisn.	$\because 4$	Sh.	$8^{\prime}$	Pk.	May ...	Láhur, Káthi
rumicifolium, Royle,	49	11.	12'	Gry.	Angust	Rálam
var oblonemun ...	35	II.		:	May	Jhúni
chincnse, $L$, ${ }^{\text {a }}$						
var. 'I'lunubergia-	36	H.	1'-2'	Pk.	May	Naini Tál
var. corymbosum ...	361	H.	$1^{\prime}-2^{\prime}$	Pk .	May	Do.
filica:ale, 14 all.   var. extenmatom ...	37	II. er	$4^{\prime \prime}$	Pk.	Angust	Rálam, Milam.
delicatulum, Mrisn....	38	H	$3^{\prime \prime}$	Hk .	August	Gothing, Rá lam.
sp.- ..	39	H.	$\frac{1}{2}{ }^{\prime \prime}$	12.	August	Bariikáng
sinuatum, Royle	40	H,				l’ass.
recambens, Royle ...	41	Hil Cr	$6^{\prime \prime \prime}-9^{\prime \prime}$	$\begin{aligned} & \text { Pk. } \\ & \text { K }, \end{aligned}$	Angust August	$\begin{aligned} & \text { Rálam, \&cc. } \\ & \text { Naini } \\ & \text { Tál, } \end{aligned}$
	43	II.	$6^{\prime \prime}$	1'k	August	Barjikúng P'iss.
perforatum, Meisn....   var. glaciale	$\ddot{44}$	II.	$\ddot{2 \prime}$		Algust	Milam
humile, Meisn. ...	$4 \overline{3}$	H.	3'	Wh.	August	Rálam valley...
$\begin{array}{cc}\text { cognatum, Weisn. } & \text {... } \\ \text { var. alpestre } & \text {... }\end{array}$	46	H.	$1{ }^{1 \prime \prime}$	W, $\mathrm{P}^{\prime} \mathrm{k}$.	August ...	Lomprás ...

Plants-(continued).



Plants-(continued).


List of Kumaon


Hants-(continued).


List of Kumaon


Plants-(continued).



Plants-(continued).

			Hin lay	da. $\qquad$究	苞	Remarks.
Open Do.	$\ldots$	$\begin{aligned} & 14,000 \\ & 15,000 \end{aligned}$	$\ldots$	$\dddot{\mathrm{D}}$.	T.	
Do. Do.	$\ldots$	12,000 $2-4,000$	$R$.   R.	$\cdots$	$\cdots$	
Forest	**	7,000	R .	$\ldots$	$\ldots$	
Do.	$\cdots$	8-9,000	R.	$\cdots$	$\cdots$	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\ldots$	1,000 3,000	R.	$\cdots$	$\cdots$	
Open	-.	8,500	L.	$\cdots$	$\cdots$	$=$ Leptopus cordifolius in Herb. S. and W.
Wet	$\ldots$	5,000	R.	$\ldots$	$\cdots$	
Open	...	3,000	R.	...	...	Ftuga No 1 is
Do.	...	4,500	R.	...	...	= Fluggea No. 1 in Herb. S. and W
Do	...	1-4,500	R.	...		= Emblica officinalis in Herb. S. and W.
Forest	...	1-4,000	R.	$\cdots$	...	= Bradleia ovata in Herb. S. and W.
Open	...	5,000	R.	$\cdots$	...	$=P h . j u n i p e r i n u s$, Wall. in Herb. S. and W.
Forest Lo.	.	$\begin{aligned} & 2,000 \\ & 4,000 \end{aligned}$	R.   R.		$\cdots$	$=$ Anisoncma in Jerb. S. and W.   =Glochidion bifarium? in Herb. S.
Open	...	4-5,000	R.	- ${ }^{\prime}$	...	$=$ Fluggea Nos. 2 and 3 in Herl. S. and W.
Forest	-	1,000	R.	$\cdots$	- ${ }^{\prime}$	
Do. -	-"	6-7,000	R.		$\cdots$	$=$ Goughiu in Herb. S. and W.



Plants-(continued).



Plants-(continued).



Plants-(continued).


Name.				Colour of flower.		
16. Chamabaina. cuspidata, Vedd. $^{\text {ren }}$   17. Memorialis.	$\because$	H.	$9^{\prime \prime}$	$\mathbf{P} \mathbf{k}$.	August ...	Mohargári, Tungnáth.
ciliaris, Wedd.   18. Pouzolzia.		H.	$1{ }^{\prime \prime}$	...	...	Baijnáth ...
ovalis, Wedd.   quinquenervis, $B 1$.	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	H.	$\ddot{4}$		August ...	Almora
19. Villebrunia. frutescens, $B i$.   20. Debregeasia.		Sh.	$10^{\prime}-15^{\prime}$	$\cdots$		Bágesar ...
velutina, W'edd. ...	1	Sh.	$5^{\prime}-15^{\prime}$	$\cdots$	August ...	Gori river, Sarju river.
hypoleuca, Wedd.   21 Maoutia.	2	Sh,	$15^{\prime \prime}$		March	Rámganga river.
Puya, Wedd.   22. Parietaria.	...	Sh.	$5^{\prime \prime}$	...	Auguat ...	Sarju vallcy ...
debilis, Forsh.		H.	$1{ }^{\prime \prime}$	..	September,	Below Milam \& Badarináth.
CIV.-JUGLANDA. CEA.   1. Juglans. $\text { regia, } L .$	.	'Tr.	$40^{\prime}-50^{\prime}$		March	Dwâli
2. Engelhardtia.						
Colebrookiana, Lindl., sp.- $\ldots$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{Tr} . \\ & \mathrm{Tr} . \end{aligned}$	$\left\lvert\, \begin{gathered}30^{\prime}-40^{\prime} \\ \cdots\end{gathered}\right.$	$\ldots$	March	$\underset{P}{\text { Kota, Bágesar. }}$
CV.-MYRICACEIE.   1. Myrica.						
sapida, Wall.	..	Tr.	$1^{20}-30^{\prime}$	...	April ...	Suring, Almoга.

Plants—(continued).



Plants-(continued).

			Himá laya.			Remarks.	
		嵒	官	+			
Forest	...		7-8,000			...	
Do.	...	7,000	R.	$\ldots$	.		
Do.	...	7-9,000	R.	$\cdots$	...		
Do.	-	7-11,500	R.	...	$\ldots$		
Do	.	7-8,000		...	$\ldots$		
Dq.	$\cdots$	6, 5-9,000		...	$\cdots$		
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\ldots$	$\begin{gathered} 4,5-7,500 \\ 3-5,000 \end{gathered}$		... .s*	$\cdots$		
Do.	$\cdots$	4-6,000		...	-*		
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	".-	$\begin{array}{r} 11-12,000 \\ 6-8,000 \end{array}$	R. R.	D.	T.		
Do.	$\cdots$	4-9,000	R.	$\cdots$	$\ldots$		
Do.	$\cdots$	8-10,000		- 4	..		
Do.	$\cdots$	7-11,500		D.	...		
Open   Forest	$\ldots$	$\begin{array}{r} 1-4,500 \\ 5-6,500 \end{array}$		$\ldots$	$\ldots$		

List of Kumaon


Plants-(continued).



Plants-(continued).



Plants-(continued).

			(1)	辰	Remarlss;
Open	2,500	R.	$\cdots$	$\ldots$	
Woods	3-4,000	R.	$\cdots$	...	
On trees	1-3,500	R.	$\cdots$	$\cdots$	
Oper	©,000	R.	$\cdots$	...	
Do.	7,000	1.	$\ldots$	'...	
On trees	7,500	R.	$\cdots$	$\cdots$	
Do.	3-3,500	R.	...	...	
Do.	3,500	R.	$\cdots$	$\cdots$	
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	$\begin{aligned} & 3,700 \\ & 5,500 \end{aligned}$	$\begin{aligned} & \text { R. } \\ & \text { R. } \end{aligned}$	$\cdots$	$\cdots$	
Do.	3,500	L.	$\cdots$	$\cdots$	
Do.	3,700.	R.	...	...	



Plants-(continued).


$\boldsymbol{P l a n t s}$-(continued).


Lisi of Kumaon


Plants--(continued).


List of Kumaon

Name.				Colour of flower.			咸
CXIII_-IRIDE.E.   1. Iris.		H.		Bl.	April		Almora
Kumaonensis, Wail.,	2	H.	'6"	${ }_{\text {BL }} \mathrm{L}$.	June		Pindari, Níti...
sulcata, Wall.	3	H.	$12^{\prime \prime}$	B1.	July		Pindar valley,
2. Pardanthus. chineosis, Wet.		EL.	$3^{\prime}-4^{\prime}$	Se.	June	...	Almora
$\begin{gathered} \text { CXIV.-AMARYL- } \\ \text { LIDEA. } \end{gathered}$							
1. Curculigo.							
orchioider, Guatn. gracilis, Wall.	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{H} . \\ & \mathrm{H} . \end{aligned}$	$\begin{gathered} 9^{\prime \prime} \\ 2^{\prime}-3^{\prime} \end{gathered}$	$\begin{aligned} & \mathbf{Y} . \\ & \mathbf{Y} . \end{aligned}$	July   Augast	..	$\begin{array}{ll}\text { Almora } \\ \text { Bágesar } & \\ \end{array}$
2. Hypozis.							
minor, Don ...	1	H.	$3^{\prime \prime}$	Y.	July	..	Almora, Káthi,
$\begin{gathered} \text { CXV.-DIOSC0- } \\ \text { RIDEIE. } \end{gathered}$							
1. Dioscorea.							
deltoidea, Wall.	1	F. se.	15'-20'		May	...	Naini Tál, Kap- kot.
bulbifer, $L$.	2	H. вс.	15'	...	July		Almora ...
glabra, Roxb.	3	H. عe.	10'--20'	...	July		Bláabar, Báge-
pentaphylla, $L$.	4	H. вe.	$10^{\prime}$	...	July		Almara
sagittata, Roxb. ...	5	Hi. sc.	$10^{\prime}$	...	July	...	Almora
quiuata, Wull. ...	6	H. sc.	$3^{\prime}$	...	August		Lohá-thal
dxmuna, Roxb. ...	7	H. sc.	$25^{\prime}$	...	July		Sarju river ...
cxVI_-SMI- LACE							
1 Smilax.							
elegans, I'all. ...	1	S. se.	$5^{\prime}-10^{\prime}$	Pr.	May		Súmkhet, Naini
		S					Tál.
sp. (Houk cat. No. 7),	2	S. se.	${ }^{10^{\prime}-15^{\prime}}$	I'r.	May		Káthi Pass ...
vaginata, Dene. $\quad \cdots$	3	S. sc.		$\cdots$	May		$\underset{\text { sar. }}{\substack{\text { Naini } \\ \text { ál, Bin }}}$
maculata, Roab, ...	4	S. sc.	$10^{\prime}$	...	May		Almora, \&c. ...
日p. - ...		S. sc.	25.	...	July		Bágesar ...
ovalifolia, Roxb. ...	6,7	S. ne.	25'	...	March		Kota Dún ...

Plants-(continued).



Plants-(continued).

		Hi   lay   宽	á   a.   离	+ ¢ ¢	Remarks.
Woods	7-9,000	R.	$\cdots$	$\cdots$	
Open	4-6,000	R.	$\ldots$	$\cdots$	
Do. Woods	$\begin{array}{r} 11-12,500 \\ 7,000 \end{array}$	$\begin{aligned} & \mathrm{R} . \\ & \mathrm{l} . \end{aligned}$	$\begin{aligned} & \ldots \\ & \ldots \end{aligned}$	$\cdots$	= Fritillaria ep. in Herb. S. \& W.
Open	11-12,000	R.	$\ldots$	$\cdots$	$=$ Lilium No. 2 in Herb. S. \& W.
Do.	3, $5-5,000$	R.	$\cdots$	...	$=$ Lilium No. 2 in Herb. S. \& W.
Fields	3-7,000	17.	$\cdots$	...	
Open	11-15,000	R.	D.	T.	
Open	11-12,000	R.	...	$\cdots$	
Do.	1-6,000	R.	$\cdots$	$\cdots$	
Do.	1-5,000	R.	$\cdots$	...	
Wet	11,000	R.	$\cdots$	$\ldots$	
Open	$8-12,000$ $7-10,000$	R.	...'	$\ldots$	

List of Kumaon


Plants-(continued).



Plants-(continued).


Name.						䔍
NACEAS.   1. Commelyna.	1,4	H.	$1{ }^{\prime}{ }^{\prime}-1 \frac{1}{2^{\prime}}$	BI		
bengalensis, $L$. obliqua, Lam. communis, Kth.		II.				
	3	H.	$1{ }^{\prime}$	Bl.	August	.. Do. ...
	5	H.	12,	${ }_{\text {Bl }}$.	Angust	... Rámári
	${ }_{6}$	H.	${ }^{17}$	${ }_{\text {Bl }}$	August	... Alnora
barbata, Kih.	1	H.	$3^{\prime \prime}-6^{\prime \prime}$	BI.	Angnat ... Naini Tál, Já-	
		H.	$9^{\prime \prime}$			
3. Aneilema.	$\ldots$	$\begin{aligned} & \mathrm{H} . \\ & \mathrm{H} . \end{aligned}$	$\underset{2^{\prime \prime}}{\mathbf{c}^{\prime}}$	$\underset{\mathbf{M}^{\prime} k \mathrm{k}}{\mathrm{Bl} .}$	August August	
nudiflora, $K$ th. scapi fora, 1 ight						
4. Dithyrocarpus. paniculatus, Roxb.	...	H.	$1^{\prime \prime}$	Pr.	August	... Near Almora ..
5. Streptolirion.	...	Hf вc.	...	Pk.		
volnbile, Edgew. ... CXX-JUNCEA.					Seitember, Dhauli river ...	
1. Juncus.						
triglumis, $L$. ...	1	II.	${ }^{\prime \prime}$	...	July	... Rajhoti ...
spbacclatus, Dene. ..	${ }_{3}^{2}$	${ }_{\text {If }}$		...	${ }^{\text {'July }}$	$\cdots{ }_{\text {Laptel }}$
¢p.-- ...	3			...	July	$\cdots \text { Barjikáng }$
	$\stackrel{4}{5}$			$\cdots$	${ }^{\text {July }}$ July	-. Milam, Rálam,
castaneus, $S m$   glaucns, Ehァh.	${ }_{6}^{5}$	$\begin{aligned} & \mathrm{H} . \\ & \mathrm{H} . \end{aligned}$	$2^{\frac{2}{\prime}}{ }^{\prime} 3^{\prime}$	$\cdots$	July	
biglumis, $\boldsymbol{L}$. ...	7	H,	$2^{\prime \prime}$	...	${ }_{\text {Auguat }}$	$\ldots \mathrm{Carajoáng}$
						1. Pass.

Plants-(continued).



Plants-(continued).

B 0 0 0 0 0 0 0 0 0 0 0 0		$\xrightarrow{\begin{array}{c} \text { Hi" } \\ \text { lay } \end{array}}$		+	Remarks.
$\begin{array}{cc} \text { Open, wet } & \ldots \\ \text { Do. } & \ldots . \end{array}$	$\begin{array}{r} 4-6,000 \\ 10,500 \\ -15,000 \end{array}$		$\cdots$	ד.	
Do	c-9,000	R.		- $*$	
Do. ...	11,500	R.	D.	$\cdots$	
$\begin{array}{cc}\text { Open } & \ldots \\ \text { Do. } & \ldots \\ \text { Do. } & \ldots \\ \end{array}$	10,000 10,000 14,500	R. R. I.	$\ldots$	$\cdots$	
Forest	7--8,000	R.	$\cdots$	."	
Open	6- 7,500	12.	$\cdots$	...	
Forest	G-7,500	R.	$\cdots$	$\ldots$	
Open ...	6-11,000	IR.	D.	$\ldots$	
$\begin{array}{ll}\text { Open } \\ \text { Woods } & . . . \\ \end{array}$	6-7,900			...	
Open   Woods	$\begin{gathered} 9-12,000 \\ 6-7,500 \end{gathered}$	$\begin{aligned} & \text { R. } \\ & \mathrm{R} . \end{aligned}$	$\cdots$	$\cdots$	
In shaje	3-5,000	R.	$\cdots$	$\cdots$	
On rocks Wools	$\begin{gathered} 7,200 \\ 3-4,500 \end{gathered}$	R.	$\cdots$	$\cdots$	
Cultivated ...	1-5,000	R.	...	...	

List of Kumaon


Plants-(continued).


List of Kumaon


Plants-(continued).

			ni-	莌	Hemarks.
Open, wet ...	3,500	R.	$\cdots$	$\ldots$	
Wet	1-4,000	R .	$\cdots$	$\cdots$	
Do.	1-4,000	R.	...	..	
Do.	1-4,000	R.	...	...	
Do.	1-4,000	R.	..	$\cdots$	
Do.	1-4,000	R.	$\cdots$	$\cdots$	
Woods	6, 6,000	$\underset{\mathbf{R}}{\mathbf{R}}$	$\cdots$	$\cdots$	
Open, near water.	7,900	$\dddot{\sim}$	$\ldots$	$\cdots$	
$\begin{array}{ll} \text { Open, wet } & \ldots \\ \text { Do. } & \ldots . \end{array}$		$\underset{\mathbf{R}}{\mathbf{R}}$		$\cdots$	
	75-10,500	$\mathbf{R}$.	$\ldots$	...	
Near water $\ldots$   Onen $\ldots$   Do. $\ldots$	1,500	R.	$\cdots$	$\cdots$	
	7,000	R.	$\cdots$	$\ldots$	
	10-12,500	R.	...	-	
Open $\quad$...	$7{ }_{7}^{?}$	$\ldots$	$\cdots$	$\cdots$	
	7,000 10,000	R.	$\cdots$	$\cdots$	
Do. ...	10,000 $14-15,000$			$\cdots$	
Do.	15-15,500	.	$\ldots$	T.	
Do., wet ...	10,500	R.	...	$\cdots$	
$\begin{array}{ll}\text { Do. } \\ \text { Do. } & \ldots . . \\ \end{array}$	6,500 8,000			$\cdots$	
Do. ...	8,000				

List of Kumaon


Plants－（continued）．

		$\begin{gathered} \boldsymbol{H} \\ l o \\ - \\ \text { 至 } \\ \text { in } \end{gathered}$	á－   u．   官	䓌	Remarks．
Open，wet Near water	$\begin{aligned} & 8,000 \\ & 8,000 \end{aligned}$	R． L.		$\cdots$	
Open $\quad .$.	11，000	R．	$\ldots$	$\ldots$	
Do，wet ．．．	10，000	R．	$\ldots$	$\ldots$	
Do．${ }_{\text {Do．}}$	$\xrightarrow{13,500}$	R．		$\cdots$	
Do．	14，5－15，500	R．	$\ldots$	T．	
Do．．．．	14，5－15，500	R．	$\cdots$	T．	
$\begin{array}{ll}\text { Do．} & \\ \text { Near water } & \text { ．．}\end{array}$	$\begin{aligned} & 15,000 \\ & 16,500 \end{aligned}$	$\cdots$	D． $\cdots$	T．	
Open，wet $\quad . \cdot$	15，500	$\cdots$	$\cdots$	＇T．	
$?$	$?$		3	$\cdots$	
Wet ．．．	4，000	R．	$\cdots$	$\cdots$	
Near water ．．．	4－5，000	R．	＇＊＊	$\cdots$	$=$ Lipocarpha in Lerb．S．\＆W．
$\begin{array}{cc} \text { Open } & \text {... } \\ \text { Do. } & \text {... } \end{array}$	5,500 7800	R．	．．．	$\cdots$	
By water $\quad$ ．．．	4，000		．．．	$\cdots$	
Wet $\quad \cdots$	6－7，500		．．．		
Do．．．．	5－7，500		．．．	－$*$	
Do．p．．．．	$\stackrel{12,500}{\mathbf{?}}$	$\stackrel{.0}{R}$.	D．   －	…	

List of Kumaon


Plants-(continued).


List of Kumaon


Plants-(continued).


Name.				$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & \text { 4 } \\ & \text { b } \\ & 0 \\ & 0 \end{aligned}$	Time of flowering.	苞
10. Digitaria.						
	$\stackrel{2}{3}$	$\cdots$	'. -	... $\cdots$ $\cdots$	.".'	Almora Alusora ?
11. Panicum.						
*flavidum, Retz.	1	..'				Somesar
*miliaceum, L. ...	2	...	$2^{\prime}-3^{\prime}$	...	..'	Almora $\quad$...
*Helopus, Trin. ...	3	...	$1{ }^{\prime \prime}$	...	...	Do. ...
*vestitum, Nees. . . ${ }^{\text {a }}$	4	...	$9^{\prime}$	...	$\cdots$	Do. ...
*psilopodium, Trin....	5	...	$2^{\prime}$	...	...	Jágesar ...
*frumentaceum, Roxb.	6	...	-.	...	...	Almora ...
12. Urochloa.						
semialata, Kıh. .-	${ }^{* *}$	*'	-"	$\cdots$	.'	Bingar $\quad$.'
13. Thysanolæna.						
Agrostis, Necs. 14. Isachne.	.'•	**	$6^{\prime}-8^{\prime}$	.'	-•	$\begin{aligned} & \text { Ramganga ri- } \\ & \text { ver, Kota ri- } \\ & \text { ver, } \end{aligned}$
albens, Trin. muricata, Nees.	2	$\ldots$	${ }_{1 \frac{1}{2}^{\prime}}{ }^{\prime}$	- 0	...	Girgaon ... Somesar, near Almora.
15. Oplismenus.						
Erus-Galli, K'th. ...	1, 2,		2'	...	**	Almora, valley. $\quad$ Gori
$\underset{S .,}{* u n d u l a t i f o l i u s, ~} R . \&$	3	$\cdots$	$1 '$		".	Jágesar ...
16. Pennisetum.   *triflorum, Nees.   sp.	**'	$\ldots$	$\begin{aligned} & 2 \prime \\ & 1 \frac{1}{2} \end{aligned}$	...'	"."	$\begin{array}{\|ll\|} \text { Almora } & . . \\ \text { Jelam, Níti } & \text {... } \end{array}$
17. Penicillaria.						-
*spicata, Lamk. ...	'**	$\cdots$	...	...	..'	Almora ...

Plants-(continzed).


List of Kumaon


OF THE NORTH-WESTËRN PBOVINCES.
Plants-(continued).



Plants-(continued).


List of. Kumaion


Plants-(continued).


List of Kumaon


Plants-(continued).

			-	苞	Remarks.
Open ...	6-8,000	E.	...	$\cdots$	
Rocks open ...	7-8,700	R.	...	$\cdots$	
$\begin{array}{cc} \text { Woods } & . . . \mid \\ \text { Do. } & . \mid \end{array}$	$\begin{gathered} 7,500 \\ 7-8,000 \end{gathered}$	R.	$\begin{aligned} & . . . \\ & . . . \end{aligned}$	$\cdots$	$=$ Schanodorus No. 1 in Herb. S. \&c
Open	15,000	...	...	T.	
Do. ...	15-16,000	...	D.	I.	
Do. ...	15,000	...		T.	$\Rightarrow$ Schanodorus No. 2 in Herb. S. \& W.
By water ...	8,000	R.	...	$\cdots$	
Open Do. D.	12,000 7,700	R.	$\ldots$	$\cdots$	
Do. $\quad .$.	11,000		D.	$\cdots$	
Do.	8,000	R.	...	...	
Open woods ...	1-2,500	R.	$\cdots$	'."	
Forcat ...	5-7,000	12.	...	...	$=$ Ludolfia No. 1 in Herb. S. \& W.
Do. ...	8-11,000	R.	$\cdots$	...	$=$ Ludolfa No. 2 in Herb. S. \& W.


Name.						皆
48. Thamnocalamus.						
Falconeri, Munro ... spathiflorus, Munro...		${ }^{\cdots}$	$20^{\prime}$	..	-•'	Madhári Pass, Dugli.
49. Bambusa.		$\cdots \cdots$	$30^{\prime}$	...	...	Ukhimath ...
Falconeri, Munro ...	2					
50. Lolium.						
*temulentum, $L$. ...		...	$2^{\prime}-3^{\prime}$		-.	Sirmoria ...
51. Triticum.						
*vulgare, Vill.	$\ldots$	$\cdots$	$2^{2^{\prime}}$		$\cdots$	Níti, \&cc. $\quad .$.
* var villosum longiaristatum	$\cdots$	$\ldots$	- ${ }_{1}^{2-22^{\prime}-2 \frac{1}{2}}$		$\cdots$	Milam, \&c. Milam, llain of
longiaristatum ...	...	$\cdots$	112 ${ }^{\prime}$ - ${ }^{\prime}$		...	Milam, llain of Tibet
caninum, $L$. ...	...	...	$2^{\prime}$	**		Almora ...
52. Agropyrum.						
memicostatum, Nees,	1,5	$\ldots$	$2^{\prime}-3^{\prime}$	...		Almora, Milam, Karnábi river.
sp.- ...	4	$\ldots$	1年',	...	. ${ }^{\text {a }}$	Almora? ...
sp.- $\quad$.	7	...	$1 \frac{1}{2}^{\prime}$	-	...	Gothing ...
53. Elymus.						
*sibiricus, L. ...	1		2'			Plains of Tibet,
sp — $\ldots$	2	$\ldots$	$2^{\prime}-2 \frac{1}{2}^{\prime}$	$\ldots$		Milam, Pioda-
						ri,'Topidhumga.
dasystachyus, Trin....	3	...	$3^{\prime}$	...	$\cdots$	Laptel ...
54. Hordeum.						
pratense, $L$. ...	3		$1^{\frac{1}{2}}{ }^{\prime}-2^{\prime}$			Shib Milam ...
*qulgare, L. ...	1, 2	...	212 ${ }^{\prime}$	...		$\left\lvert\, \begin{array}{cc} \text { Plains, } & \text { Níti, } \\ \text { Milam, } & \text { Ky- } \\ \text { unlung. } \end{array}\right.$
55. Mnesithea.						
lævie, Kthe. ...		...	$2^{\prime}$	...	...	?

Plants-(continued).


List of Kumaon


Plants-(continucd).

			á-   a. $\qquad$   官	䓌	Remarks.
Open	$1-4,500$		**	...	
Do.	1-4,500		...	-••	
Do.	4,500	12.	$\cdots$	...	
Do.	$1-3,500$	R.	$\cdots$	**	=Succharum No. 1 in IIerb. S. \& W
$?$   Cultivated	$\stackrel{?}{1-5,000}$	$\begin{aligned} & \mathrm{R} . \\ & \mathrm{l} . \\ & \hline \end{aligned}$	$\cdots$	$\cdots$	$=$ Erianthus No. 1 in Merb. S. \& W
Open	1-7,200	R.	$\cdots$	$\ldots$	
Do.	1-4,000	R.	$\ldots$	$\cdots$	
Do.	5-6,000	R.	...	$\cdots$	=Pollinia No. 1 in Herb. S. \& W.
Woods	7,500	R.	...	$\cdots$	
Open	2,5-5,500	R.	$\cdots$	$\cdots$	
Do. Do.	$\begin{gathered} 5,000 \\ 5-7,000 \end{gathered}$	$\Gamma$. $\mathrm{R}$	$\cdots$	...	
Woods	7,500	R.		- $\cdot$	

List of Kumaor

Name.				$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		宮
65. Pollinia.						
Lehmanni, Nees   66. Anthistiria	2	$\ldots$	$2^{\prime}-3^{\prime}$	**	..	$\begin{gathered} \text { Almora, near } \\ \text { Jalat. } \end{gathered}$
anathera, Necs	1	...	$2^{\prime}-3^{\prime}$	...	...	$\underset{\substack{\text { Jilat } \\ \text { Almora, below }}}{ }$
ciliata, L.f. ...	3	...	$3{ }^{\prime}$	...	-••	Above Jalat ...
67. Androscepia.						
gigantea, Brogn. ...	...	$\ldots$	15'	-•'	-•'	Kota, Almora,
68. Apluda.						
aristata, L. $\quad$..	1	$\ldots$	$2^{\prime}-3^{\prime}$	$\cdots$	...	Almora
var.-	2	...	$2^{\prime}-3^{\prime}$	$\ldots$	-•	Do.
69. Batrarotherum.						
Ianceolatum, $N_{\epsilon \text { tes }}$...	1	...	$1{ }^{\prime}$		...	Al rora
submuticum, N'ces ...		...	1 '	...	...	Do.
plumbeum		$\cdots$	$1{ }^{\prime \prime}$	...	...	Below Almora,
molle, Nees $\quad \cdots$		...	1	- 0	...	Below Almora,
70. Hologamium.						
nervosum, Nees ...	..	$\cdots$	$3^{\prime}-4^{\prime}$	"'	$\cdots$	Below Almora,
71. Gymnandropo- gon.						
annulatum ...	...	$\cdots$	$2^{\prime}-3^{\prime}$	..'	$\cdots$	Kálidhungi ...
triste $\quad .$.	...	...	$4^{\prime}$	..'	...	Abore Jalat ...
72. Anatherum.						
muricatum, Beauv. ...   73. Sorghum.	...	..	$6^{\prime}-7^{\prime}$	$\cdots$	..'	Bhábar ...
muticum, Nees ...	,		$4{ }^{\prime}$			Bágesar ...
halepense, Pers. ... vulgare, lers.	$\begin{aligned} & 2 \\ & \mathbf{2} \\ & \hline \end{aligned}$	$\ldots$	...	$\ldots$	$\ldots$	$\begin{array}{\|ll\|}\text { Bhálbar } \\ \text { Almora } & \ldots . \\ \text { Als }\end{array}$
74. Heteropogon.		...	...	..	...	Almora $\quad$.
contortus, $N e e s \quad .$. melanocarpon	2	...	$\begin{aligned} & 2^{\prime \prime} \\ & 4^{\prime} \end{aligned}$	$\ldots$	...	$\left\lvert\, \begin{array}{cc} \text { Almora } & \ldots . . \\ \text { Do. } \end{array}\right.$

Plants-(continued).



I find the following note by Mr. C. B. Clarke at the end of his MS. list unequal. I have turned over the buadles marked "Ind Or" or "Cosmopili have been worked by Gen. Munro, some are passing through his havrls, some not large residnary bundes marked "epp." and in these sometimes the Strachcy many other cases where the Strach. and Winterb. plant is found in a particular since the tickst was put on, and it may have been hastily aorted into the buadle very partially renamed.-Triticum secms not to have been touched since the list Even where the genera have been thoroughly worked and written tip, it would part of Bambusa, sp. 2., into Bambusa, part into Thamnocalamus, but it wculd were not cut by Strachey from the same plant.
Kew, 11 th Notember, 1879.
The names which are not included in Mr. Clarke's list are marked with an astementioned, he did not come across in the Kew Herbarium,
$\boldsymbol{P l a n t s - ( c o n t i n u e d ) .}$

of grasees of the $S$. and $W$. Herbarium. "The above reduction of the Grasses is tan," not any others (in general). The grasses are in various states ; some yet touched, or at all events not yet written up. 'To many of the gencra are and Winterbottom tickets remain. In this case they cannot be reduced, but in bundle (with a name outside) there is no sign that ihe plant has been examined merely as being "inter affines" From these various causce the grasses are only was made. Why I found all the Eragrostis and very little of the Poa I cannot guces take a long time to verify the species carefully; thus Gen. Munro has sorted nevertheless talce me some time to assure myself that the two pieces of No. 2
C. B. CLARKE.
risk. Amongst these are no doubt several, auch as from the various causes above
J. F. D.

List of Kumaon

Name.						
CXXX -FILICES.*   1. Gleichenia.					-	
linearis, C.B. Clarke, 2. Woodsia.	."	-•'	$2^{\prime}-3{ }^{\prime}$	"	.."	$\begin{aligned} & \text { Rámganga val- } \\ & \text { ley, \&c. } \end{aligned}$
elongata, Hook.	1	. $\cdot$	$6^{\prime \prime}-12^{\prime \prime}$	.	-*	Kálimundi, Bagdwár.
lanosa, Hh. \& Baher...	2	...	${ }^{2 \prime \prime}$	**	**	Pindari
ED.   3. Dicksonia.	3	...	$3^{\prime \prime}-4^{\prime \prime}$	...	...	Pindarand aboveNámik.
appendiculata, Wall.	".	...	$3^{\prime}$	-•'	**	Gori valley, Karim.
4. Hymenophyllum.						
exacrtum, Wall. ...	1	$\cdots$	$4^{\prime \prime}$	-		Madhári Pesa,
polyanthus, Swartz. ...	2	...	$\underline{9}^{\prime}-3^{\prime}$	$\cdots$	...	Dwáli, Námik,
5. Davallia.						
polypodioides, Don ...	1	$\cdots$	$2^{\prime}$	**	..	$\underset{\text { river. }}{R \quad \mathrm{~m} g a n g}$
	2 3	$\cdots$	$1^{\prime}$-9'9 ${ }^{\prime \prime}$	.'.'		
menibranulosa, Wall.   pulchra, Don	3	$\ldots$	$\mathrm{l}^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$	...	$\ldots$	
	4	$\cdots$	${ }^{1 / 2}$	'••	$\cdots$	Rimganga river, Вinsar.
immersa, Wall. ...	5	...	$6^{\prime \prime}-9^{\prime \prime}$	"•	**	Bingar ...
6. Cystopteris.						
fragilis, Bernh.   7. Adiantum.	"	...	$6^{\prime \prime}-9^{\prime \prime}$	$\cdots$	$\cdots$	Topidhanga, Sangchá.
Cupillus-Veneris, L. ...	1	$\cdots$	$1^{\prime \prime}$	*'	.."	Jagthána .
venustum, Dlon $^{\prime}$ $\ldots$   pedatum, $L$. $\ldots$	2 3	$\cdots$	$\frac{12}{12^{\prime}}$	$\cdots$	$\ldots$	Naini Tál, \&c., Dwáli,
				.	$\cdots$	jari'. Slag-
candatum, $L$.	4	$\cdots$	$1^{\prime}-3^{\prime}$	. ${ }^{\prime}$	-••	Báge:ar, Pharka.
var. rhizophorum...	c	...	$6^{\prime \prime}-12^{\prime \prime}$	*'	$\cdots$	Jaythána, Bin-
lunulatum, Burm. ...	5	..'	$1^{\prime}-1{ }^{\prime}{ }^{\prime}$	**	$\cdots$	$\left\lvert\, \begin{gathered} \text { Sarjuriver, } \\ \text { Bhim-Tál. } \end{gathered}\right.$

* These have been arranged as far as possible in accordance with Mr. C. B. Clarke's

Plants-(continued).

			cór	菏	Remarks.
Open ...	3-6,000	R.	.."	..'	
Forest	8,000	R.	..	$\cdots$	
$\begin{array}{cc}\text { Open } \\ \text { Do. } \\ & \text { c... } \\ \end{array}$	$\begin{gathered} 12,000 \\ 11-12,000 \end{gathered}$	$\begin{gathered} \mathrm{R} . \\ \mathrm{R} . \end{gathered}$	…	$\cdots$	
Shade	5-7,000	R.	...	...	
Wet rocks Trees and rocks,	$\begin{gathered} 8,000 \\ 8-9,000 \end{gathered}$	$\underset{\mathrm{R}}{\mathrm{R} .}$	$\cdots$	$\cdots$	
Banks ...	2,500	R.	$\cdots$	...	
Do.	$\begin{array}{r} 3,000 \\ 6,500 \\ \hline \end{array}$	R.	$\ldots$	$\ldots$	
Trees $\quad .$.	4,5-7,500	R.		...	
Rocks	6-7,000	R.	..	...	
Do.	14-15,000	$\cdots$	D.	т.	
Rocks near water.	s-5,000	R.	...	$\cdots$	
$\begin{array}{cc} \text { Forest } & . . . \\ \text { Do. } & \ldots . \end{array}$	$\begin{gathered} 6-8,000 \\ 9-10,000 \end{gathered}$	$\begin{gathered} \mathrm{R} . \\ \mathrm{R} . \end{gathered}$	$\cdots$	…	
Banks	3-6,500	R.		"•'	
Do.	4-8,000	R.	...	...	
Do. .m	3--4,500				


Name.						突
8. Cheilanthes. farinosa, Kaulf. ... sp.   sp. $\qquad$ $\begin{gathered} -10 \\ 0 * 4 \end{gathered}$	3	$\cdots$	$1^{\prime \prime}-1^{\frac{1}{2}}{ }^{\prime}$	"* $\ldots$ ..	**	Bágesar, Almora, \&c. Pharka Mohargári
9. Onychium.   japonicum, Kunze ... var. multisecta .o.   10. Cryptogramme.	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	'•'	$\frac{2}{}{ }^{\prime} 1^{\prime}$	...	$\cdots$	Naini Tál \&e., Do.
crispa, R.Br. 11 Pellæa.	1 \& 2	$\cdots$	$3^{\prime \prime}-4^{\prime \prime}$	$\cdots$	-•	Champwa, Tola, lálam.
calomclanos, Link. ...   12. Pteris.	$\cdots$	$\cdots$	6"	'0'	."	Below Almora.
pellucids, Presl. - 4 var. stenophylla $\square$ $\square$	$\cdots$	$\ldots$	1, ${ }^{\prime} 11 ;$	$\ldots$	$\ldots$	Bágesar ${ }^{\text {r }}$
cretica, L. $\quad .$.	2	...		...	,	NainiTál,Káthi,
longifolia, $L$. $\quad \cdots$	3	...	$3^{3}$	...	...	Sarju river ...
quadriaurita, Retz. ...	4,5,6	**	$1^{\prime}-3^{\prime}$	..'	...	Bügear, Jalat, Pharka, Barmdeo.
Rp.	...	...	$3^{\prime \prime}-4^{\prime}$	$\cdots$	$\cdots$	Káthi, \&\&c. ...
Wallichiana, Agardh.,	...	.*	$4^{\prime}-6^{\prime}$	...	...	Bagdwér ...
13. Woodwardia. radicans, Smith   14. Asplenium.	$\cdots$	$\cdots$	$6^{\prime}$	**	* ${ }^{\prime}$	Pyúra, \&c. .'.
Nidue, $L$.	1	...	112 ${ }^{\prime} 2^{\prime}$	$\cdots$	$\cdots$	Ramganga river.
ensiforme, Wall. ...	2	$\cdots$	$4^{\prime \prime}{ }^{\frac{1}{2}} 6^{\prime \prime}$	-0	$\ldots$	\|Káthi
alternane Wall. ${ }^{\text {a }}$	3	...	$4^{\prime \prime}-6^{\prime \prime}$	" ${ }^{4}$	- ${ }^{\text {a }}$	Bágegar, Almo- ra.
septentrionale, L. ...   viride, Huds.	4 5	$\ldots$	$3^{\prime \prime} 4^{\prime \prime} 4^{\prime \prime} 4^{\prime \prime}$	...	...	Milam, Níti   Pindari   ...
Trichomanes, $L_{\text {, }} \quad \ldots$		$\cdots$			...	Pindari Milam

Plants-(continued).


List of Kumaon

Name．						㞃
falcatum，$S w$ ．．．．		．．．	112＇－2＇	．．．	＊$=$	$\begin{gathered} \text { Dwáli, Naini } \\ \text { Tál. } \end{gathered}$
sp．－	7	．．．	$4^{\prime \prime}-6^{\prime \prime}$	．．．	$\cdots$	Jágeear ．．．
laciniatum， $\mathrm{D}_{\text {on }} \quad . \cdot$	8	．．．	$10^{\prime \prime}$	－••	．．．	Ják，upper To la．
varians， $\boldsymbol{H k}$ ． f Grev．	9   ..	$\ldots$	$2 ;$	．．．．	$\ldots$	Dwáli   Naini Tál
Filix－famina，Bernh．，	．．	$\ldots$	1＇－2＇	$\ldots$	$\ldots$	Do．$\quad$ ．．．
var．pectinata ．．．	$\ldots$	$\ldots$	${ }^{212^{\prime}}{ }^{\prime \prime}$	．．．	$\cdots$	Tágesar
sp．－Presl $\cdots$	．．．	．．．	$11^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}$	．．．	．．．	Jágesar ${ }^{\text {a }}$
esculentum，Presl． ap． \％－	．．．	$\cdots$	$3^{\prime}-4^{\prime}$ $3^{\prime}$－${ }^{\prime}$	$\cdots$	$\cdots$	
$\begin{array}{cc} \text { ap.- } \\ \text { japonicum, Thunb. } & \text { ".. } \end{array}$	．．．	$\ldots$	$3^{\prime}$－${ }^{\frac{1}{17}}{ }^{\prime \prime}$	．．．	．．．	Gori valley ．．．
sp．	$\ldots$	$\cdots$	$2^{17}$	$\ldots$	$\cdots$	Káthi ？．．．
15．Aspidium．						
auriculatum，$s w$ ． var．lenta	．．＂	$\cdots$		．．＂	．．＂	．．．
var．lenta	．＇．	．．．	13＇－2＇	．．．	．＊＊	Rámganga ri－ ver．
＂cæspitosa $\quad$.	．．．	．．．	${11^{\prime \prime}}^{\prime \prime}$	．．．	$\cdots$	Sarju river ．．．
＂marginata $\quad \cdots$	－	$\cdots$	13＇－2＇${ }^{\text {2 }}$	．．．	．．．	Dráli
sp． $\qquad$ ilicifolinm，Don	＇．1．	$\cdots$	$6^{\prime \prime} \mathbf{1}^{\prime \prime} 9^{\prime \prime}$	．．．	．．．	Kâthi
ilicifolium，Don aculcatum，Sw．	．．．	$\ldots$	$6^{\prime \prime}-9^{\prime \prime}$	$\ldots$	$\cdots$	Mádhári Pass，
var．rufo－barbata ．．．	．．．	$\cdots$	$\because$	．．．	．．．	Binsar ${ }^{-\cdots}$
8p．－$\quad$－	．．．	$\cdots$	$\mathrm{G}^{\prime \prime}-12^{\prime \prime}$	．．．	$\ldots$	Dwáli，Rálam，
Prescottianum，Wall．，	．．．	．．．	112＇	．．．	－	
acaleatum， $\mathrm{S}_{\text {w }}$ ．	．．．	．．．		．．．	－	Káthi $\cdot \cdots$
var．setosa	＊＊＊	$\cdots$	3＇－4＇	－${ }^{\circ}$	－＊	Káthi＊＊
angulare，Willd．？．．．	．．．	．．．	$3{ }^{\prime}$	$\cdots$	$\cdots$	Naini Tál，Ka－ rim．
var．？－$\quad$.	．．．	$\cdots$	$2^{\prime \prime}$	．．＇	．．＇	Kaphini ．．．
өp．－．．．	－${ }^{\prime}$	－	$2^{\prime}$	．	$\cdots$	$?$
16．Nephrodium．						
parasiticum，C．B． Clarke？	－＂	$\cdots$	．．．	＊＊＊	＇••	$?$
var．multijuga ．．．	－ 0	$\cdots$	$2^{\prime}-23^{\prime}$	．．＇	．．．	Karim ．．．
$\begin{array}{ll}\text { sp．} \\ \text { 日p．} & \\ \end{array}$	－．．	．．．	$\because$	$\cdots$	－	？
日 P －$\quad \cdots$	$\cdots$	．$\cdot$	$2^{\prime}$	＇＊＇	．．．	

Plants-(continued).


List of Kumaon


Plants-(continued).


List of Kumaon


## Plants-(continued).



List of Kumaon

Name.						烒
23. Osmanda.   regalis, $L$.   Claytoniana, $L$.	$\underline{\underline{s}}$	$\ldots$	$2^{2^{\prime}-3^{\prime}}$	$\ldots$	$\ldots$	$\begin{gathered} \text { Above }{ }^{?} \text { Númik, } \\ \text { Rugila. } \end{gathered}$
24. Lygodium. japonicum, $S w$. 25. Botrychium.	182	.'*	$4^{\prime}-5^{\prime}$	-	.'	Bágcear, Bláa- bar.
$\begin{aligned} & \text { virgininnum } \\ & \text { Lunaria, } S w . \end{aligned}$	1	$\cdots$	${ }^{2 \prime \prime} 3^{\prime \prime}{ }^{\prime \prime}$	$\ldots$	$\ldots$	Almora Tola
CXXXI--MARSILI-   ACEA.   1. Azolla.						
piunata, Ham.	. ${ }^{\prime}$	'.'	**	...	. $\cdot$	Satráli vallcy, Almora.
CXXXIP-LYCOPO-   DIACERE.   1. Psilotum.						
triquetrum, Sw. ...	$\cdots$	...	$6^{\prime \prime}$	..'	$\cdots$	Gagás river ...
2. Lycopodium.						
Hamiltonii, Spreng....	1	-**	$9^{\prime \prime}-12^{\prime \prime}$	-	...	$\begin{array}{cc} \text { Sarju \& } & \text { Ram- } \\ \text { tranga } & \text { val- } \\ \text { leys. } \end{array}$
setaceum, Ham. ...	21	...	$9^{\prime \prime}-12^{\prime \prime}$	-•*	$\cdots$	Sarju valley, Jagthána.
var. subulifolia ...	2	...	$9^{\prime \prime}-19^{\prime \prime}$	...	...	Do.
clavatum, $L$.   3. Selaginella.	3	...	$3^{\prime}-6^{\text {r }}$	...	...	$\begin{gathered} \text { Mádhári Pass, } \\ \text { Dwâli. } \end{gathered}$
caulescens, Spring....	4	...	$6^{\prime \prime}$			Near Bágesar...
sp.- ...	$\sigma$	...	$2^{\prime \prime}$	...	...	Deopryág ...
8p.-m ...	6	...	$2^{\prime \prime \prime}$	...	...	Rinde river ...
radicata, Spring. ...	7	...	$6^{\prime \prime}$	...	...	Bágesar
interacrima, Spring....	8	...	$6^{\prime \prime}$	...	...	Naini Tál, Tapuban.
semicordata, W'all. ...	9	...	$9^{\prime \prime}$	...	...	Naini Tál

Plants-(continucd).


List of Kumaon


Plants-(continued).


List of Kumaon

Name.						寢
9. Tortula.						
	13 $\ldots 14$ 15	…   $\cdots$   $\cdots .$.   ...	... $\cdots$ $\cdots$	… $\cdots$ $\cdots$ $\cdots$	… $\cdots$ $\cdots$ $\cdots$	
10. Dicranum.   вр.—	16	...	...	...	...	Cbampwa ..
	17 18	$\cdots$	...	$\ldots$	... $\cdots$ ...	Dwâli ${ }^{\text {? }}$
12. Campylopus. $\qquad$	19	$\ldots$	...	...	...	Devi-dhíra ...
13. Fissidens.						
bryoides, $H_{e d w}$. ...	20	...	$\ldots$	$\cdots$	...	Devi-dlúŕa
tuxifoline, Hedw. ...	$\ldots$	$\ldots$	$\cdots$	$\cdots$	$\ldots$	Do. ${ }^{\text {a }}$
nobilis, Grif. ...	22	$\ldots$	$\cdots$	$\ldots$		Pharka $\quad \cdots$
14. Atrichum. crispu:n, Wils.	23	$\cdots$		...	...	Bagdwár
15. Pogonatum.						
cirrhatum, Sur. ...	24	$\cdots$		...		Sarju valley ...
		$\ldots$	...	$\ldots$	...	
var. crassum - $\quad$ \|	25	...	...	...	,	Bagdwär, Sarju
micrsstomum, Hook.,	26	$\cdots$	..		..	Dwáli
16. Eucalypta.						
sp.—	27	$\cdots$	$\ldots$	$\ldots$	*.'	-
17. Orthodon.						
serratus, Schw.	28	...	..	."	...	? ...

Plants-(continued).


List of Kumana


Plants-(continued).

			áá	+	Remarks
Banka \& trees,	9,000	If.		...	
. ${ }^{\text {a }}$	2,000	R.	..	...	$=$ Trichostomumpolphyllum, Hk, and T.
$\cdots$	2,000	R.	$\ldots$	$\cdots$	$=$ Grimmia, Mk. and T.
$\cdots$	7,500	R.	...	...	= Trichostomum, Hook. and T.
©pen ground,	11,000	E.	$\cdots$	*	
$\cdots$	9,000	B.	...	$\cdots$	
0.	8,500	R.	$\cdots$	-••	
Banks ${ }^{\text {* }}$...	7,500	R.	...	$\ldots$	
$\cdots$	7,500	R.	...	...	
-..	9,000	12		$\cdots$	
Open ground ... Do. ...	14,000 15,000	$\cdots$	$\cdots$	T.	
Do. $\quad \cdots$	14,500	$\ddot{\mathrm{R}}$.	$\ldots$	...	
	.*•	...	...	...	
Wet banks and rocks.	9,000	le.	...	$\cdots$	
Banks \& trees. ...	$\begin{aligned} & 8,000 \\ & 7,000 \end{aligned}$	R.	$\cdots$	...	

List of Kumaon

Name.						空
25. Mnium.						
rhyncophorum, Harv.,	46					Káthi
日p.-	47	...	...	$\ldots$	.	$\cdots$
sp-- $\quad$.	48	...	$\cdots$	$\cdots$	...	Kíthi, Jalat,
26. Funaria.						
hygrometrica, Hedw.	$\because$	$\ldots$	...	...	...	
var-	49	...	.	-	...	Kapkot ...
var.	60	$\cdots$	".-	..	${ }^{*}$	Jágesar ...
27. Orthotrichum.						
8p.--	51	$\cdots$	...		...	Dwáli ...
28. Bartramea.						
patens, Schw.   var. $\qquad$	\%2	$\ldots$	$\cdots$	$\cdots$	-	Champwa
sp. - ..	53	...	$\ldots$	$\cdots$	$\ldots$	$\begin{array}{ll}\text { Do. } & \ldots . . \\ \end{array}$
falcata, Hook. --	54	...	...	...	...	Kálimundi ...
var.-	65	- $\cdot$	...	...	...	Gágur Pasa ...
29. Leucodon.						
sp.—— ...	56	$\cdots$	$\cdots$	- ${ }^{\circ}$	$\cdots$	$\underset{\substack{\text { Daláli, }}}{ } \quad \text { near }$
30. Leptodon.						
sp.- ...	57	"'*	-*		'"	Jagcsar ...
31. Pterogonium.						
cœespitosum, Wils. ...	58	$\ldots$	$\cdots$	-"	...	Bagdwár ...
32. Neckera.						
8p.--	59	$\ldots$	...	..'	$\cdots$	Sarju valley ...
squarrosa, Heok. ...	60	$\ldots$	...	-	...	Jalat ...
crispatula, Flowk. -..	61	$\cdots$	...	...	...	Albove Jalat ...
pcnnata, Hedw. ...	62	...	-	$\cdots$	...	? ...
dendroides, Hook. var..	...	$\ldots$	$\ldots$	$\cdots$	$\ldots$	
	64	$\ldots$	...	...	...	Káthi ...
	64	$\ldots$	...	...	...	Do. $\quad$ ¢ $\quad .$.
blanda? Harv. ...	66	$\cdots$	-..	$\cdots$	$\ldots$	Bágesar yalley̆
Grifithiana, Schw, ...	67	$\cdots$	$\cdots$	...	...	Bageear ralley, Dwáli
Julacea, Harv. ...	68	...	...	....	...	Jágesar …

Plants-(continued).

					Remarks.
? ${ }^{\text {. }}$..	7,000 $?$ 7,000	R. R. R.	$\begin{aligned} & \cdots \\ & \cdots \\ & \cdots \end{aligned}$	…	
Bauks ${ }^{\text {. }}$.. ${ }^{\text {a }}$	30 3.500 6,000	.		... $\cdots$ $\cdots$	
Trees ...	2,000	R.	..	$\cdots$	
...	...		$\ldots$	$\cdots$	
Banks \& trecs,	9,000	R.	...	...	
$\cdots$	9,000 8,000	R.	$\cdots$	$\cdots$	
Banks ${ }^{\text {wet }}$ -	8,000 7,000	R.	$\cdots$	$\cdots$	
Banks \& trees,	5-8,500	R.	$\cdots$	$\cdots$	= Scleruduntium secundum, Harv.
...	6,000	R.	...	$\cdots$	
$\cdots$	9,000	12.	$\cdots$	$\cdots$	
Banks ...	3,500 5,000	R R.	$\cdots$	$\cdots$	
$\ldots$	7,500	R.	$\cdots$	$\ldots$	
...	?	R.	...	...	
...	6,800	$\cdots$	...	$\ldots$	
$\ldots$	7,000	R.		$\ldots$	
...	?	$\cdots$.	...	$\ldots$	
...	3,500	R.	$\cdots$	$\ldots$	
$\cdots$	8,500 $\mathbf{6 , 0 0 0}$	R.	$\cdots$	...	= N. aurea, Griff.
...	6,000		...		

List of Kumaon

Name．						窵
33．Cylindrothe cilum．						
sp．－．．．	69	$\cdots$	．．．		$\cdots$	Bágesar valley，
34．Anmodon？						
日p．－．．．	70	$\cdots$	$\cdots$	$\cdots$	$\ldots$	Káthi
日p．－${ }^{\text {a }}$	71	．．．	．．．	．．．	．．．	．．
35．Pilotrichum						
sp．－．．．	72	$\cdots$	$\cdots$	$\cdots$	．．．	？．．
36．Isothecium．						
sp．－．	73	$\cdots$		＇．＂		？．．
37．Pylaisxa．						
$\underset{\text { var.- }}{\substack{\text { polynnthos, } \\ \text { Bry. }}} \quad \ldots$	74	$\ldots$	$\cdots$		$\ldots$	Jágesar
38．Hypnum．						
${ }^{\text {sp．－}}$	75	$\ldots$	．．＇	．＂＇	．．．	Sarja valley ．．．
$\stackrel{\text { sp．－}}{\text { confertum，Dicks．}}$ ．$\quad$.	76	$\ldots$	$\ldots$	$\ldots$	$\ldots$	Do．．．．．．．
$\underset{\substack{\text { confertum，Dicks．} \\ \text { var．} \\ \text { ．．．} \\ \hline \\ \hline \\ \hline}}{ }$	77	．．．	$\ldots$	．．．0	．．．	${ }^{\text {P }}$ ．．．．．．
plumosum？Hook，．．．	78	$\cdots$	$\cdots$	$\ldots$	．．．＇	Káthi $\quad . .$.
$\underset{\text { var．－＿}}{\text { vp }}$ ．	79 80	$\cdots$	＊	$\ldots$	$\ldots$	Midhári Pass，
${ }_{\text {sp．}}^{\mathrm{sp}}$－	81	$\cdots$	$\cdots$	…	$\ldots$	Do．${ }_{\text {D }}$ ．．．
ma leirosum，Hedw．．．．	82	$\cdots$	$\cdots$	．．．		Do．
$\mathrm{sp}^{\text {P }}$－$\quad .$.	83	．．．	．．．	．．．	．．．	$\underset{\& \in \text { Káthi．}}{\text { Salley }}$
${ }_{\text {sp }}^{\text {sp．}}$－${ }^{\text {a }}$	84	$\cdots$	$\ldots$	$\cdots$	$\ldots$	Súmkhet ．．．
fluviatile，$S w$ ．	8	$\ldots$	．．．．	$\ldots$	．．．	Sába ${ }^{\text {－．．}}$ ．．．
Wallichii，Hook．．．．	86	．．．	$\ldots$	$\ldots$		Pharka ．．．
sp．－$\quad . \cdot$	87	$\ldots$	$\cdots$	$\ldots$	．．．	Sarju valley ．．．
${ }_{\text {ep－－}} \quad \cdots$	88	$\cdots$	$\ldots$	$\cdots$	$\cdots$	
	89	$\cdots$	$\ldots$	$\ldots$	$\ldots$	Sarju valley ．．．
var？－．．．	90	$\ldots$	．．．	$\ldots$		Námik \＆Jalat，
proliferum，$L$ ．$\quad .$.	91	．．．	$\ldots$	．．．	．．．	Káthi，Naini
recognitum，Hedw．．．．	92	．．．	．．．	＂＇	．．．	Káthi

Plants-(continued).

\begin{tabular}{|c|c|c|c|c|c|}
\hline  \&  \& \begin{tabular}{c} 
Hia \\
la \\
\hline
\end{tabular} \& ä-

a \& 䓌 \& Remarks. <br>
\hline ** \& 3,500 \& R. \& $\cdots$ \& $\cdots$ \& $=$ Neckera myura, Hook. <br>

\hline Banks \& trees, \& $$
\begin{gathered}
7,000 \\
?
\end{gathered}
$$ \& R.

$\mathbf{R}$. \& $\cdots$ \& $\cdots$ \& = Neckera minor? HIedur. <br>
\hline ? \& $?$ \& 18. \& ... \& $\cdots$ \& <br>
\hline $?$ \& $?$ \& R. \& ... \& $\cdots$ \& <br>
\hline $\ldots$ \& 8,000 \& $\xrightarrow{18 .}$ \& $\cdots$ \& $\cdots$ \& $=$ Leskea polyanthos, Hook. and T. <br>
\hline Bauks ... \& 3,500 \& R . \& $\cdots$ \& $\cdots$ \& = Leskea sp ? <br>
\hline \& 3,500 \& R. \& ... \& ... \& = Leskea acuminata? IIedvr. <br>
\hline Banks $\dddot{\&}$ trees, \& $\cdots$ \& R. \& $\ldots$ \& $\ldots$ \& <br>
\hline ... \& 7,000 \& R. \& $\cdots$ \& ... \& <br>
\hline ... \& 8,000
7 \& R. \& $\cdots$ \& $\cdots$ \& <br>
\hline .. \& 7,000
7,000 \& $\stackrel{\mathrm{l}}{\mathrm{R}} \mathrm{R}$. \& $\cdots$ \& $\ldots$ \& <br>
\hline $\ldots$ \& 7,000 \& R . \& $\cdots$ \& $\ldots$ \& 1. <br>
\hline ... \& 3,5-7,000 \& R. \& ... \& ... \& <br>
\hline In water ... \& 5,500 \& R . \& $\cdots$ \& .. \& <br>
\hline Wet banks ... \& 9,000 \& $\dddot{\mathrm{R}}$. \& ... \& ... \& <br>
\hline Do. \& 6,500 \& R . \& ... \& ... \& <br>
\hline Banks ... \& 3,500 \& R. \& ... \& $\ldots$ \& <br>
\hline Baдks \& trees,
$\ldots .$. \& 8,500
3,500 \& R. \& $\ldots$ \& $\cdots$ \& <br>
\hline ... \& \& $\ldots$ \& ... \& ... \& <br>
\hline ... \& 7-9,000 \& $\mathrm{R}_{\mathrm{R}} \mathrm{R}$ \& ... \& $\ldots$ \& = H. Strongylum, Taylor. <br>
\hline ... \& 6,500 \& R. \& $\cdots$ \& $\cdots$ \& <br>
\hline -" \& 6,500 \& R. \& ** \& ... \& <br>
\hline
\end{tabular}

List of Kumaon

Name．			$\begin{aligned} & \text { 苟 } \\ & \text { B } \\ & \text { H } \\ & \text { 总 } \\ & 0 \\ & 0 \end{aligned}$			守
$\underset{\text { var.? }}{\text { commutum, Hedu. }}$	93	$\ldots$	．．．	．．．＇	．．．	Ráj－hoti
Palustre，$L$ ．$\quad$.	$\cdots$	$\ldots$	$\cdots$	$\cdots$	．．＇	Bagdwár
var，subsphærocar－ pum．	94	．．．	．．．	．．．	．．．	．．．
暗．－．．．	95	$\cdots$	．．．	．．．	－ 0	Sarju valley
sp．－－	96	．．．	．．．	．．．	．．．	$\stackrel{?}{\text { b }}$
filicinum，$L$ ．$\quad . \cdot$	97	．．．	．．．	＂••	．．．	Gágar Pass
39．Leptohyme－ nium．						
microphyllum，Schw．， tenue，schw．	98 99	$\ldots$	$\cdots$	．．．	．＇．	Káthi
40．Dicranodon－ tium．						
longirostrum，Bry．．．	100	．．．	．．．	－•	．．．	？
41．Hookeria．						
sp－．．．	101	．．	＊＊	＂＇	$\cdots$	Dwáli
42．Hypoptery－ gium．						
$\text { sr.—— } \quad \cdots$	102	$\cdots$	＇．＇	－•	$\cdots$	Pharka
HEPATICE，   1．Riccia．						
sp．—— $\quad$.	1	．．．	＊＊	．．．	．．．	Sámklhet
sp．－	9	．．．	．．．	＊＊	．．．	Do．
sp．—— $\quad \cdots$	3	．．．	$\cdots$	＊＊	$\cdots$	Do．
2．Marchantia．						
sp．－－	a	．．．			．．．	
sp．－$\quad .$.	3	．．．		$\ldots$	$\ldots$	$\stackrel{?}{\text { near Jalat }}$
sp．－$\quad$ ．．．	3	．．．	i．．	$\ldots$	．．．	Near Jalat Do．
$\begin{array}{ll}\text { sp．} \\ \mathrm{sp} . & \cdots \\ \end{array}$	4	$\ldots$	$\cdots$	$\ldots$	$\ldots$	Do．${ }_{\text {Sarju river }}$
sp．	5	．．．	．．．＇	．．．	．．．	Sarju river
sp．－．．．	7	．．．	$\ldots$	$\ldots$	$\ldots$	Sarju river
sp．－．．．	8	．．．	．．．	－．．	．．．	Másun
：p．－	9	$\ldots$	＂＇	$\cdots$	$\cdots$	Sarju river

Plants-(continued).


Name.						寄
3. Jungermannia.						
sp. - ...	1	$\ldots$	...	...	**	Champwa ...
sp. - ...	2	...	...	$\ldots$	...	Nímik $\quad$.
sp.-	3	$\ldots$	...	...	...	Dwáli ...
sp -	4	...	...	...	- ${ }^{\text {a }}$	Do. ..
sp. - $\quad$.	5	..	...	...	...	Do. $\quad \cdots$
sp.—— $\quad .$.	6	.."	...	...	**	Do ${ }^{-}$
CHARACEIE.   1. Chara.						
rerticillata ...	$\cdots$	..		...	$\cdots$	Sariya Tál, \&\&.,
2. Nitella.						
8p.- ...	$\cdots$	$\cdots$	...	. ${ }^{\prime}$	.'.	Naini Tál ...
LICHENES.						
1. Collema.						
saturuinum, Ach, ...	1	..'	...	-*	...	Mádhári Pass,
nigrescens, Ach. ...	2	...	...	...	-."	Chína ...
tremelloides, Ach. ...	3	$\ldots$	...	...	-0.	Do. ...
2. Umbilicaria.						
depressa, Schrad. $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ $\cdots$ Pindari   3. Lecidea.						
glacialis ? Iries. gcograplice, Ach. armeniaca, Ach sabuletorum, Fries. ...		...	...	...		Shelong ...
	2	...	...	...	$\ldots$	Malchak Pass,
	3	...	...	...	$\cdots$	Shelong ...
	4	....	$\ldots$	$\ldots$	...	Do. ${ }^{\text {..] }}$...
4. Biatora,						
himalayana, Bab. ...	...	...	-•'	.'.	...	Gori river ...
5. Cladonia.						
pyxidata, Frics. ...	. 1	.'.	...	...		Pindari
vermicularis, $A$ ch. ...		...	...	...	...',	
var. taurica $\quad .$.	- 2	...	...	...	...	Bomprä́s
perfoliata $\quad .$.	- 3	$\cdots$	...	...	$\cdots$	\| ...

Plants-(continued).

		Hiay	¢ ${ }_{\text {má }}$	+	Remarks.
Open . ...	10,000		.	$\cdots$	
Banks in forest,	8,000	R.	-..	...	
Do. ...	8,500	R.	$\cdots$	..0	
Do. ...	8,500	R.	...	...	
Do. ...	8500	R .	...	-..	
Do. ...	8,500	$\boldsymbol{R}$.	...	$\cdots$	
In water $\quad \cdots$	5-6,000	R.	...	$\cdots$	
"'	6,500	P.	$\cdots$	-'*	
On trees	8,200	R.	..."	$\ldots$	
...	8,700	R .	$\cdots$	...	
..'	8,700	R.	...	...	
Earth	12,000	R.	-*	$\cdots$	
Racks ...	13,000	...	D.	$\cdots$	
"*	16,000		D.	$\ldots$	
...	13,000	...	D.	$\ldots$	
-...	13,000		D.	$\cdots$	
- ${ }^{\prime}$	4,700	R.	$\cdots$	- 0	
"'	12,000			$\cdots$	
...	$\xrightarrow{\boxed{76,000}}$	...	D.	....	
*	. $\cdot$	$\cdots$			

List of Kumaon

Name.						寑
6. Stereocaulon.						
tomentosum, Fries. .. corallinum, Schr.	1   2	$\ldots$	...	$\ldots$	$\cdots$	
ramulosim, Ach. ..		$\ldots$	$\ldots$		...	
var. strictunl.   7. Urceolaria.	3	$\ldots$	...	...	...	
calcarea ...	...	"'	$\cdots$	$\cdots$	...	Shelong
8. Parmelia						
melanaspis, Wakl.	1	$\cdots$	$\cdots$	$\cdots$	$\cdots$	Shelong
	2	$\ldots$	...	$\cdots$	...	Gori river
elegans, $A c h$.	3	$\ldots$	$\ldots$	$\cdots$	...	Shelong
oreina, Ach.	4	...	...	.	$\ldots$	Do.
vitellina? Ach.	5	$\cdots$	...	...	-0.	Do.
calcarea ? Fires.	${ }^{6}$	$\ldots$	...	...	...	Do.
	7	...	$\cdots$	$\ldots$	$\ldots$	Do. ${ }_{\text {Do. }}^{\text {Do. }}$
	8 9	...	...	...	$\cdots$	Do. ${ }_{\text {Do. }}$
	9 10	$\cdots$	$\cdots$	$\ldots$	$\ldots$	Do.
stellaris, Ach. .-.	11	.	...	...	...	Do.
speciosa, Ach.	12	..'	.	$\ldots$	...	Gori river, Chí-
$1 æ \mathrm{vigata}$, Ach.	13		."	$\ldots$		Chína n . ${ }^{\text {nin }}$
perlata, Ach. $\quad \cdots$	15	$\ldots$	$\cdots$	...	..'	Karim Pase ...
var. paccatiloba...	14	...	$\ldots$	$\ldots$	...	Chína ..
	176	$\ldots$	$\ldots$	…	....	Do. Do. Dor
tiliacea, scortea, Ach	19	$\cdots$	$\cdots$	$\cdots$	...	Madhári Pabs,
caperata, Ach. -*	19	$\cdots$	$\ldots$	$\cdots$	...	Clína ..
leucomela, Ach.	${ }_{21}^{20}$	$\cdots$	...	$\ldots$	....	lo.
9. Sticta.						
pulmonacca, Ach. $\quad .$.	"i		$\cdots$	$\cdots$	$\cdots$	
$\begin{array}{ll}\text { var. hypomela } & \cdots \\ \\ \end{array}$	1 2	$\cdots$	$\ldots$	$\ldots$	$\cdots$	Chína
	3   3	$\cdots$	$\cdots$	"'	....	Dúgli
10. Pettidea.						$\begin{aligned} & \text { thi Passes, } \\ & \text { China. } \end{aligned}$
horizontalis, Ach. ...		'.		."		Above Dwáli..
canina, Ach.	- 2	...	...	...	...	Chinar Dwálit

Plants-(continucd).

				䒼	Remarlis ${ }^{\circ}$
Earth   Rocks	$\begin{gathered} 4,700 \\ 12,000 \\ \cdots-11,500 \end{gathered}$	$R$. $R$ $R$ $\sim$ $\sim$	... $\cdots$ $\cdots$ $\cdots$ $\cdots$	$\ldots$   $\cdots$   $\cdots$   $\cdots$   ..	
"'	13,000	...	D.	$\cdots$	
. ${ }^{\text {c }}$	13,000	$\cdots$	D.	$\ldots$	
...	4,700	$\dddot{\mathrm{R}}$.	$\ldots$	$\ldots$	
...	13,000		$\stackrel{\square}{\mathrm{D}}$.	$\ldots$	
...	13,000	...	D.	...	
...	13,000	.	D.	$\ldots$	
...	13,000	...	D.	...	
...	13,000	$\ldots$	D.	...	
...	13,000	$\cdots$	D.	$\ldots$	
...	13,000	- ${ }^{\text {\% }}$	D.	...	
...	13,000 13,000	**	D.	$\cdots$	
Rocks and trees,	4, 7-8,700	亿.		$\cdots$	
Ontrces ...	8,700 7,500	R.	$\cdots$	$\cdots$	
On trees $\quad .$.	8,700	R.	...)	$\cdots$	
...	8,700	R.	$\cdots$	...	
$\ldots$	8,700 8,200	$\stackrel{R}{\mathrm{R}} \mathrm{I}$.	$\ldots$	$\cdots$	
...	8,700	R.	$\cdots$	$\ldots$	
.'.	8,700	R.	$\ldots$	$\ldots$	
' ${ }^{\prime}$	8,700	R.	$\cdots$	$\cdots$	
...	8,700	$\cdots$	$\cdots$	$\cdots$	
...	10,500	R.	$\ldots$	$\ldots$	
...	7,5-9,000	R.	$\cdots$	...	
$\cdots$	$0,000$	$\underline{R}$	$\cdots$	$\cdots$	
...	8-9,000	R.	$\cdots$		

List of Kumaon


Note.-The whole of this chapter has been edited and prepared by Mr. F. nished by General R. Strachey. My work has been confined to seeing that the proofs,-E, T. A,

Plants－（concluded）．

		ILınai－ laya．		苍	Remarks．
		$\begin{aligned} & \text { 空 } \\ & \text { H. } \end{aligned}$	賲		
＊＊	8，000	R．	．．．	$\cdots$	
Stones ${ }^{\text {＊＊}}$ ．．．	$\begin{aligned} & 7,200 \\ & 16,000 \end{aligned}$	R． $\cdots$ $\cdots$	D．	$\cdots$	
Do．．．．	11，500	R．	$\cdots$	$\cdots$	
Do．．．．	11，5－16，000		D．	．．．	
Trees ．．．	7，000	R．	．．．		
．．．	8,700 8,700			．．．	
．．．	8,700 8,700			$\ldots$	
On oberonia ．．．	2，000		．．．．	$\ldots$	

Duthie，Superintendent of the Botanical Gardens，Saháranpur，from the list fur－ corrections made in the first proofs by Mr．Duthic were carried out in the second

## CHAPTERIX.

## Economic Botany.

## CONTENTS.

Arrangement of the sulbject. Food of the people. Analysis of the foodgrains. Watsou's formula. Cultivated food-grains. Cereals. Pulses. Amarauths. Polygonaceæ. Cultivated vegetables. Gourds. Vegetables. Condiments and spices. Greens. Fruits, cultivated and wild. Uncultivated products used as food. Drugs. Narcotics and spirits. Oil-seeds. Dyes and taus. Gums and Gam-resins. Fibres. Woods.

The economic botany of the Himalayan districts of these provin-

Arrangement of the subject. ces, actual and potential, opens out such a wide field for investigation that it would be impossible to do more than review the information that we possess. The materials are to be found scattered over numerous memoirs, articles, reports, and notes, and are as practically inaccessible to the general public as if they had never been collected. The form of this chapter will, therefore, be more that of a suggestive classified list than of a treatise which would, in the first place, be more than could be usefully prepared by oue person ; and, in the second place, will come more fitly into the general review of the economic products that is about to be undertaken by the Department of Agriculture in these provinces. ${ }^{1}$ For the more orderly arrangement of our subject, we shall divide the useful products of the vegetable kinglom into the following classes:--
I.-Vegetable substances used as food by men and animals.
a. Cultirated food-grains.
b. Cultivatcd vegetables.
c. Spices and condiments.
d. Greens.
c. Fruits, cultivated and wild.
f. Tncultivated products used as food.
II.-Vegetable substances used in pharmacy.
a. Drugs.
$\mid$ b. Narcotics and spirits.
${ }^{1}$ Progress has been made in this direction by the publication of my "Notes on the Economic Products of the North-Westem Provinces." Part I . on 'Gums and gum-resins ;' Part Il., on 'Economic Mineralogy ;' Part III., issued by the Department of Agriculture, contains, 'Tans and Dres ;' Part IV., ' Cultivated food-grains'; Part V.. 'Gourds: vegetables : condiments and uncultivated products used as food.' The remainder are uncler preparation and will comprise ' Drags,' 'Fibres,' 'Woods, and ' Narcotics.'
III.-Vegetable substances used in manufactures.
a. Oil-sceds.
b. Tans and dyes.
c. Gums and gum-resins.
d. Fibres.
e. Woods.
IV.-Special sudjects.
a. Forest histary.
b. Tea cultivation.
c. Rhea experiments.
d. Sericulture.
e. Miscellaneous.
I.-Vegetable substances used as food by men and animals.

The population of the Himálayan districts is essentially Hindu,
Food of the pcople. and consequently the vegetable kingdom affords most of the substances used as food by the people. Few of the hill-men, even amongst those who have had much communication with the plains, have any prejudice in regard to eating animal food. The majority partake of the flesh of kids, short-tailed sheep, and young male buffaloes at festivals and marriages, and whenever sacrifices are offcred to the consort of Siva. With but few exceptions all eat the flesh of deer, pheasants, and partridges, but not of jungle fowl ; whilst in Garh wál, all, inclửing Brahmans, eat the flesh of the wild pig. The servile classes (Doms, \&c.) eat meat of all kinds whenever they can get it, even of animals killed by wild beasts or which have died from disease, and in their habits differ little from the Chamárs of the plains. Uncultivated products are used as food chiefly by the inhabitants of the jungly tract lying along the foot of the hills and along the banks of the Kali, and, in times of scarcity, by the people of the upper Pattis. At all times, however, the young leaves of nottles, of several species of ferns, sorrel, and the like, are used as a spinach by all classes. An examination of the list of cultivated products use das food will show that the greater portionbelong to the great natural orders Graminece or grasses, Leguminosce or pulses, and Cucurbitacece or gourds. The two former afford life-supporting substances abounding in albuminous matters and those capable of repairing tissucs accompanied with starch, gum, and sugar in such proportion as to support respiration and promote animal heat. They also provide the inorganic substances necessary to kerp the circulation in a healthy state and to renew the solid frame-work of our bodies. Of these two orders the Graminea or grasses is the more important, containing as it does wheat, barlcy, ricc, millets,
maize, and sugarcane, which enter so largely into the food-resourcez not only of this country but of every country in the universe. To the Leguminosce belong peas, beans, lentils, and gram. The gourds and cultivated regetables are eaten more as a relish or to eke out a scanty supply of food-grain than as a sole food resource, and then only at certain seasons when their abundance and cheapness render them a favourite. The same may be said of fruits, cultivated and wild, and of the wild plants collected for food.

There are three forms of nitrogenous substances common to both Analysis of the food- animal and vegetable organizations distingrains.
guished by the names albumen, fibrine, and cascine; and it has been found that, when introduced into a living organism, each of these is capable of being converted into the other. ${ }^{1}$ The principal ingredients of the blood of animals is found to be fibrine and albumen, and these substances contain, besides the carbon, hydrogen, and oxygen found in farinaceous products, such as the cereals, nitrogen, sulphur; and phosphorus, which abound in the pulses. These elements are also found in all parts of the animal organism except water and fat. It follows, therefore, that nutritious food must possess both albuminous and nitrogenous ingredients. The former are composed of carbon, hydrogen, and oxygen; the hydrogen and oxygen being in proportion to form water, thus leaving the carbon wholly unoxidised; or if we suppose the oxygen to be divided between the carbon and hydrogen, a surplus of carbon and hydrogen that is unoxidised remains. We are now speaking of what takes place after the food has been taken into the body and there submitted to assimilation. From the moment an animal is born until it dies oxygen is taken into its body through the skin and lungs, and given out again by the same chanucls in the form of compounds of carbon and hydrogen, or, in other words, as the vapour of water and carbonic acid. The latter is derived from the food eater: for, when an animal is unable to tike food, so long as it lives, it continues to inspire axygen and give out compounds of carbon and hydrogen, which it obtains from the waste of the tissuesof its own body. In fact death ensues from the action of the inspired oxygen, on account of its powerful affinity for carbon and hydrogen. When the animal has no longer superfluous carbon and hydrogen capable of combining

[^108]with oxygen, itscizes on the earbon and hydrogen of the animal's own body; and, in the first instance, on the fat, which is almost all carbon and hydrogen, in order to satisfy the oxygen absorbed in the circulation, which afterwards goes off as carbonic acid in water. From the above it will be seen that food containing a surplus of carbon and hydrogen is necessary to an animal in order to support respiration without destroying its structure. But, besides defending the animal tissues and other parts from the action of oxygen, food naintains animal heat; for, whenever oxygen combines with a combustible, heat is developed; and that this does not depend on outward influences is shown by the fact that the heat of the body is the same in the tropics and in cold countries.

There are thas two great uses to which food is adapted by its composition-the nitrogenous to renew the blood and the non-nitrogenous to support respiration and maintain animal hent. But besides these there are other ingredients in food, the salts, such as iron, phosphate of lime, chloride of sodium with other salts of sodium, potash and magnesia, which occur also in the blood and bones, mails and hair. The following analyses of the principal cultivated food-grains are intended to show separately the quantity of these three principal ingredients present in each class of grain, and in doing so its comparative value as a food resource. A study of the tables will corroborate in most cases the empirical verdict on the value of each grain formed by the natives of these provinces, and give a scientific basis to their estimates, which would otherwise appear to be based on arbitrary data arising from their habits of life. The first series refer to the cereals, the second to the pulses, and the third to other vcgetable products. We shall first, however, give Liebig's analysis of the three forms of nitrogenous substances found in animal and vegetable organisms for comparative purposes, and then Professor Mayer's ultimate analysis of the various food-grains.

> Analysis of

Sulphur   Carbon   Nitrogen   Mydrogen   Oxygen					Albumen.	Caseine.	Fibrine.
	$\cdots$	**	$\cdots$	$\cdots$	1•30	$0 \cdot 9$	$1 \cdot 0$
				...	53.50	13.6	53.2
	...	...	...	...	1:50	$15 \cdot 8$	$17 \cdot 2$
	...	...	...	...	$7 \cdot 16$	7-1	$6 \cdot 9$
	...	...	...	...	22:34	$22 \cdot 6$	21.7
					$100 \cdot 00$	10000	$100 \cdot 00$

Results of analysis $A$.
These are arranged in percentages so as to show the composition of the different substances existing in each vegetable product examined with their separate uses as life-sustaining compounds.

Names of products.			Nitro- genous ingredicnts.	Non-nitrogenous ingredients.	Inorganic in-gredients.
Cereals.					
Triticum vulgare, wheat, gehún, B.	***	-••	14.45	83'15	$2 \cdot 40$
Ditto, H. ...	**	...	19.15	79.77	0.70
Hordeum hexastichon, barley, jao, I..	$\cdots$	...	$14 \cdot 72$	$84 \cdot 80$	$2 \cdot 8$.
Oryza sativa, rice, dhán, M. ...	..0	...	9.08	89.08	$0 \cdot 17$
Ditto, H. ... ...	-0	...	$7 \cdot 40$	$91 \cdot 60$	$0 \cdot 36$
Zea Mays, maize, makai, II. ...	**	...	1466	84:52	1.92
Rye, B . ... ...	...	$\cdots$	10.70	87.00	$2 \cdot 30$
Do., H. ...	-	*'	11.92	85.65	$1 \cdot 33$
Penicillaria spicata, millet, bajra, M.	...	...	13.92	83.27	0.73
Eleusine Corocana, mandua, M.	...	.-*	$18 \cdot 12$	80.25	1.03
Avena sativa, orats, jai, B. ...	...	...	$13 \cdot 93$	82.07	4.00
Ditto, H. ...	-0	.**	15.24	86.05	$3 \cdot 26$
Sarghum zulgare, joár, M. ...	...	-••	15.53	83.67	$1 \cdot 26$
Pulses.					
Ervum Lens, lentils, masúr, H.	-**	-.	$30 \cdot 46$	63.06	$2 \cdot 60$
Pisum sativum, peas, mattar, B.	- 0	$\cdots$	$26 \cdot 52$	$70 \cdot 38$	$3 \cdot 10$
Ditto, H.	...	...	28.02	67.31	3-18
Phaseolus vulyaris, bean, sem, IH.	-0]	**	28.64	66.70	$4 \cdot 38$
Other vegetable pmoducts.					
Solanum tuberosum, potato, álu, B.	-	- 0	9•50	86.50	4.00
Ditto, E.	-0	...	9796	86.36	3.61
Brassica Rapa, turnip, shalgam, B.	18	...	10.70	81.70	$7 \cdot 60$
Ditto, H. ...	*04	-0	$12 \cdot 62$	$81 \cdot 33$	7-02
Deta vulgaris, beet, chaukandar, B.	**	...	$10 \cdot 70$	83.00	$5 \cdot 30$
Ditto, \#, ...	,09	m	15.50	$73 \cdot 18$	643
Daucus Carota, carrot, gajar, H.	.'0	...	10.66	$84 \cdot 59$	$5 \cdot 77$
Brassica Napus, colza, H. ...	.."	-."	$9 \cdot 24$	90.32	$4 \cdot 01$

In the above talle M. denotes an analysis by Professor Mayer ; B. by M. Boussingault in his ' Economie Rurale; 'and H, by Mr. Horsford in L, E. D., Phil. Mag., November, 1846 , 1. 365.

Results of analysis $B$ ．
Here the arrangement is in percentages so as to show the ultimate composition of each product examined，without reference to the different compounds existing in them or their uses as lifc－ sustaining compounds：－

Names of products，			克		8 808 080	灾	守
Cereals．							
Triticum vulgare，wheat，B．	．．．	．．．	$16 \cdot 10$	$5 \cdot 10$	43 \％ 0	2.30	2：40
Ditto，H．	．．0	．．．	15.69	6.76	4323	$3 \cdot 00$	$0 \cdot 70$
Hordeum hexastichun，laarley，H．	．．	．．．	45.50	689	44.68	234	$2 \cdot 84$
Oryza sutiva，rice，M．．．．	．．．	．．．	44.87	$5 \cdot 85$	46.10	$1 \cdot 43$	$0 \cdot 47$
Ditto，H．．．．	．．．	．．．	$44 \cdot 61$	$6 \cdot 53$	$46 \cdot 62$	1．16	$0 \cdot 36$
Zea Mays，maize，H．．．．	．．．	．．．	45.04	660	44.62	$2 \cdot 14$	0.86
Rye，B．．．．		．．．	$46 \cdot 20$	560	41.20	1.70	$2 \cdot 30$
Do．，II ．．．	．．．	．．．	$44 \cdot 37$	665	4455	187	$1 \cdot 33$
Penicillaria spicata，baj ina，M．	．．．	．．．	44.48	6.43	44.09	$2 \cdot 19$	073
Eleusine Corocana，mandua，M．		．．．	48.64	$6 \cdot 10$	43.77	2.86	$1-03$
Avena sativa，outs，B．．．．	．．＇	．．．	50.70	6．40	36.70	$2 \cdot 20$	$4 \cdot 00$
Ditto，H．	$\ldots$	$\ldots$	46：50	664	45\％9	239	326
Sorghum vulgare，joâr，M．	．．．	．．．	45.69	6.24	44.82	245	$1 \cdot 26$
Polses．							
Eruum Lens，lentils，II．．．	．．．	＊＊	45．35	6.75	$38 \cdot 50$	4.77	$2 \cdot 60$
Pisum sativum，peas，B．	．．	．．．	46．50	6.20	40.00	$4 \cdot 20$	3－20
Ditto，H．．	．．．	－$*$	$45 \cdot 12$	6.73	38.92	4.42	3•18
Phaseolus vulgaris，bcans，H．	＊＊	．．．	45.07	6.63	3903	447	$4 \cdot 38$
Other vegetable products．							
Solanum tuberosum，potato，B．	．．．	．．．	44.00	$5 \cdot 80$	44．70	1．50	4－00
Ditto，H．．．．	．．．	．．．	$43 \cdot 86$	6．00	44.79	$1 \cdot 56$	3.61
Brassica Rapa，turnip，B．	－．	－ 0	$42 \cdot 90$	$5 \cdot 50$	$42 \cdot 30$	$1 \cdot 70$	$7 \cdot 60$
Ditto，H．．．．	．．．	．．．	43－19	5.68	$42 \cdot 9 \mathrm{c}$	1.98	7.02
Beta vulgaris，beet，B．．．．	．．．	$\cdots$	$42 \cdot 80$	5.80	$43 \cdot 40$	$1 \cdot 70$	6.30
Ditto，H．．．．	＊＊	．．．	40.99	5.72	$39 \cdot 37$	$2 \cdot 43$	$6 \cdot 43$
Daucus Carota，carrot，H．	－61	．．．	43.34	622	$43 \cdot 90$	167	5.77
Brassica Napus，colza，H．	．．0	．．．	45.32	6．01	46.68	$1 \cdot 45$	4.01

The results of the proceding tables are supported by a further examination of the pulses grown in these provinces. The following table gives the average result of an analysis of several samples of each product taken from ' Panjab Products,' I., 243 :-

Names of products.	Nitrogenous. ingredients.	Carbonaceous or starchy ingredients.	Fatty or oily matter.	
	In 100 parts: varies in specimens from different parts of India.			
Cicpr arietinum, gram, channa	18.05 $21 \cdot 23$	$60 \cdot 11 \quad 63 \cdot 62$	$4 \cdot 11$	$4 \cdot 95$
Ervum Lens, lentils, masúr	$24 \cdot 5 \quad 26 \cdot 18$	$59 \cdot 34 \quad 59 \cdot 96$	$1 \cdot 00$	$1 \cdot 92$
Lathyrus suticus, kisári (Calcutta specimen).	31-50	54-26	$0 \cdot 95$	..
Pisum sativum, pras, mattar ... ...	$\begin{array}{lll}21.80 & 25.20\end{array}$	$58.38 \quad 62 \cdot 19$	$1 \cdot 10$	$1 \cdot 12$
Phiseolus aconitifolius, moth (Calcutta specimen).	23.80	60.78	$0 \cdot 64$	
Phaseolus Mungn, múng ... ...	23.54 24.70	$59.38 \quad 60 \cdot 36$	$1 \cdot 1$	$1 \cdot 48$
P. var. radiatus, urd (Bombay specimen).	$23 \cdot 48$...	$62 \cdot 1 \overline{0}$	$1 \cdot 46$	...
Vigna Catjang, loliya (Bombay specimen).	24.00	59.02	$1 \cdot 41$	..
Dolichos biffnrus, gnhat	$\begin{array}{lll}23 \cdot 03 & 23 \cdot 47\end{array}$	$61.0261 \cdot 55$	0.76	0.87
\% Lıb/ab, shimi	$22 \cdot 4.524 \cdot 55$	$60 \cdot 5260 \cdot 81$	$0 \cdot 81$	
Cajnnus indicus, arhar -..	$19.83 \quad 20.38$	61.9064	$1 \cdot 32$	1.85
Glycine Saju, bhat $\quad$..	$37.74 \quad 41.54$	29:54 31.08	12.31	$18 \cdot 90$
Cyamopsis psoralivides, gawár (Púna specimen).	$29 \cdot 80$...	$53 \cdot 89$	$1 \cdot 40$	,

From an inspection of the preceding tables it will be seen that the pulses abound in nitrogenous elements so efficient in repairing the tissues, and next to them the cereals. A comparison with the analysis of the constituents of the blood will show that the composition of both is almost identical, and will also explain why experience has taught the natives of these provinces to mix together in their food, in certain proportions, cereals and pulses, the one supplying what the other is wanting in. Thus the flour of gram and peas is mixed with that of the cereals and especially with millet flour. Pulse bread is very seldom eaten alone, and then only locally and for some special reason.

The millcts and the coarser pulses form the staple food of the hill population. Amongst the former the mandua, janghora, koni, china, and mána, and amongst the latter the gahat, bhat, and rains. The mandwa is either made into bread or into a porridge called bári, and the china and koni are also made into bread or boiled whole and
eaten as rice. When travelling, the lower classes live chiefly on satu, the meal of parched barley, which only requires the addition of a little water to prepare it for eating. The following remarks of Traill still hold good :-
"Rice forms the favourite food of all those who can afford to purchase it. Wheat is only in partial consumption, chiefly on occasions of entertaiiments at marriages, \&e., when the peculiar seruples of Hindus prevent the use of rice. Vegetables of all kinds, both cultured and wild, are objects of universal consumption ; among the latter description, not already noticed, may be mentioned the nettle, fern, tulip, maki, \&ce, of which the shoots, root, and bean, respectively, are eaton: the list of herbs, roots, and leaves, considered edble by the natives, is endless; indeed, from their indiscrimination in this respect, fatal cases of poisoning sometimes occur. During the periodical residence of the agricultural classes in the Bhabar their principal food is the " guiya," or sweet potato, boiled and eaten with buttermilk. Animal food is in much request among all classes; with the exception of those animals the use of which as food is probibited by their religion, and excepting also reptiles of all descriptions and carrion birds or beasts, every sort of animal is converted to food in some part or other of the hills: by the southern Garhwális rats and mice are considered as dainties. The favourite flesh is that of the groat, or of the sheep, where bred: against the sheep of the plains an universal prejudice exists, its long tail rendering it, in the eye of the highlander, a species of dog. No scruple as to the mode of decease exists, and animals dying a natural death from disease, or other cause, are eaten by the Hindus as well as by the Doms."

Stewart also in his interesting report on the food of the poople of the Bijnor district, which lies at the foot of the Garhwál hills, notices many points which have an interesting bearing on the lessons learned by experience as to the dietetical value and effect of each food-grain. He writes :-
"The prices of the various staple crops would appear to have a greater effect on the relative quantities of those consumed at different periods of the year than opinions connected with their wholesomencss, \&c. Still, the latter consideration has its weight in
determining the choice of certain kinds of food at certain seasons. Thus, in the cold weather, much more bajpra, which is considered "heating," is consumed, with a large proportion of salt and spices, than at any other time ; and in that season generally, one meal a day, at least, consists of pulse with rice in the form of klijri. Baghar, or rice made into meal with its inner husk, is also a favourite kind of food in the cold weather. In the hot season, again, rice is the cercal most used, and this accords with the fact that its comparative consumption is found gradually to increase towards Calcutta, and to decrease towards Afghínistán, so that in the Upper Panjáb it constitutes a very small proportion of the food of the people, and wheat and maize are very much used. In the rainy scason more wheat appears to be eaten than at any other time of the year, very often in the form of gochni bread, with about one part in four of pulse-meal. The labourer, if not in straits, always has two meals a day, the fullest being the morning one, at 6 to 8 A.m., before he begins, or during an interval of, his work; the evening one, after the day's labour is finisherl : but, of course, the change of the seasons, the wenther, and the nature and place of his work, cause considerable variation in this respect.
"The staple of food of the labouring classes in this as in most other countries consists of one or other of the ccreals, here generally combined with a considerable amount of pulse. From very many enquiries the average consumption of adult labourers, male and female, appears to be about ten or twelve chhattcíks (20 to 24 oz .) a day of meal, or rice, with about two chhattúks ( 4 oz .) of pulse. The average weight of the adult males admitted into Bijnor jail in six months was-Hindus, one maund and ten seers (1001b.), and Musalmáns, one maund and eight seers ( 96 tb .); and since this may be assumed as a tolerably close approximation to the average weight of the adult male inhabitants of the district, the above quantity of food seems liberal when compared with the amount which has been found to support healthy persons in Europe, where the average weight of individuals is probably considerably higher than here. Less invariable (than pulse) but still very frequent concomitarte cs the bread or rice consumed are greens and tarkíri of gourds and other vegetables, and, in the season, one or two kinds of fruits,
especially the mango. These not only have their uses in supplying fresh vegetable juices to the economy, but also add to and vary the sapid elements of the food, and thus, besides satisfying the natural craving for flaveur, they also aid in stimulating the process of digestion, although, both theoretically and practically, an excessive amount of such food taken babitually is deleterious. A more constant error of the labourer is that of making his cakes too thick and undercooking them. The reasons for this practice are, that it saves trouble, time, and fire, and produces the feeling of satiety with a smaller quantity. It is barely necessary to observe that the practice is calculated to injure digestion seriously (and in native regiments I have very often found that it materially interfered with convalescence from certain diseases of the alimentary canal). Hill men eat greedily all kinds of fruits, both cultivated and wild, and very rarely allow either to ripen thoroughly. The number of wild fruits and berries is very large, and the supply lasts from April to October, forming a welcome, though not perhaps always a healthy addition to their food.
"The average quantity of animal fibrine consumed by the labourer must be very small indeed, as meat is but rarely eaten by him, and then generally only in quantity sufficient to constitute a relish to his ordinary vegetable diet. The place of the oleaginous element which is, among meat-eating nations, mostly derived from flesh, is here filled by the very large amount of animal and vegetable oils consumed in various ways, especially as adjuncts in cooking vegetables, \&c., and in the protci-form sweetmeats. The amount of spices taken is also large, and is probably, to some extent, necessitated by the rarity of the stimulus of meat, and by the considerable proportion generally borne by crude vegetables to the other articles of food. Sugar likewise is used in larger quantity than in temperate climates, but I should think not more than, if so much as, is used in other countries where the sugarcane is cultivated."

Dr. Forbes Watson has published a most useful table, showing the properties of nitrogenons substances which can be combined to the best ad vantage with carbonaceous ones; that is, of pulses to be combined with cereals arrowroot, sago, millets, and the like. By a simple formula we can
find out the quantity of a pulse that should be added to a carbonaceous substance, provided only we know from previous analysis the amount of carbonaceous and nitrogenous matter in each, from which we can deduce the proportions of carbonaceous to nitrogenous in each, representing nitrogenous as unity.

Then, to fiud the quantity of one substance to be added to the rother, we have this formula :-

Let the proportion of mitrogenous to carbonaceous in the given substance be $m: 1$. Let the proportion of nitrogenous to carbonaceous in the substance required to be added be $n: 1$.

Then the standard proportion or best possible combination (which is 6 carb.: 1 nit.:) $=p: 1$. Let the number of parts in the given substance be $a$, and the number required to be added be $x$, then-

$$
x=\left\{\frac{m(p+1)(n+1)-p(n+1)(m+1)}{(p-n)(m+1)}\right\} a
$$

Or simplified, $x=\left\{\frac{(n-p)(n+1)}{(p-n)(m+1)}\right\} a$. This will be clear from an example. Let it be required to know what proportion of a pulse, say gram, should be added to a hundred parts of arrowroot to give the best combination. By analysis we know that the proportion of carbonaceous to nitrogenous in arrowroot is $165 \cdot 5: 1$, and in gram is $3.8: 1$ : then in the formula $m$ will be represented by $165 \cdot 5 ; n$ by $3.8 ; p$ by (the standard known) 6, and $a$ by 100 : so

$$
x=\left\{\frac{(165 \cdot 5-6)(3 \cdot 8+1)}{(6-3 \cdot 8)(165 \cdot 5+1)}\right\} 100=\left\{\frac{765 \cdot 60}{366 \cdot 96}\right\} 100=2 \cdot 00 \times
$$

$100=209 \cdot 0=$ the number of parts required; that is, that 209 parts of gram to 100 parts of arrowroot makes the best combination. This formula is of great value in settling jail and hospital dietaries.

## A -CULTIVATED FOOD-GRAINS.

The cultivated crops are divided into those of the rabi or sown Cultivated food-grains. ${ }^{1}$ in the autumn and reaped in the spring and those of the kharlf or chaumás, sown in the summer and reaped in autumn, exactly as in the plains, for the

[^109]inflnence of the periodical rains is felt in all the hills on this side of the snowy range. In the hills, the staple crops are the same as they were sixty years ago, wheat and barley in the spring, and rice and mandua in the autumn ; in tho tract along the foot of the hills rice and arum are the principal rain-crops, and wheat, barley, and mustard the chief spring crops. Dividing the cultivated food-grains amongst the great natural orders, we have as follows :-

> Graminear or Grasses.
> Triticum rulgare, Linn., wheat-gehin, náphal. LIordeum hexastichon, Linn., barley-jaw. " himalayerse, Linn., celestial barley-ua-jat. Oryza sativa, Linn., rice-dhán. Zea Mays, Linn., maize—bhútta, júnala, mutugari. Paspalum scrobiculatum, Linn.-kedo, kodra. Panicum miliaceum. Linn.-ohiua, gauєra. Oplisments frumentaceus, Link.-mandira, jhangra. Setaria italica, Kth.—Kauni, koni, kakni. Penicillaria spicata, Lam.-bejjra. Elcusime Coracana, Gortn.-mandua. Avena sativa, Limn, oats-jai. Sorghum vulgare, Pers.-joär, júnalk. Saccharum sffeinarum, Limm., sugarcane-lih, rilhu, ganna.
> Cicer ariptinum, Linn., gram-chana, choln.
> Ercum Leras, Iinn., Ientils-masúr. Vicia F'aba, Linn., bean-bálita.
> Lathyrus satieus, Linn., Resari, chapfn. Pisun sativom, Limn., pea-kalon, kulai. Phaseolus acomitifolias, Jacq.-moth.
> " Mrugo, Linn.-mung, ohhimi.
> P. Mungo var. vadiatus, Iinn.-urd, mash, chhimi, ruthdar.
> $\because$ torosus, Roxb.-guransh.
> Phaseolus vulgaris, Linn., bean-shimi, sem.
> ", wultiflorus, Willd., scarlet runner.
> " caccinews, Lam., ditto variety.
> Vigna Catiang, Endl.-lobiya, riansh.
> Dolichos biforvs, Linn.-gahat.
> " Lablab, Linn.-shimi.
> Cajanus indicus, Spreng.-arhar, rahar, túr.
> Glycine Soja, Sieb.-bhat.
> Cyamopsis psoralioides, D. C.-gawár.
> Chenopodiacee.e.
> Chenopodium allum, Linn.-bethua.

> Amarantacef or amarantes. Amaranthus frumentaceous, Buch.-chua. , caudatus, Moq.-Kedáric chua. Blitum, Limn.-chamli. Polygonacter.
> Fagopyrum esculentum, Mœnch., buckwheat-agat, palti.
> $"$ tataricum, Gœrmn., buckwheat-phapur.
> Cereals. ${ }^{6}$

Triticum vulgare, Linn.-Wheat, and Hordeum hexastichon, Linn.-Barley. There are four recognized varieties of wheat:(1) gehzón safed or white wheat; (2), dízúcl-kháni or dátwa, a white awnless variety grown in large quantities in the Kosi valley near Somesar ; (3), daulat-kháni and (4) lál-gehtin, tánya or jusher, the bearded varieties. Wheat is called generically kanak or gehuin, and by the Bhotiyas náphal. The flour is known as áta or kaunik.

There are also several varieties of barley known generically as jau; a short-awned variety is called rena. When barley is sown and reaped together with wheat, the mixed grain is called gojai; and with gram or pens or lentils, it is known as bijra. In both these cases the graius are grown together and cooked and eaten as one. Mixed wheat and gram is called gochni below the bills.

Wheat and barley usually follow rice in the same fields. These are prepared in Asauj (September-October) by ploughing and cleaning, and, when practicable, they are irrigated by turning into them a stream from some river. The irrigated frelds are sown in OctoberNovember and the uplands in November-December. The seed is. sown in furrows (siya), which are again covered in by the plough, whilst the clods are broken by the clalays and again smoothed by a heavy flat wooden $\log$ (maya) drawn by oxen and kept steady by a man standing on it. Barley ripens in March-April and wheat a month later, and yield about tenfold the seed sown. Both are cut in the middle of the stalk with a sickle and tied in sheaves (antha) and stacked near the homestead to dry. When dry, the sheaves are unbound and threshed out by a flat wooden board with a short handle known as mungra. In some of the north-eastern

[^110]Pattis of Kumaun a primitive form of flail is used in the shape of a long pliant stick. The chaff is used as fodder; cow dung ashes (khuriyc) are mixed with the grain when stored, to prevent the attacks of insects. The variety $H$. Adgiceras, mentioned by Thomson ( $p$. 102) as that 'curious, awnless, monstrous barley,' is peculiar to the lighlands of Tibet, where it is extensively cultivated. It ripens in August in the Pruang valley. At the same time that wheat is sown, and often on the borders of the same fields, musiu (Ercum Lens) and gram (Cicer arietinum) are cultivated in quantities.

Hordeum himalayense (cceleste)-Ua-jau, the cháma of the Bhotiyas of Dárma.

This specics is only grown in villages bordering on the snowy range and at high clevations, $7-12,000$ feet. The seed is sown in first-class unirrigated land in October and ripens in May. The average yield per acre is about fifteen loads, worth one rupec a load, and raised at a cost of about eight rupees an acre. The produce is consumed locally by the Bhotiyas, being esteemed much too poor a food for the lowland folk.

Oryza sativa, Linn.-Rice. This widely-distributed grain is, as may be supposed, the principal rain-crop in the lowlands, and is also largely cultivated in the hills up to 6,500 feet, where some of the most valuable varicties are raised in the deep, hot valleys. It is an annual, belonging to the natural order Graminece, having numerous culms, erect, jointed, round and smooth, the leaves sheathing and long, scabrous outside and the panicles terminal. The local names of the varieties are almost endless ; the principal recognized in the Kumaon Division are the following :-

Dhán.	dhesura.	sathiya.	dhäni.	makani.	batasuma.
Bánsmáti.		banaisa		jay	
Hansráj.	sishali.	banpasa.	halturiya.	ratura.	r'ájuhati.
Gujulo.	amjan.	iauliya.	motiza.	akari	upasma.
Uya.	amárasi.	kirmuli.	adarat.	rasiyn.	halduma
Jamol.	sál.	nauliya.	maisuna.	parayai.	mandhuri.
Bakura.	katyúri.	rakasuma.	audi	chúnkuli.	sâlan
Timiliya.	gajaliya.	muthamuth	geruıa.	chinabhuri.	paliya.

In the hills, the agricultural year commences about the middle of February, when the land has to be prepared for the rice-crop,
which is usually sown where mandua has been raised in the previous season. The manure from the cattle-sheds is spread over the ground which is then ploughed and freed from stones. The terrace walls are repaired and the roots of the mandua from the last crop are collected and burned. In Baisákh (March-April) or Jeth, (April-May), the land is ploughed again and the seed is sown in the furrows, which are closed by a flat log of wood drawn along them. When the young plants have risen to some three or four inches in height, a large rake or harrow is drawn over the ground to remove the weeds and thin the plants. Where water is abundant, the better sorts of rice are sown in a highly-manured and irrigated nursery (bihnora) or seed bed. This is first flooded with water and then ploughed until the soil becomes a semi-liquid mass. Manure is then added and the seed is sown on the topand covered over with leaves, especially those of the chir, which are said to decompose easily in water and form an excellent top-dressing manare. The young plants are transferred (ropa) from the nurseriesby the women and children in June-July to the open field. The manure used is commonly the sweepings of the cattle-pens, which are collected in regular heaps on a place set apart for it in the field, usually that in which the cattle have been regularly penned (khatta), to cconomise the colle etion of their droppings. Leaves also are collected and allowed to rot in heaps on the field, and twigs and branches of trees are burned and the ashes made use of. The latter are usually taken from the village forests and cost nothing but the labour in gathering and stacking them. When the field is a small one, the earth is loosened and the weeds removed by a small iron sickle (kutala). In July-August the weeds are again removed, whilst the land is kept inundated with water, and by the end of August the poorer highland varieties are ready, and by the end of September or beginning of October the finer sorts grown on the lowlands. Rice is cat from the root and stored on the field in stacks (kanyira) with the ears inwards. There it is left for four or five days to dry, and after that the grain is trodden out by cattlo on a threshing-floor paved with slates (khala) or simply by men on mats (moshta). The stalks (puwit) are made up in bundles (pita) and stored round a pole or in the fork of a tree and afford food for cattle and bedding for the poor. The grain is taken home,
and, after being dried on the roof of the house, is stored for ase in boxes (bhakir) or in baskets plastered with mud or cow-dung, called korangas or datas. Unhusked rice is known as dhan in Kumaun ; and before lusking it is again dried in the sun and then pounded in a wooden or stone mortar called an whal. The pestle (musal) in use is tipped with iron, and the grain is pounded three different times before the clean rice or chánwal is produced. The chaff (chila) is used as fodder for cattle, and the husk (pithi) of the third pounding, by the poor. Winnowing is performed by a shovel-shaped basket (supa) which is held at such an angle to the wind as allows the chaff to fly off, or the grain is placed on the ground and the basket is used as a fan. One náli or about four pounds of rice-seed produces in irrigated land 35 nalis of unhusked or onc-half that amount of husked rice, and rice-seed in upland unirrigated land about half as much. Dry upland rice ripens from early September ; common irrigated rice from early October and the better irrigated sorts from the middle of October. In Dehra Dún there are three principal varieties, ${ }^{1}$ the chaitru, haltyu, and kyári or transplanted. The first, which is also known as chambu or anjana, is sown in unirrigated land in March-April (Chait) and is cut in August-September. Haltyu is sown a month later in similar land and is cut in September; it is also known as anjani and naka. The kyári furnishes rice of the best quality; the seeds are sown in nurserics in April-May, and the young plants are transferred in the following two months to wellirrigated fields, where they are carefully weeded. The principal varieties are the ramjawáin and básmati, and these grow best in warm valleys and along the great rivers where there is much moisture. Chánwal cooked in water is called bhat, but the broken grains (kanika) when cooked are called jaula. Khijri is a mixture of rice with urd or bájra boiled together in water; and khir is rice boiled in milk. The commoner varieties are often made into bread, and in that case the grain is only husked once and the inner husk is left on to be ground into flour, called baghar in Garhwál.

Zea Mays, Linn.-Indian-corn, maize ;-Bhétta, mukui (Kumaun) ; mungari, juinala (Garhwál). The maize plant is grown in

[^111]small quantities in the hills for the heads which are usually roasted whole, and the seed is then caten from the cob (chuchir). The seed is sometimes ground into flour and made into bread either alone or with the flour of moth.

Paspalum scrobiculatum, Linn.; P. kora, Willd.-Kodo, kodra, kodram.

An annal belonging to the natural order Graminere and suborder Panicece, cultivated in the sub-Himálayan districts. Dr. J. L. Stewart writes" of the Bijnor district: "Kodra is said to produce cholera and vomiting, and I find that some authors mention a similar phenomenon as occasionally occurring in all three presidencies. The natives generally hold that with the ordinary kodra, and undistinguishable from it, grows a kind that they call majna or majni which produces the above offects, but it has been suggested with greater probability that these depend on the use of the new grain under certain conditions." These results are, however, uncommon, as they are seldom met with, and the grain is a favourite one for home consumption amongst the poorer classes. It is husked with the pestle (muisal) and frequently eaten unground called chánwal in the Bijnor district, a term usually applied to husked rice. P. longiflorum, the kína of Kumaon, grows wild and its seeds are also used as food. Roxburgh, 93 ; Drury (F. P.), III., 565.

Panicum miliaceum, Linn.-The china of the hills and chimia sáwán of some places, of which the ganára or ganári variety ( $P$. uliginosum?) is grown extensively in the Bhábar. It is an annual with erect, round culms, belonging to the natural order Graminese and the sub-order Panicere. It is cultivated in the hills up to 6,000 fect and the sub-Himálayan tract, and is noted by Maddeu as apparently wild at Háwalbágh. It is a very delicate plant, sown in March ; it ripens in May in the Bhabar, and is grown chiefly for immediate consumption. In the hills it is occasionally sown in May-June up to 6,000 feet in a few villages and ripens in August. The average outturn per acre in the hills is about 25 loads of unthreshed grain, worth about Rs. 20, and raised at half that cost. The seeds are white and smooth like sago, and are considered a fit

[^112]food for invalids. They are husked by the pestle and mortar, and, like kodva, are often eaten unground under the name chánwal in the Bijnor district. It is known as a tinpákh or "three-fortnight" grain, that being the time required for its production from sowing to cutting, and is therefore one of those allowed as food to devout Hindus during fasts. P. brizoides, Jacq., is occasionally cultivated under the name bárti for the same purpose. Roxbargh, 104.

Oplismenus frumentaceus, Link.-the mandiva and jhangora of Kumaun, jhinagara of Garhwall, the saman of the Bhabor, and sáwan of the plains ; syamak, Sanskrit.

This is a small hardy annual belonging to the natural order Graminece and sub-order Panicere, cultivated throughout the hills up to 6,500 feet and in the submontane tracts. It thrives best in soils tenacious of moisture or which receive plenty of rain, and is sown in July and gathered in September. The ears are cut first, and the stalks afterwards as fodder for cattle. It is also one of the " timpakha" or "three-fortnight" grains, coming to perfection in about six weeks. It has culms erect, 2-4 feet high, panicle erect ; spikes secured, incurved; flowers three-fold unequally pedicelled; leaves large, margin hispid. The grain is considered heating, but when kept for four or five years loses that quality. It is chiefly consumed by the poover classes made into khir (boiled with milk), khusłháb, khijri, \&c. It is the Panicum frumentaceum of Roxburgh, 102. O. colonus, Kth., occurs wild and occasionally cultivated or rather allowed to grow under the name jangli-mandira.

Setaria italica, Kth. ; Panicum italicum, Linn.; Pennisetum italicum, R. Brown.-Italian millet. The kauni, koni of the hills, kukni of Bijnor, and kangni of the plains.

This is an annual with culms erect, 3-7 feet high, round, smooth; roots issuing from the lower joints; margins of leaf hispid; mouths of the sheaths bearded; spikes nodding; spikelets scattered; seeds ovate ; cultivated in the hills up to 6,500 feet and in the submontane tracts. In the hills it is sown with mandira or along the edges of rice-fields for home consumption in April and gathered in September. An unmixed field of leauni is very uncommon. The ears are cut off while the crop is standing and the stalks are only used as bedding for cattle. As a food, natives consider it to
be cool and dry, astringent and diaretic, and to be of use externally in rheumatism. When taken as the sole food it is said to he apt to produce diarrhea. It renders beer more intoxicating. In Madras its flour is highly estecmed for pastry. Roxburgh, 102; Drury (U. P.), 338.

Penicillaria spicata, Willd.-Spiked millet—Bäjra.
This millet is also occasionally grown along the foot of the hills and in the lower valleys within the hills, but bajra, joar, and maize are essentially plants of the plains proper. Roxburgh, 95.

Eleusine Coracana, Gœertn. ; the mandua or maruwa of the hills, kodo of parts of the western hills and raghi of the south of India. Mandua belongs to the natural order Graminece and sub-order Chloridece, and has an erect culm supporting from four to six spikes, digitate, incurvate, from one to three inches long, composed of two rows of sessile spikelets, each consisting of from threc to six flowers. Calyx formed of ftwo glumes: seed covered with a thin, pellucid, membraneous aril. It is the staple autumn or chaumás (saoni in Dehra Dún) crop of the highlands (up to 8,000 feet) between the Tons and the Sárda, and forms the main food resource of the agricultural classes. It gives a larger yield than other crops, and is said to increase in bulk when ground, qualities that have probably led to its more general cultivation, as it is a poor and very coarse grain. Indeed, Madden terms it " a bitter and indigestible food." Mandua is cultivated both in ordinary agricultural land and in freshly cleared jungle. In ordinary land, it usually follows a wheat crop which is gathered in April-May, and the land is at once prepared for the mandua in the same manner as for rice. The seed is sown broadcast, and, instead of a harrow, the bough of a tree is drawn over the newly-sown land to cover the grain. When the young plants have risen two or three inches, the whole field is harrowed two or three times and the vacant spaces are filled up from those where the plants are in excess. Seeds of the galat, urd, blat, and other similar grains are then sown in the midst of the mandua, and their produce is collectively called kain in Kumaun. Later on the crop is well weeded with the kitcla, and in October-November the ears of the mandua are cut off and the kán
are rooted up. Afterwards the stalks (naluwed) of the manduaare eut and tied in bundles and stacked like those of rice to serve as fodder, or cattle are driven into the field and allowed to consume them. The ears of the mandua arestacked (thupara) for some twenty to twenty-five days, when they begin to ferment, and, when warm, they are spread out and dried and are then threshed out by a flail (saila), or are trodden out by cattle. Winnowing is performed by the supa as in the case of rice, and the heap formed is then passed through a sieve (rangra) before being stored. The chaff (dhasi) is used as fuel for cooking and its ashes as a dye and for washing clothes. The chatf (nat) of the kán is useful for fodder. Mandua is ground into flour of a somewhat rough and astringent taste, and made into unleavened cakes or a kind of porridge called bári. A spirit called daru is also made from it and sells at from three to six annas per bottle. A variety called mandín has usually $3-4$ spikelets which are not incurrate and ripen in Scptember. E. indica, the mandari of the tract along the base of the hills, is common in the hills and Bhábar.

The rent per lisi, which is only forty square yards less than an acre, varics from one-fourth to one-half the crop, and may be set down as about two rupees. The cost of plongling and harrowing where cattle are hired would be about two to two and-a-half rupees per lisi, and for labour whilst the crop, is on the ground about the same amount. Scel, sowing, cutting and cleaning the grain about three rupees, ${ }^{1}$ giving a total expenditure of ten rupees per bisi. The average outturn is between fifteen and twenty maunds of forty seers each, worth about one rupee a maund. Llandua is one of the favourite crops with squatters in the forests. Their mode of operation consists in felling the timber and clearing patches along the ridges in autumn, and when the timber is dry it is burned in spring, and mandua is then sown in the ashes and lightly ploughed in or hoed in by hand. No other labour is required beyond roughly fencing in the pratches with the half-burned logs and watching them at night to prevent the incursions of wild animals. The cost of production is much less than in ordinary land, and no rent is paid, as but one crop is taken, after which the patch lies fallow for from six to twelve yeurs. This

[^113]mode of cultivation is, according to the nature of the soil, known as katil, lcala banjar or $\ddot{j} r \dot{a}$ in Kumaun and as kilill or kándala in Garhwál. In ordinary land there is a formal rotation of crops. Thas, rice is sown in April and gathered in September, after which the land is prepared and yields a crop of wheat or barley, which is cut in April, and is succeeded by mandua, and as the last is not ready for the sickle ontil November, the land is allowed to remain fallow until the following spring, when rice is again sown. Where land has been long allowed to lie fallow, a crop of mundua or chita or buckwheat is usually takeu first, and, as a rule, a ficld is allowed to lie fallow after every third crop, except in a bad year. In the Bhábar, mustard is, sown in August and gathered in February, when it is followed by the ganára varicty of millet which is ripe in May. Then wheat is sown, which is followed by rice in the sext spring. In the older villages nearly half the land, especially that on which rice has been sown, is allowed to lie fallow one season. In new villages land is cropped without intermission for soveral years. Roxburgh, 11a; Drury (U.P.), 206.

Avena sativa, Linn.-Oats—Jai, wiláyeti-jau. Jai is grown in small quantities in the hills ( $6-10,000$ feet) and in the Dún for local consumption. In the hills it is usually sown mixed with barley and the two are eaten ground up together. A. fatua seems to occur wild.

Sorghum vulgare, Vers.; Holeus Sorghum, Linn.-Great mil-let-The júnali of the Bhábar and joar of the plains.

This millet is grown in very small quantities near houses hero and there in the Bhabar and in parts of the hills up to 5,000 feet. S. Halepense, Linu., occurs wild in the Bhábar, under the names Juru and rikhonda. Júnali is grown in the plains for its seed and sown closely as a fodder, which is acceptable to, and greedily eater by, cattle of all sorts, notwithstanding the size of the stalks. Roxlourgh, 90; Drury (U.P.), 413 ; Steudel, 384.

Saccharum officinarum, Linn.-Sugarcane—Ikh, rikhu, ganna, punu-rikhu (large variety), kanthi-rikhu (small variety). Though the sugarcane is not a food-grain, it may be noticed here as belonging to the Graminece. It is only occasionally cultivated in the hills, notably near Dwíra Hát and Gangoli Hát, but is largely grown ine
the submontane tract and the Tarii. The details of manufacture for export do not differ from the system generally observed elsewhere.

## Pulses.

The pulses belong to the natural order Leguminosce or pea-tribe, and afford a large quantity of the food-resources from the vegetable kingdon in these provinces. Of those raised by field cultivation, múng, másh, and masir are often eaten unhusked by the poor. The two first and gram or chanca are held in high repute, though all are considered, when eaten alone, to be apt to produce colic and flatulency. Gram, peas, and a few others are occasionally ground into a flour called besan and made into bread either alone or in the proportion of one-fourth with cereals. Thus, wheat is ground with gram, maize with urd, and the millets with moth. Pulse bread alone is only resorted to when nothing better can be obtained. Másh and ming split in two and then known as dál are usually eaten separately or with rice, when the mixture is called khijri. Ming and arkar are reckoned as good nutritious food for invalids, but moth and masior are considered less valuable as causing heat and thirst. Masair is said to be the source of the well-known Du Barry's Revalenta Arabica Gram, peas, múng, moth, and lobiya are frequently parched by tradesmen known as bhínjas, and, under the name chebena, form the usual food for persons going on a journey or employed so as to prevent their being able to cook their regular meals. The usual mode of preparation, however, is to boil the pulse, after removing the pod, and serve with condiments of various kinds as shred onions, turmeric, spices, \&c. Eaten with boiled rice, they form one of the staple dishes of the country (dál-bheit), and in this form are said to be most wholesome, the cereal correcting, to a certain degrec, the heating properties of the pulse.

Cicer arietinum, Linn.-Gram—Chana. The gram plant is sparsely cultivated in the hills. It is a naturalised plant, a native of Europe, deriving its name from the pea having a supposed resemblance to a ram's head (aries). It belongs to the natural order Leguminosce and sub-order Viciece. There are four varieties, black, white, red, and yellow, the last of which is that usually found here. It is cultivated in the warmer localities, tisually as a border to wheat, and
ripens in February. The bhúsa of the stalks and leaves forms a valuable fodder for cattle and horses, and the green leaves are caten as a pot-herb. Hook. Fl. Ind., IL., 176: Roxburgh, 567 . C. microplyplum, Benth., a wild species growing in Tibet, is remarkalule for a very viscid exudation and its strong odour (Thomson's Travels, 371): Drury (U.P.), 134.

Ervum Lens, Linn.; Cieer Lens, Willd.-Lentils.-Masir, an annual belonging to the natural order Leguminosce and sub-order Vicieco, is sparsely cultivated in the hills, but is increasing in favour in the Bhábar. The seeds split in two are used as a dál, but they are commonly regarded as heating. It also is sown at the border of fields and ripens in February. Roxburgh, 567.

Vicia hirsuta, Koch. This plant is found wild near Almora, and is occasionally cultivated as a fodder under the names masuri, massir-chana, and jhanjhaniyo-kiri up to 5,000 feet in Kumaun and also in the Tarái. Hook. Fl. Ind., II., 177.

Vicia Faba, Linn.-The garden bean-Bakla. This bean is cultivated occasionally for its seed and straw up to 8,000 feet. There are several varieties sown from introduced seed or native seed either in ficlds or gardens. V. sutiva, Limn., var. angustifolia (Hook Fl. Ind., II., 178) and V. tenera occur wild.

Lathyrus sativus, Linn.-The chickling vetch—Kisára, chur'ál, chapa, mattur, keisa. This species is occasionally cultivated below the hills and in the hills up to 8,000 feet. The evil eftects of this pulse is mnknown in Bijnor and the Bhábar, though it is said to produce paralysis in Allahabad. L. sphecricus, Retz., and L. Aphaca, Linn., are lound wild.

Pisum sativum. Linn.-The field-pen-Kalon, kulai, batana (Jaunsir'). This well-known annual has been introduced from Europe. The seeds are round, of uniform colom, and there are 5-6 leaflcts. Another species, $P$. arvense, Linn., having 2-4 leaflets and compressed marbled sceds, is said by Royle to be a native of India. It is cultivated in small quantitics up to 8,000 feet in the hills. Hooker, Fl. Ind., II., 181.

Phaseolus aconitifolius. Jacq.-The aconite-leaved kidney bean-Molh. This species is chiefly grown in the submontane tract in the poorest soils and is of little account amongst food-resources
here except in dry seasons. Hooker, ivid., 202: Roxburgl, 558.

Phaseolus Mungo, Linn.-The small-fruited kidney bean.Múnu, chhtmi, chikan, and var. radiatus, Limn.-rayed kidney bean; urd, másh, chhími ruindér.

Both these varieties are cultivated in Kumaun up to 4,500 fcet. The former is rare and has greenish yellow flowers, pods 10-15 seeded, and seeds with numerous longitudinal close streaks. There are four varicties, green, black, yellow, and white, of which the first is most common : ripens in October. The second has yellow flowers, pods very hairy, 4-6 sceded ; two varieties, black and green, and a third smaller plant occurs called urdi. It is a rain crop and is more commonly cultivated in the hills up to 6,000 feet. It is considered the most heating of all the pulses and is seldom eaten alone. Hooker, l.c., 203 ; Roxburgh, 556. P. Mungo of Roxburgh is the common green múng; the black variety is his $P . M a x$ and the yellow variety is his $P$. aureus, whilst $P$. Roxburghii, W. et A., is the same as $P$. radiatus, Linn., urd or másh, now reduced by Aitchison (p. 389) to a variety of $P$. Mungo, Linn.

Phaseolus torosus, Roxb.-Guraush, gúránsh. This species is grown at a higher elevation than any other pulse ( 6,500 feet), chiefly in Káli Kumaun, but also in Almora and the Bhágirathi valloy up to 4,500 feet. It is apparently a cultivated form of $P$. calcaratus, Roxb. (Hooker, II., 204). There are two varieties, one of which has a red and the other a cream-coloured seed : ripens in October. Roxburgh, 558.

Phaseolus vulgaris, Linn.-French bean-Shiuchana, bákula. This and $P$. multiflorus, Willd. (scarlet-runner) are chiefly grown in gardens as pot-herbs. $P$. coccineus, Lam., differs by its bright scarlet, casually white, flowers arranged in long racemes which often overtop the leaves. Hooker, ibid., 200.

Vigna Catiang, Endl. ; Dolichos sinensis, Linn. : both are now united-Lobiya riànsh, ráish, riensh.

The first is low and sub-erect with pale purplish flowers; the latter is tall and voluble. There are several varietics differing in the colour of the flowers and seeds (white, brown, yellow, black). Three
or four are cultivated in Kumann (up to 4,000 fect), of which one is known as sonta. All the varieties are usually sown with other crops. The young legumes are caten as a vegetable and the ripe seeds in curries. Hooker Fl. Ind., II,, 205 ; Roxburgh, 559, 560.

Dolichos biflorus, Linn.-Horse-gram—Gahat, kalath, the kulthi of the plains. The horse-gram is occasionally grown in the hills up to 6,000 feet and in the submontane tract. In the Blábar it ripens in October. Hooker, l. c., 210 ; Roxburgh, 563.

Dolichos Lablab, Linn.-Black sceded kidney-bean-Shími, chimi. Six varieties of this species are commonly cultivated in gardens and very occasionally as a field-crop. Hooker, l. c., 209 : Roxburgh, 560 : Drury (U. P.), 282.

Cajanus indicus, Spreng. ; C. flavus and bicolor, D. C.; Cytisus Cajan, Linn.-Pigeon-pea.-Arhar, rahar, tor, thohar.

The pigeon-pea is occasionally cultivated in the hills up to 4,000 feet and in the submontane tract as a border to other crops and has a reputation for being easily digested and nutritious. C. Alaves has the vexillum yellow, whilst $C$. bicolor has it beautifully veined with purplish red ; the latter is more commonly cultivated in Kumaun.

Glycine Soja, Sicb. ; Soja hispida, Mœnch.—Soy bean-the lhat of Kumaun, bhatnas and bhatwas of Nepál and northern Tirhút, and Khajuwa of the Taraí. This bean, though a poor food resource, is extensively grown in the hills 4-6,000 fect, as food for men and cattle. It ripens in October. Hooker, l. c., 184 ; Roxburgh, 563.

Cyamopsis psoralioides, D. C.-the gawar of Meerut and kauri, syámsundari, phali-gawár, kawára and kachhér of the submontane tract. It is sown with other rain crops or along the borders of the fields in the rains in favourable places, but will not stand either excess of moisture or high winds. The legumes are delicate and are used in vegetable curries when young, and when mature they are boiled and with a little mustard-oil given to cattle as a condition fodder. Drury (U.P.), 179.

## CHENOPODIACEE.

Chenopodium album, Linn.-Goosefoot-Bethuwa, charái, jau-ság. An annual which occurs (cultivated occasionally) in the hills up to 4,000 feet. It is gathered for its seed, whilst the young
leaves are used as a vegetable. It is entirely a rain crop and attains a height of six feet. The seeds ripen in October and are considered nutritious. Roxburgh, 260.

## Amarantis.

Amaranthus frumentaceus, Buch.-Prince's feather-Chira, chúa-mársa, sámdána, axárdína of these hills and batu, báthu, bathua of Bisahr. There are two varieties, the red and yellow, both of which belong to the natural order Amarantacece and sub-order Achyranthea, pentandrous; stems and branches erect; leaves broad-lanceolar ; panicles erect; leaves of the calyx daggered; capsules wrinkled, seed, solitary, round, pellucid with callous white margins. Calyx longer than the stamens; leaflets in both male and female with subulate points. Male flowers with five stamina : female flowers with 2-3 styles. Chúa is largely grown in the northern parganahs up to 9,500 feet, where it forms the staple food of the poorer classes and is a favourite crop in newly-cleared jungle, as it is not easily injured by bears and deer. It is sown in May and June in first and second class unirrigated land and yields about twenty loads to the acre. The produce of an acre is worth about sixteen rupees, and the estimated outlay is about half that sum. From an experiment conducted in the Botanical Gardens in Calcutta it was found that forty square yards of ground sown with this plant in June yielded twenty-one pounds weight of clear ripe seed in September, or thirty-one maunds to the acre. It also grows well from October to February in the plains. Some identify chảa with A. Anardana (farinaceus), and much remains to be done to clear up the synonymy of the amaranths. Roxburgh, 663.

Amaranthus caudatus, Liun.-Lrove lies bleeding-the kedúri chaia of the hills. This species has an erect stem angularlystriated, glabrous, green ; leaves long, petioled, ovate or rhombovate, narrowing at both ends, bluntish, emarginate, glabrous, green ; spikes ascending: flowers sessile, green : bracts longer than the sepals, which are three in number. Cultivated in gardens or near the homestead in the hills for local consumption. The seed is sown in May-June and the crop is ripe in October. Drury (F. P.), III., 21.

Amaranthus Blitum, Linn.; Var. polygemoides, A. polygamus, Linn. Hermaphrodite amaranth.-Chamli suy, chauldi. This
common species is sometimes grown along the edges of fields in the submontano tract as a pot-herb. Like all the amaranths, it is one of the phaláhas or food-grains which Hindus may eat during fasts.

## Polygonacere.

Fagopyrum esculentum, Mœnch.—Buckwheat-The ogal of, Kumaun, kotu of Garhwal, and pailii of the Bhotiyas. The Himálayan buckwheat belongs to the natural order Polygonacece and sub-order Apterocarpex. It is grown chiefly as a vegetable in the hills and is recognisable by its red flowers. It is frequently sown in newly-cleared forest land and ripens in Septomber. The grain is exported to the plains under the name kotu and is eaten by Hindus during their fasts (bart), being one of the phald́has or foodgrains lawful for fast-days. It is said to be heating, but palatable, and is sold by the pansari or druggist, and not by the general grain-dealer. F. cymosum, Meissn., the ban-ogal of Kumaun, occurs wild in the lower hills.

Fagopyrum tataricum, Gœrtn. ; F. emarginatum.-Buck-wheat,-called phápar or páphar by the Kumaunis and bhe by the Bhotiyas. It has a white or yellow flower and only grows at high elevations, 7-12,000 feet. It ripens towards the end of September or beginning of October. The seeds are oval, acute, nearly triangular with acute, smooth, brilliant angles, the size of a hemp seed, of ash-brown colour, whilst the seeds of the ogal are rounded.

## B.-CULTIVATED VEGETABLES.

The vegetables grown in the Kumaun division are those noted below, which may be divided into three classes : (1) those like the gourds and melons that are eaten raw or cooked ; (2) those generally boiled in water with salt and spices or cooked with ght (clarified butter) or oil, as the ordinary garden produce, such as radishes, onions, carrots, turnips, and the legumes of various plants and which are known generically as tarkíri; and (3) the leaves and stems of various herbaceous plants, cultivated and wild, which are boiled in water and form what is known as ság or greens and when cooked merely with sufficient water to prevent their burning, blangi or
bhangiya. The first class comprises a great proportion of the food of all classes during the months that they are in season and form one of the most important dietetical products of native horticulture. The second class forms the staple of curries eaten with split pulse or dal and the third class includes both plants specially cultivated as greens; the leaves and parts of plants cultivated for seed, fruit or fibre, but not specially cultivated for greens, and the roots, bark; leaves, and flowers of an immense number of wild plants which are edible, and form a substitute for the cultivated plants with the poorer classes and with all, indeed, in times of scarcity. We shall divide the vegetables therefore into gourds, ordinary vegetables; thirdly, those plants that are cultivated as greens; and lastly, the principal wild plants that are considered edible and form a portion of the food of the people.

## Gourds. ${ }^{1}$

Gourds belong to the natural order Cucurbitacea, and are grown in the hills and submontane tract. They are annuals, climbing, having clasping tendrils on the stalk, hairy, drastic, pulpy and refreshing, but apt to produce evil effects if taken in inordinate quantities. The principal species, cultivated and wild, are noted below in order to give a general view of the entire order. They may be divided for their dietetic propertias into three classes :-(a) the pleasant tasted, with a refreshing juice, usually eaten raw like the melon and water-melon : (b) the other edible gourds which áre either insipid or bitter, and are all cooked before being eaten and (c) those cultivated or used for their medicinal properties only. Ihe principal genera represented in the Kumaun division are Trichosanthes, Luffa, Cucumis, Citrullus, Cephelandra, Bryonia, Mukia, and Zehneria.

Trichosanthes palmata, Roxb.-The indrajan of Kumann and palwal of the plains. This species may be known from its red globose fruit which is possessed of severely drastic properties when wild, though edible under cultivation when boiled. T. dioica, Roxb., the palwal of Bijnor, is also edible. Hooker, Fl. Ind., II., 606 : Drury, (F. P.), I., 467 ; Roxburgh, 695.

[^114]Trichosanthes anguina, Linn.-Common snake gourd.-The ohachinda of Kumaun and chachinga of Rohilkhand. This species is cultivated throughout the hills and plains. The fruit is greenish white, $2^{\prime}-3^{\prime}$ long, and is usually eaten cooked. Hooker, Fl. Ind., II., 610 ; Roxburgh, 694 : Drury (F. P.), I., 467.

Trichosanthes cucumerina, Linn.-The jangli-chachinda of Kumaun. The jangli-chachindla appears to be the wild representative of the preceding; the fruit is chiefly used in medicine, though it is edible. Hooker, l. c., 609; Roxburgh, 694; Drury (U.P.), 440: Royle, 219.

Luffa mgyptiaca, Mill-Ghtya taroi or ghfya tori. It may be known by its $\overline{5}$-angled leaves and 10 -angled fruit. It is ased much in curries, dressed as a vegetable with clarified butter and spices. Hooker, l. c., 614; Roxburgh, 698; Drury (F. P.), I., 459.

Luffa acutangula, Roxb.-Kuli taroi or tori. It has the lower leaves 5 -angled, the upper leaves palmate, the seeds black and irregularly pitted and the fruit usually smaller and is commonly cultivated and highly valued as a vegetable. Hooker, l. e., 615 ; Roxburgh, 698 ; Drury (U.P.), 291.

Lagenaria vulgaris. Sering.-Pumpkin or bottle gourdLauka, tumri (small varicty), gol kaddu. It is from this gourd that the bottle carried by mendicants is made; it is extensively cultivated along the foot of the hills. The pulp is eaten with vincgar or mixed with rice as a chhachlit or vegctable curry. Hooker, l.e., 613; Drury (U.P.), 383; Roxburgh, 700. This fine species was brought to Almora from Jabalpur in 1846 by the Bengal Artillery. The tumri variety is not edible.

Benincasa cerifera. Savi-White gourd melon-Bhínja, petha, chal-kumhra. Cultivated for its fruit, which is used in curries and as a vegetable. Fruit $1-1 \frac{1}{2}$ feet, cylindric, without ribs, hairy, ultimately covered with a waxy bloom. Hooker, l. e., 616; Drury (U.P.), 76 ; Roxburgh, 700.

Momordica Charantia, Linn.-Karela, karola. There are two varicties well marked; the one with longer and more oblong fruit, and the other with fruit smaller, more ovated muricated and tubercled and numerous gradations between them. The fruit is steeped
in water with a little salt and then eaten cooked in curries. Hooker, l. c., 616 : Drury (U.P.), 306 ; Roxburgh, 696.

Momordica dioica, Roxb.-Gol kínkra. There are several varieties, of which the unripe fruit and tuberous roots form an article of food. M. Balsamina also occurs along the foot of the hills in wild state and in Bijnor. Hooker, Fl. Ind., II., 617 ; Drury (U.P.), 306 ; Roxburgh, 696.

Cucumis trigonus, Roxb.-Bislombhi. Found wild along the foot of the hills. Hooker, l. c., 619 ; Roxburgh, 701.

Cucumis Melo, Linn.-Melon-Kharbiz, and C. var. utillisimus, kakri. Both these varieties may be scen at Srinagar, but they are not cultivated in the hills generally or in the submontane tract. Hooker, l.c., 620; Drury (U.P.), 172; Roxburgh, 701.

Cucumis sativus, Linn.-Cucumber—Khira, khtrai, kakura. This species is also cultivated for its fruit, and C. Hardwickii, Royle, the air-álu of Kumaun and pahári-indráyan of the plains seems to be only a varicty of it. Both the latter and C. himalensis occur wild in the hills and Bhábar. C. Momordica, Roxb. (700), seems also to be a variety; it is the kachra (unripe) and phint or triti (ripe) of the submontane tract; names given from the fruit bursting when ripe, and is frequently cultivated. Hooker, l. c., 620 ; Drury (U.P.), 173 ; Roxburgh, 700.

Citrullus Colocynthis, Schrad.-Colocynth gourd—Indráyan of the plains. Found along the foot of the hills; only used in medicine. Hooker, l.c., 620; Drury (U.P.), 135; Roxburgh, 700.

Citrullus vulgaris, Schrad.-Water-melon-Tarbhúj, hindwána. It is very sparsely cultivated in the Bhábar, and still more rarely in the hills. The seeds are eaten parched with other grain. The bitter variety is the C. amarus of authors. Hooker, l. c., 621; Drury (U.P.), 174 ; Roxburgh, 700.

Cephalandra indica, Naudin.-Bimba, kanderi ki bel. It occurs wild, but is occasionally cultivated in the submontane tract, and the ripe fruit is eaten raw or cooked. Hooker, l. c., 621 ; Drury, (U.P.) 144 ; Roxburgh, 696.

Cucurbita maxima, Duch.-Squash gourd.-Kaddu, mitha $k a d d u$, yadura. It is frequently cultivated for its fruit which is eaten
boiled: the seeds also yield a mild oil used in cooking and burning. Hooker, l. c., 622 ; Drury (U.P.), 175 ; Aitch., 64.

Cucurbita moschata, Duch.-Musk-melon-Kumhra. It is cultivated below the hills for its fruit, which is esteemed highly palatable and nutritious. Hooker, Fl. Ind., II., 622; Roxburgh, 700.

Cucurbita Pepo, D.C.-Pumpkin or white gourd—Kumhra, kondha, lauka, and kaddu-safed. It is cultivated for its fruit. Hooker, l. c., 622 ; Roxburgh, 700.

Bryonia laciniosa, Linn. It is found wild and is only used in medicine; the seeds also yield a medicinal oil. Hooker, l. c., 623 ; Drury (U.P.), 87; Roxburgh, 703.

Mukia scabrella, Arn.-Gwála-kakri. It occurs wild and is only used in medicine. Hooker, l. c., 623 ; Drury (U.P.), 88 ; Roxburgh, 702. Zehneria umbellata, Th., known under the same vernacular name, and its variety $Z$. nepalensis, occur wild in Kumaun.

## Vegetables. ${ }^{1}$

Brassica Rapa, Linn.-Turnip-Shalgam; the chankan of the Bhotiya parganabs. The turnip is beginning to form an article of food. The Brahmans and Baniyas of the plains have a prejudice against the turnip and carrot as in some manner resembling flesh, which is forbidden as food for them. Hooker, Fl. Ind., I., 156 ; Roxburgh, 497.

Raphanus sativus, Linn.-Radish—Mrili. Both the long radish and the turnip-shaped radish are now largely cultivated and consumed.

Hooker, l.c., 166 ; Roxburgh, 500.
Lepidium sativum, Linn.-Cress-Hálim, hálang. Hooker, l.c., 159 ; Roxburgh, 497.

Hibiscus esculentus, Linn.-Bhindi. This and II. sabdariffa are cultivated in gardens below the hills and are consumed by all classes. Hooker, l. c., 343 ; Roxburgh, 529.

Canavalia ensiformis, D. C.-Bean-Sem. Consumed by all classes. Hooker, l. c., II., 195 ; Roxburgh, 559.

[^115]A pium graveolens. Linn.-Celery-Saleri. Grown for Europeans. Hooker, l. c., II., 679 ; Roxburgh, 273.

Daucus Carota, Linn.-Carrot—Gájar. Hooker, l.c., II., 718 ; Roxburgh, 270.

Lactuca sativa D. C.-Lettuce-Kahu. Roxburgh, 593.
Mentha viridis, Linn.-Spear mint-Pahári-pudina.
Salvia plebeia, R. Br.--Sage-Sallia. Drury (F. P.), II., 552.
Lycopersicum esculentum, Don.-Tomato-Wiláyati baigan. Roxburgh, 190.

Batatas edulis, Choisy.-Sweet potato-Shakrkand, pindálu. It is grown in the submontane tract and is a favourite with all classes. Drury (U. P.), 70 ; Roxburgh, 162.

Solanum esculentum. Linn.-Egg, plant-Baigan (Kumaun), bluatta (Garhwál). It is grown commonly by natives and Europeans. Drury (U P.), 409 ; Roxburgh, 190.

Solanum tuberosum, Linn.-Potato-Alu. The potato was introduced into Kumaun in 1843 by Major Welchman and now forms an important article of export. The seed is from time to time renewed by fresh importations.

Beta vulgaris, Linn.-Beet—Chaukandar. This root is chiefly grown in English gardens. Vaŗ. bengalensis, Roxburgh, 1, pálang, is cultivated as a pot-herb.

Dioscorea globosa, Roxburgh.-Yam—Chipri alu. This yam is cultivated, whilst the following species found wild, furnish edible tubers :-
D. sagittata, Royle-Tair tarur, the tubers lie 3-6 feet deep in the soil, edible.
D. quinata-Magiya or muniya; white tubers, edible.
D. versicolor.-Genthi, gajir, ganjira; yields a deliciously fragrant yam, edible.
D. pentaphylla.-Tegúna, takuli; tubers edible. Drury (F. P.), III., 276.
D. deltoides.-Gun; on Siyáhi Devi.

Allium Cepa, Linn.-Onion-Piyáj. The onion is commonly cultivated, but is objected to by Brahmans and Baniyas in the plains
from its having some fancied resemblance to flesh. Chives, leeks, and shallots are caltivated in Furopean gardens.

Maranta arundinacea, Linn.-Arrow-root. This useful plant has been successfully cultivated by Mr. Fraser at Haldwáni in the Bhábar, and has yielded produce equalling the best West Indian.

Amorphophallus campanulatus, Blume--Zamin kand. This sweet potato is grown in small quantities at the foot of the hills. It yields a large root stock, the size of a Swedish turnip, but flatter, and is the only one of the family that keeps well in the ground. It ripens too after the rest.

Colocasia antiquorum, Schott.-Ghuiya, Ghwiya; arui (plains). Cultivated along the foot of the hills.

Colocasia himalensis, Royle.-Ghuiya (plains), pindálu (white variety), gaderi (red variety), pápar (leaf), guba (umrolled leaf), all of which are edible. Other wild species are Remusatia vivipara, the bágh-pindálu, and R. capillifera, the bánj-pindálu; the former occurs $3-4,500$ feet, and the latter $5-8,000$ feet, flowering in June.

## C.-SPICES AND CONDIMENTS. ${ }^{1}$

There is no country in the world, perhaps, where spices and condiments enter so largely into the food materials of the population. The man must be very poor indeed who cannot afford something of this kind with his daily meals. Much of the spices consumed are, however, imported, such as mace, cloves, black pepper, assafetida, Ceylon cinnamon and nutmegs. The bark and leaves of Cinnamomum Tamala form an important flavouring material for curries, and the former is used generally as a substitute for true cinnamon. From the Himálaya, also we have turmeric, ginger, red pepper, cumin and cardamoms of excellent quality and divers wild herbs used as condiments.

The principal plants yielding spices or condiments cultivated or occurring wild in Kumaon are as follows :-

Papaver somniferum, Linn.—Poppy—Khash-khash (seeds). The seeds are used in curries; cultivated.

[^116]Peucedanum graveolens, Benth.-Dill-Soya. The seeds are used in curries ; cultivated. Hooker, Fl. Ind., II., 709 ; Roxburgh, 272 ; Pharm. 101.

Murraya Kœnigii, Spreng.-Gándla, gani (Kumaun), gandela or giendi (Bijnor). The leaves are used for flavouring curries; the tree occurs wild in the lower lills and Bhábar. Hooker, l.c., I., 503 ; Brandis, 48 ; Roxburgh, 362.

Carum Carui, Linn-Caraway-Trra. Cultivated for its seed in Garhwál, where it also occurs wild. Hooker, l. c., II., 680 ; Pharm., 98.

Carum Roxburghianum, Benth—Ajméd. Cultivated for its aromatic secds, below the hills. Hooker, l. c., 682 ; Roxburgh, 273.

Carum copticum, Benth.-Lovagc-Ajzcóin. Cultivated for its seeds below the hills. Hooker, l. c., 682 ; Roxburgh, 357 ; Pharn., 99.

Coriandrum sativum, Linn.-Coriander-Dhaniya. Cultivavated for its seeds. Hooker, l. c., 717 ; Roxburgh, 272.

Cuminum Cyminum, Linn.-Cumin-Jtra. Believed to be cultivated for its seeds below the hills (?). Hooker, l. c., 717 ; Roxburgh, 271.

Fœniculum vulgare, Gœrtn.-Indian fennel—Sonf. Cultivated for its secd. Hooker, l. c., 695 ; Roaburgh, 272.

Capsicum frutescens, Linn.-Red pepper-Lál mirche, kursdni. Cultivated for its fruit and exported. There are several species cultivated, for which sce Roxburgh, 193.

Piper silvaticum, Linn.-Long pepper-Ptpala mor.
Occurs wild in the valleys and the Bhibar and yields a substitute for the pepper of commerce. The average annual export from the Kumaun Forest Division is about 22 tons. Roxburgh, 52; Drury (U.P.), 131.

Cinnamomum Tamala, Var., albiflonom, Necs.-Taj, jongli dálchini (bark), kikıa, LivRiviya, tej-pát (leaves).

A common shrub in Kumaun belonging to the natural order Lauracea, of which the bark and leaves are exported for culinary
purposes and for use in medicinal preparations. The average annual export of the bark of this tree from the Kumaun forest division alone amounts to 25 tons, and of the leaves to 35 tons.

Curcuma longa, Roxb.-Turmeric-Haldi, kaetaír.
This is the well-known haldi, so much used as a condiment. It is grown in large quantities in south-eastern Garhwál and Kamaun and in parts of Dehra Dún. It forms one of the most important and most profitable of exports from the lower hills, and is cultivated in jungles where nothing else can be profitably raised, as well as in the Dúns and Bhábar. It is singularly free from the attacks of wild animals. The tubers are planted in April-May, and the produce is gathered in November. Major Garstin has estimated the cost of cultivating one acre of turmeric at Rs. 36 , of which one rupee goes for rent, Rs. 5 for sowing, Rs. 3 for planting out, Rs. 20 for seed, Rs. $4 \frac{1}{2}$ for weeding and hoeing, and Rs. $2 \frac{1}{2}$ for harvesting. An acre will produce thirty maunds of root worth Rs. 60 , and when cured and dricd, wcighing about $7 \frac{1}{2}$ maunds, worth Rs. 75 . Sctting down the cost of curing and drying at Rs. 8 , the average net profits on an acre of turmeric amounts to Rs. 31, and thus justifies its popularity amongst the hill cultivators. C. angustifolia is found wild.

Zingiber officinale, Ross.-Ginger-Ada (plant), sontl (green root), allrak (dried root).

Extensively grown in all hot valleys in Kumaun as an article of export. The mode of cultivation consists in first selecting a piece of ground not liable to be flooded and protecting it from excessive rainfall by digging a trench around the apper side. This is then well hoed and richly manared, and in Chait the ginger is planted out in trenches about half a foot deep with ono foot space betwoen onch trench and between each plant. The earth is then heaped over the trenches and the whole covered over with leaves, which are kept in their places by bamboo or wooden poles. The poles are removed before the rains, bat the leaves are not disturbed until the ginger crop is dug up and all the weeding is done by hand. Z. elatum (kaehuir) is found wild in the Kota Dín and is a favourite food of the porcupine and wild hog. It is dug up in February all along the foot of the mountains and sent for sale to the plains, where it comes into use as a medicino.

Amomum subulatum, Roxb.-Cardamom-Ilaichi. Cultivated in gardens for its fruit. Roxburgh, 15.

Allium sativum, Linn.-Garlic-Ladsaas. Cultivated for its bulb.

Humulus Lupulus, Linn.-Hop. The hop flowers well at Háwalbigh, though not so successful as in the west: introduced.

## D.-GREENS. ${ }^{1}$

The vegetable prodacts used as greens may be convoniently divided into three classes :-

1. Plants specially cultivated for food as greens, such as the cabbage, pálakes, ¿c.
2. Products collected from plants cultivated for other purposes, such as the mustard and gram.
3. Uncultivated products used as food.

Grecos are prepared for food in much water and are then pressed to get rid of the excess moisture and are scasoned with spices and clarified butter and in this form are called ság. When cooked in a moderate quantity of water, which leaves then crisp and dry, they are called bhangiya In cither form they are, as a rule, insipid and utterly unpalatable to European tastes. They aro seldom eaten alone and are usually combined with cereals, pulses or other vegetables.

## 1.-Plants specially cultivated as greens.

Brassica oleracea, Linn.-The cabbage.-Gobi, Its cultivated varieties, the cauliflower (phúl-gobi), white-cabbage, Savoy, Brussels' sprouts, borecole, broccoli, and knol-kohl are all cultivated ir English gardens and are gradually spreading anongst the natives. Hooker, Fl. Ind., I., 156.

Brassica juncea, H. f et T.—Mustard—Rái, sarson. The variety S. ramosa, Roxb, is the banladi of Kumaun, and the variety S. rugosa, Roxb., is the bádsháhi-léi and bhotiya-lái of Kumaun, introduced by the Gorkhális from Ncpal. Both of these are cultivated and highly valued as a vegetable. Hooker, l.c., 157.

[^117]Eruca sativa, Lam., is the dua and chara of Kumaun. Cultivated as a fodder and for the oil expressed from its seeds. Hooker, l. c., 158.

Nasturtium officinale, Brown.-Water-cress-Piriya-ldilim. It occurs cultivated and wild in the Kota and Delrra Dún. Hooker, l. c., II., 133.

Lepidium sativam, Linn.-Cress-MÁlim hálang (Garhwál]. Commouly cultivated as a relish. Hooker, l. c., I., 159.

Trigonella Fænum-græcum, Linn.-Fenugreek-Methi. Cultivated; cooked either alone as a relish or with unleavened bread (roti). Hooker, Fl. Ind., II., 87.

Oxalis corniculata, Linn.-Chalnori. Occasionally cultivated, usually wild; used as a salad. Hooker, l. c., I., 436.

Portulaca oleracea, Linn.-Small purslain-Luinak. Cultivated everywhere. Green leaves cooked or caten as a salad. Hooker, l. c., I., 246.

Amaranthus Blitum, Linn.-Chastäi. This and other species of amarunth, such as $\Lambda$. gangeticus and its variety $A$. oleraceus, aro eliefly used as pot-herbs. Roxburgh, 641.

Ocimum Basilicum, Linn.-Sweet basil-Kéli tûlsi, Cultivated as a flavouring pot-herb. Roxburgh, 463 .

Chenopodium album, Linn.-Bethuwa, charit. This and C. viride are used as greens and are very popular.

Phytolacca acinosa, Roxb.-Jirray. Cultivated up to 10,000 feet for its leaves, whicl are used as greens. Raxburgh, 389.

Basella rubra, Willd.-Pyti. Cultivated as greens. Roxburgh, 275.

Rumex vesicarius, Limn.-Cinika-pallang. Cultivated in bects near wells. Roxburgh, 309.

Perilla ocimoides, Linn.-Bhangara. Cultivated both for its leaves and for the culinary oil exprossed from the seeds.
2.-Products collected from plants cultivated for other purposes.

Under this head the following may be briefly noticed. The leaves of the coriander, Coriandrum sativam., Linn, the chaniya of be hills and plains, are collected as greens, the plant itself being
cultivated for its aromatic sceds. Similarly the leaves of the gram plant, Cicer arietinum, Linn., and buckwheat are used as a spinach, as well as those of the safflower, Carthamus tinctorius, Linn. Thes leaves of most of the pulses, such as lobiya, sem, \&c., grown for their seeds, are eaten; also of Brassica campestris and Perilla ocimoides, cultivated for their oil-sceds; of the different species of Arum grown for their tubers, and of Hibiscus camabinus, Linn., cultivated for its fibre. In times of scarcity there are few products of the vegetable kingdom which are not absolutely hurtful that do not afford some aid to the poor man's table. The next section gives a long list of those wild fruits, berries, and leaves that are thus brought under requisition, whilst the number of trees whose foliage affords fodder for cattle when the drought dries up the grass is hardly smaller. The valuc of the forests, therefore, in times of scarcity is considerable, and it is then that the hungry pour into them from every district in the plains, and try to cke out a miscrable existence by collecting these berries and leaves.

## E.-FRUITS, CULTIVATED AND WILD.

The cultivated fruits of the Kumaun division include the peach, apricot, plum, damson, cherry, apple, pear, quince, medlar, orange, lemon, lime, citron, walnut, mango, guava, plantain, pomegranate, fig, strawberry, and mulberry : a goodly list, but varying muchni quality. Most of the Earopean fruit trees have been introduced and distributed from the plantations formed in recent years at Mussooree, Chhajauri, Páori, Háwalbágh, and Ránikhet. Amongst the wild fruits may be noticed the goosebcrry, red and black currant, blackberry, hazel-nut, raspberry, strawberry, figs, pears, apples, and walnuts, none of which are of much value. Wild rhubarb of the red species grows in large quantitics in the upper ranges above 9,000 feet and is of good flavour. In the following section will be found a short notice of the more valuable species and a list of the wild fruits that are commonly regarded as edible and in some respects afford a food resource, especially in seasons of scarcity. In each case a reference is given to a full botanical description from which the tree or plant may be recognized.

Citrus medica, Linn.-Citron. Brandis, p. 50.
Brandis refers the citron, lime, and lemon as varieties of this species.
I.-medica proper-Citron. To this belongs the wild varieties known as biyaura and karan-phal found in the Bhatbar and along the Sarju under Gangoli Hát in Kumaun. The wild varicties aro used for pickling and the dried rind is made into a preserve. The cultivated variety yields the well-known citron preserve; and to it belongs the madkakari of Garhwál.
II.-Limonum-Lemon. Madden refers to this variety the jomira found wild in the Kota Dún of Kumaun, and Royle notes one called pahári-nimbu or pahári-kághazi as wild in the Dehra Dún and the north-western Himálaya. Madden states that the lemons produced in and around Almora in the cold season and allowed to mature in straw are of excellent quality.
III.-acida-Sour-lime. This includes the nibu and its cultivated varieties, the kioghazi, \&c. They are much employed for sherbets and the like and thrive well in the warm valleys.
IV.-Limetta.-Sweet-lime. This variety is cultivated in suitable localities in Kumaun under the names amrit-phal, mitha-nibu. It ripens as far north as the valley of the Sarju near Bágeswar and is much used for sherbets. The dricd rind is in request as a flavouro ing agent.

Citrus decumana, Linn.-Shaddock, pumelo. Brandis, p. 55. This species was introduced into India from Java and is now completely naturalised, ripening in the hills as far as Háwalbágh, near Almora, under the names sadćphal, mahá-nibu. It is a great favourite with all classes and gives fruit all the year round, so that on one tree may be seen the flower and ripe and unripe fruit at the same time.

Citrus aurantium, Linn., includes the bitter or Seville orange, the sweet orange and the bergamot. Brandis, p. 50. Of these three varieties the sweet orange is the form most commonly cultivated. There are several local varieties, some named after the localities in which they are produced and others according to specific distinctions in size or flavour. The kaunla is the smallest and most esteemed, and of it the best cultivated varieties are found in the warm valleys of eastern Kumaun. Oranges are now cultivated generally
throughout the hills up to 5,500 feet and some excellent varieties thrive at Bamti in Garhwal. The orange has been found wild or apparently wild with unwinged petioles at Bigeswar in Kumaun (Str. and W.) and with globose fruit, naked or margined petioles and oblong-lanceolate, acuminate leaves in Garliwál (T. T.)

Vitis vinifera, Linn.-The vine. Brandis, 98. The fruit is called dikhang in Kunáor, where it flourishes ; but it can be raised in Kumaun, where the rains are not too heavy. The vincs and apricots of Kunáor are much praised in the Puranas.

Mangifera indica, Liun.-Mango-Am. Hooker,II.,14. The mango is said to occur wild in the sub-Himálayan tract from Kumaun to Silikim, but it is also cultivated in the Dúns. The mango groves of the Kota Dún have more than a local repute.

Prunus Amygdalus, Baill-Almond—Badán. Hooker, II., 312. A few trees are cultivated in Kumaun, introduced probably by Aogháni workmen.

Prunus persica, B. et F. $f$.-Peach—Aru, rek. Hooker, II., 313. The usual English varieties have been imported and thrive well in suitable localities. The Kábuli peach is completely naturalised in the north-western Himálaya and in places appears to grow wild. Braudis has some observations (p. 191) on its distribution, and notes that the blossom is apt to be killed by excessive frost and that a small green bectle, at times, strips the tree of its leaves. Madden states that at Almora the fruit does not ripen well nor does it ripen at Naini Tail, but in the Dehra Dún and the warmer valleys it comes to perfection and bears well. The flowers appear in JanuaryMay, and the fruit ripens in May-October, according to locality.

Prunus Armeniaca, Linn.-Apricot-Chúáru, chola, zard-álu, jald-áru, hushm-áru, the galdam of 'Tibet. Hooker, II., 313.

The apricot is commonly cultivated all over the hills, especially to the west, in the valleys of the Jumna and Tons, where it affords a very important local food resource and an article of export. An oil is there extracted from the kerncls and is used in medicine and for perfumery purposes for the hair and for burning. This oil is clear, of a palc yellow colour and smells strongly of hydrocyanic acid, of which it olten contains four parts in 100 . Several European varicties have been introduced and distributed through the Ránikhet nad

Massooree nurseries. The flowers appear in January-May, according to elevation, and the fruit ripens in May-September.

Prunus Avium, Linn.-Sweet cherry or gean-Gilds. Hooker, II., 313. Brandis unites this and the following and Hooker keeps them separate. This species is cultivated to the west up to 8,000 fect. It flowers in April-May and the fruit ripens in June. The European varictics introduced have not succeeded in these hills, owing to the effect of the heavy rain on the young fruit.

Prunus Cerasus, Linn.-Acid cherry-Alu-bhálu. Hooker, II. 313. Cultivated up to 7,000 feet. Several varieties from Europeau stock have been introduced and thrive where the rain is not excessive. It flowers and fruits at the same time as the preceding.

Prunus Puddum, Roxb.-Wild cherry-Priya, paiya, padam, paddam. Hooker, II., 315. Common, both wild and half cultivated all over the hills of these provinces. The fruit, though very bitter, is eaten by the natives and is collected for Europeans to make the well-known hill cherry brandy. The flowers appear in OctoberNovember and the fruit ripens in spring.

Prunus communis, Huds.-Yellow bullace-Alu-bukhára(blue), alecha, alúcha (yellow), chhota álu (small variety). Hooker, II., 315. Madden notes two cultivated varietics at Almora; one a darkblue damson known as bhotiya-bodaim, and the other a larger orange red variety called ladik. The first ripens in July and the second in June, and both may probably be referred to $P$. communis, var. domestica, plum or prune. Madden styles them "palatable, but unwholesome." Brandis unites (p. 192) under this species the sloe and the different kinds of plums, damsons, and prunes. Many European varieties have been introduced with more or less success.

Prunus Padus, Linn.-Bird-cherry-Jámana. Hooker, II., 316. This species occurs wild 4,000 to 10,000 feet. The fruit, though insipid and somewhat astringent, is eaten by the natives and may be used in the manufacture of liqueurs. The flowers appear in the hot season, the fruit in the rains. Other wild species are (1) P. nepalensis, Ser., which differs from P. Padus by having the fruit twice as large with a quite smooth, thick-walled stone. (2) P. Jaceuqmontii, Hook. $f$., recorded from the Dhauli valley in Garhwál.
(3) P. undulata, Ham., which occurs from the Jumna to Bhation at $6,500-8,000$ feet, but none of them have any economical value.

Fragaria vesca, Linn.-Strawberry. Hooker, II., 343. The strawberry grows very well in the hills at Mussooree, Binsar, Ránikhet, Naini Tál, and on most tea plantations. Imported stocks also thrive, and indced experience shows that the local stock should be renewed every three years and, when possible, from cuttings from other gardens. The wild strawberries (Fragaria indica, Andr.-Kipaliya, bhyila and F. Vesca, var. nubicola) yield abundantly a palatable fruit, which, however, can be wonderfully improved by cultivation. The fruit of the cultivatod species ripens in the hills during April-May.

Cydonia vulgaris, Pers.—Quince—Biki. Hooker, II., 368. The quince is caltivated in the hills up to 5,500 feet and is caten fresh, candied, dried or in tarts. The fruit ripens June-July. Several European varieties have been introduced through the public nurseries and by private growers.

Pyrus cemmunis, Linn.-Pcar-Naspati, nák. Hooker, II., 374. The pear is cultivated for its fruit throughout the hills $2-8,500$ feet. Most of the European varieties flourish in Kumaun, and pears of excellent quality from Jalna near Almora and other gardens are now procurable in the Naini Tall market. The tree flowers in the spring and the fruit ripeus during the rains.

Pyrus Pashia, Ham.-Mehal, mol. Hooker, II., 374. This species occurs wild everywhere in the hills $2,500-8,000$ feet. The fruit is hard, bitter and worthless, and is only eatable when halfrotten. The stocks are good for grafting. The flowers appear in the spring and the fruit ripens in September-December.

Pyrus Malus, Linn.-Apple—Sel, seo. Hooker, II., 373. The apple occurs wild in the hills $5,000-9,000$ feet and is also cultivated. The flowers appear in the spring and the fruit ripens July-September. Much has been done of late years to promote pomiculture by the distribution of grafts of introduced species from the public nurseries. Apples of all varieties are now found in the markets of excellent quality and at a reasonable price.

Pyrus baccata, Linn.-Siberian crab-Ban-mehal, gwdla-mehal. Hooker, II., 373. This species occurs wild 6-11,000 feet.

The frait is small and sour, but is much prized by the matives. H. Strachey found it at Kunti in By'uns of Kumaun bearing a very small red crab no bigger than a wild cherry and worthless to eat. The flowers appear in spring and the fruit ripens towards the end of the rains.

Pyrus lanata, Don.—Galion, mehali, pattu, Zan-patti. Hooker, II., 375. This species is also wild and is not uncommon 5-10,000 feet. Like the fruit of P. Pashia, the fruit of this tree is only eatable when half-rotten. The flowers appear in April-May and the fruit ripens in August-October. There are several other wild species occurring in Kumaun, such as (1) P. kumenni, Decaisne, 5-8,000 feet; (2) P. vestita, Wall., known as mauli and one of the best (sweetest) wild fruits; and (3) $P$. foliolosa, Wall., known as húliya-súliya. None of these, except $P$. vestita, yield a fruit of any valne, nor is it recorded whether the stocks can be utilised for grafting. All have been described by Hooker.

Ribes Grossularia, Linn.-Gooseberry—Lepcha, galdam(Byáns), sirgochi (Juhír). Hooker, II., 410. The wild gooseberry occurs in the dry parts of the inner Himitaya, 8-11,500 fect. The flowers appear in spring and the frait ripens in September-October. It has a sour taste and is small and not catable. H. Strachey rocords having found it at Tala-kawa in Byans in Scptember and pronounces it worthless. The European cultivated varieties have been introduced, but do not thrive nor bear frecly.

Ribes glaciale, Wall.-Black and red currant-Kukuliya, kalakáliya mángle (Byáns), the red variety ; durbui, dongole (Byáns), the black variety. Hooker, II., 410. The red variety occurs rarely, but the black is frequent above 10,000 feet in Kamaun. The latter is the $R$. acuminatum of Wallich. Both yield a sour, unpalatable froit of no valuc. H. Strachey found it near Nabhi in Byáns, where it is very abundant and yields a fruit described by him as "small and insipid." The flowers appear in May and the fruit ripens in September-October.

Ribes nigrum, Limn.-Black carrant.-Pápar. Hooker, II., 411. This species occurs towards the heads of the Tons and Jumna and in Kumaun on the northern slopes of Rigari-Gudari (G.) over 10,000 feet. The flowers appear in July and the fruit ripens in

August-September. Major Garstin states that the fruit is quite as large and as palatable as the cultivated variety.

Ribes rubrum, Linn.-Red currant-Papar. Hooker, |II., 411. This species occurs in both moist and arid tracts along the inner Himálaya, 5,000-12,000 feet. Brandis notes that in Lahúl there are specimens with a deep campanulate calyx, the lobes of which are ciliate and the fruit (niangha) is yellow when umripe, but black when ripe with the taste of red currants. This fruit is altogether better than that of $R$. glaciale above, though small and more acid than is agreeable. The cultivated red, white, and black currants have been introduced from Europe, but do not appear to succeed in the Kumaun climate.

Punica Granatum, Linn.-Pomegranate-Anair dívin (tree and fruit), náshphál, kushiala, post-anár (rind). Hooker, II., 580. The pomegranate occurs wild all over the hills. The flowers (red or yellow) appear in April-May and the fruit ripens in July-September. There are several varieties cultivated, the flowering pomegranate and those with sweet or acid fruit, but those raised from Afghániston stocks are preferred. The fruit is sub-acid and pleasant to the taste and allays thirst. The bark is largely exported for tanning.

Bassia butyracea, Roxb.-Butter-trce-Chiurra, chydra; the butter is called chyzura-ka-pina in Almora and phalel and phalwára in the plains. Brandis, 290 ; As. Res., VIII., 477. This fine tree occurs along the outcr ranges $1,500-4,000$ feet. The flowers appear from November to January, and the honey produced by the bees that feed on them is estecmed above all others in Kumaun. Madden records its occurrence on the Kamolaghat leading to the Kota Dún. In Sor, it is abundant in the Pithoragarh valley, reaching the size of a large tree as high up as Kanthagaon ( 4,000 feet), and it occurs in abundance in the Killi valley on both the Kumann and Nepál sides, from Askot to Punagiri, near Barmdeo. The sweet insipid pulp of the fruit is eaten and the cake lef't after the oil has been extracted is catable. From the seeds a soft solid vegetable butter is extracted of the consistence of fine lard and of a deli-* cate white colour, which does not melt in the heat of the plains and keeps a long time without deteriorating. It melts completely at $120^{\circ} \mathrm{F}$., and is used as a cold-cream and lip-salve. Pharm., 131.

Corylus Colurna, Linn-Iazel—Kapási, Bhotiya-badám. The hazel occurs wild $5,000-10,000$ fect to the west of the Ganges ard in one strip of jungle in Painkhanda, nine miles north-east of Joshimath aud in a few other places in Garhwál. The flowers appear in March-April and the fruit ripens in the rains. The kernels of the fruit aro eaten and in some places are as good as English hazel-nuts. The trees bear every third year and yield a crop sufficient for export to the plains.

Juglans regia, Linn.-Walnat-Akhrot, kharot, dk. Brandis, 497. This tree occurs wild and planted throughout the hills. The fruit ripens in July-September and numbers several varieties, the best being the thin-shelled or kaghazi-akhrot. The better sorts appear to be more common to the west of the Ganges. An oil used for burning and culinary purposes is expressed from the kernels of both the wild and cultivated varietics.

A mere list of the remaining trees, caltivated and wild, that afford edible products will be sufficient. A description of each tree will be found in Part V. of my 'Notes on the Economic Products of the North-Western Provinces.'




## F.-PARTS OF WILD PLANTS USED AS FOOD IN THE HILLS OR SUBMONTANE TRACT.

The following list ${ }^{1}$ gives some of the wild plants of which parts are used for food in seasons of scarcity. Some of them, sucl as the lotus, yams, and wild millets, are always caten by the poorer classes :-

Scientifle name.	Vernacular name.	Reference.	Parts edible.
Nelumbium speciosun.	Kanual, padam, am$b a j$.	Hooker, I., 116...	Stalk, leaves, and roots.
Triumfetta rlomboidea.	Manphora, jhinjhru ..	$395 . . .1$	Leaves and sceds.
T. ${ }^{\text {pilora }}$...	Leshwa-kumariya ...	" 304...	Ditto.
Tribulus terrestris ...	Gokhrue ...	", 423..	Leaves and fruit.
Leea aspera ...	Kumali, Aurmáli		Fru
l'ueraria tuberosa ...	Bilai-kupd, birálıpúna, sarál (Jaunsír).	Hooker, II., 197...	Tuberous roots.
Flemingia congesta,	Mus-kela	" 229..	Pods.
Cassia Tora	Banár. panwar	" 263..	Leaves and stems.
Trianthema mono- gyna.	Bishhhapra	660..	Ditto.
IIydrocotyle asiatica.	Thalhari	669..	Leaves.
l pom@a sessiliflora,	Haran-hhúri, hara	Roxburgh, 159...	Ditto nnd stems.
Solanum verbascifolium.	Aseda	189...	Fruit.
Celusia argentea ...	Sırâli, ghogiya	228..	Leaves and atems.
Digera arvensia $\quad .$.	Das	Drury, III., 29...	Ditto.
Euphorbia angustifolia.	Dúthila.gháy, mahâbir.	, 120...	Secds.
Urtica purvitora ...	Berain, shishona ..	Roxburgh, 654..	Lenves.
Aloe vulgaris ...	Gaikwár	Drury (U.P.)27.	Seeds and leaf pulp.
Commelyna obliqua,	L’äna, hanjura	$\mathrm{Drury}_{3: 0} \text { (F.I.) III., }$	Leaves and stems.
Dioscorea sagittata,	Tair, tarúr	Royle	Roots.
" versicolor,	Genthi, githi gajir,ghanjin.	Drury (F.P.)III.,	Do.
" pentapliylla	Tagúna, tákuli ...	276.	
" quinata	Magiya, mumiya ...	...	Do.
" deltoidea	Gún		Do.
Opli aculeata ...	Man-alu $\quad$, $\cdots$	276.	Do.
Oplismenus colonus,	Saun, jangli-mandira, Sarhar sarur	Roxburg ${ }^{\text {a }}$ ¢70 ...	Seeds. in Plíbar
Saccharum Sara ..	Sarhar sarur Kaseru	Roxburgh, 82	Do. in Bláabar Roots.
Asplenium polypodioides.	Lingura	" ...	Fronds.
Nephrodium odoratum.	Kutra	..'	Do.

[^118]
# II.-Vegetable substanges used in medicine or for INTOXICATION. <br> > A.-Drugs. B.-Narcotics and Spirit. <br> <br> A.-Drugs. B.-Narcotics and Spirit. 

 <br> <br> A.-Drugs. B.-Narcotics and Spirit.}

## A.-DRUGS.

My ohject in the following list of the vegetable drugs found and used in or exported from the Himalayan districts of these Provinces is to give a reference to a work where each one is botanically described and also to a work where their medicinal properties have been noticed. ${ }^{1}$ It would be out of place here to do more than briefly indicate the therapeutic virtues attributed to them by European and Native practitioners. The following remarks ${ }^{2}$ of Dr. Burton Brown on the vegetalle drugs collected for the Lahore Exhibition will form a fitting introduction to this section of our subject:-
"The medicinal use of preparations of vegetable drugs has been for a long time of the greatest importance, and until a comparatively recent period the number of drugs olvained from plants and animals greatly exceeded that of preparations from the mineral lingdom. This depended on the fact that until chemical knowledge was fixed on a firm basis, it was only with great difficulty and after many failures that chemical products could possibly be obtained ; while, on the other hand, the different parts of plants to which a medicinal use was assigned were easily distinguished and procured without much trouble. In Europe, owing to the progress of science, mineral preparations are now most extensively made and used for medicinal purposes, and many of our most valuable drugs are derived from this kingdom. But in India the knowledge of chemistry is confined to those among the natives who have been instructed by Europeans, and therefore medicinal substances procured from the mineral kingdom are comparatively seldom made or used, excepting by those who have been so taught; or those mineral articles are used which are procurable without much skill in preparation and are often of little efficacy. The use of vegetable drugs would probably be the first to recommend itself to those seeking relief from

[^119]pain and disease, because plants are everywhere at hand, their number is very great, and their forms are distinctive and often peculiar, and in some cases they have been supposed to bear a more or less obscure resemblance to certain parts of the body, either in health or when diseased. Thus, in olden times, we find in Homer that Nestor used a poultice of onions, cheese, and meal, mixed with wine, to Machaon's wound ; and the former substance was used by the ancient Egyptians in cases of dropsy. The hellebore of Anticyra was long extolled by the Greek writers, and is said to have been used by Melampus of Argos to cure the daughter of king Proclus of melancholy. It has also been supposed that opiom was the Nepentle of Homer.
"Enough has been adduced to prove the antiquity of those simples or Galenical preparations as medicinal drugs derived from the vegetable kingdom, and it is well next to consider in what manner the use of drugs was probably commenced. The use of each vegetable preparation was, probably, at first brought about by the experience of individuals, ach of whom had found that certain plants were useful in the diseases which afflicted himself or his neighbours, and this knowledge was more rapidly spread owing to the ancient custom of placing the sick in public roads and markets, so that passers-by might communicate information respecting such remedies as were employed in similar cases. As olserved by Herodotus, in this way a knowledge of a great number of medicines would be aequired, at first chiefly of those which were indigenous to the country, but gradually the drigs of other countrics would become known, especially those which were found to be of undoubted efficacy in the disease for which they are used.

Hence it is to be expected that there will be found a larger number of substances, which are inert or nearly so in a Materia Medica which comprises indigenous plants only, than in a collection of drugs brought from a distance. Moreover, as the imported drugs must always be more costly than the indigenous ones, there will always be a tendency to substitute some indigenous substance which may resemble the foreign one in appoarance or action, especially as the description of the drugs or of the plants from which they are derived was formerly much less carefully attended to than now. Thus it will be seen, as above stated, that an Indian plant,

Pierorliza Kurrooa, has been substituted for the more remote hellebore of the Greek physicians. Similarly a kind of Valerian takes the place of Asarcelacca, and fruits of Gamlenia that of the juniper. This substitution would certainly bring tho kind of remedy in which it was employed into disrepute, as the substance used for edulteration would differ greatly from the original "drug in its powers and mode of action.
" Besides the aloove modes of ascertaining the natures of remedies, which, being founded on actual experience, must be termed improved methods, there is another mode called the Doctrine of signatures. This is founded on the belief that every natural substance possessed of medicinal virtues indicates by its external character the disease for which it should be employed. Thus turmeric, rhulsurb, and other roots, which lrave a brilliant yellow colour, were supposed to be specially useful in jaundice and diseases of the liver. Cassia fistula (amaltás), from the peculiar septa of the fruit rescmbling the valves of the intestines, is supposed to be especially destined for the cure of diseases of those organs ; and similarly, poppies, from the shape of their capsule, were supposed to be useful in discases of the head ; and roses, from the colour of their petals, in throse of the blood. Many small red or yellow seeds, especially those of cruciferous plants, were supposed to be useful in cases of gravel, the teposit of which they sometimes rosemble in appeatance; and salap misri is used in diseases of that organ to which the name of Orchis (applied usually to the plant) is assigued. The convoluted pod of the Ihelicteres Liora is employel in colic, since it is supposed to resemble the twisting of the coils of the intestines. But although it is probable that the use of different drugs was commenced in some of the ways already spoken of, yet at the present day the native physicians have adopted, with some modifications, the idea of Galen respecting the method of operation of medicines: this was, that the uses of all medicines were derived from their elementary or cardinal properties-namely, heat, cold, moisture, and drynces ; and that all diseases could also be classed under the above heads, but that in the troatment of disease a medicine should always be employed which was of a contrary nature to the disease treated. Thus a cold disease requircs a hot remedy and the couverse. It is probable that ignorance of the
pitachment to this theory (which is well known to native patients and hakhes) is often an obstacle to the employment of European medicines in the hands of European practitioners among natives, as either a remedy which they consider hot is employed for a diseaso which is also considered hot, or the prescriber does not state whether the remedy given is a lot or cold one even when asked. Although the theory that medicine acts by being hot or cold only is entirely erroneous, yet it has so strong a hold on the confidence of many natives that, without some attention to it, it would be difficult in many cases to induce them to take the medicine ordered.
"The following is a list of some of the drugs employed, showing their nature according to native ideas, and also their real use in European modicine :-


[^120]| Scientific name. | Veruacula |  | Reference. | Real ure. |
| :---: | :---: | :---: | :---: | :---: |
|  | Dry medicines. |  |  |  |
|  | Ustúkhưdús |  | - | Aromatic. Inert. |
|  | Ab-i-reshm |  |  |  |
| Centaurea Belhen, B | Bahman |  | Hooker, İI., 103 | Tonic. |
| Psoralea corylifolia, B Linn. | Bábe hi | ... |  | Ditto. |
|  |  |  |  |  |
| Cinnamomum zeylanicum, Bayn. | Dálchini |  | Brandis, 375 | Aromatic. |
| Cinnamonum Tamala, Nees. | [Sirisiriya |  | " 374 | Ditto. |
| $\begin{aligned} & \text { Mentha } \\ & \text { Linn. } \end{aligned}$ | Padína | -• | ** | Ditto. |
| Crocus sativus Limu. Z | Zafrán | ... | $\cdots$ | Inert. |
|  |  | Moist remedies. |  |  |
| Phyllanthus Emblica, Linn. | Aonla |  | Brandie, 454 | Astringent. |
| Silica (of the bambu), | Tabáelír | .. | " 566 | Inert. |
| Vitio vinifera (raisins). |  | .. | " 98 | Demulcent. |
| Camphor $\quad .$. | Kafúr | $\cdots$ | ... | Aromatic. |
| Onosma echioides, Sm. | Gau-zabán | ... | $\cdots$ | Tonic. |
| Coriandrum sativum, Linu. | Dhauiya | .* | Mook cr, II., 7 | Aromatic. |
| Nymphæa stellata, Willd. | Nílofar | .- | ... | Inert. |

" From the above list it will be secn that many of the cold remedies are what are used in Europan therapeutics as astringent medicines, while the hot remedies are principally aromatics, while remedies having various properties fall under the dry and moist categories."

## A.

Abrus precatorius, Linn.-A Indian liquorice-Gunchi, rakti, ratnaliya; described by Baker in Hooker, Fl. Ind., II., 175. The red or white seeds are used as a weight and as beads in a rosary ; hence the specific name, and also for fistula in native practice. The root is used as a substitute for, and to adulterate, true liquorice, and an extract from it, like that from the latter, is officinal. Pharm., 74, 446.

Abutilon indicum, Don.—Kangai; described by Masters in Hooker, I., 326. The leaves yield a mucilaginous extract used as ademulcent. The root is used in leprosy and in infusionas a cooling drink, and the seeds are considered laxative and are given in coughs.

Acacia arabica, Willd.-Babul; cleseribed by Baker in Hooker, II., 293. This tree and others of the same genus yield a gum which is used as a substitute for gum-arabic. The bark is considered a powerful astringent and is used as a substitute for oak bark, and the leaves enter into preparations for sores and cutaneous affections Pharm., 62, 77.

Acacia Catechu, Willd.-Khair; described by Baker in Hooker, II.,295. The extractcalled kath yiclds an active principle consisting of mimotannic acid and catechu and is used as an astringent and tonic. Pharm., 62, 63.

Achyranthes aspera, Linn.-Chirchira; described by Drury (U. P., 4). The seeds are given in cutaneous diseases, the flowering spikes in hydrophobia, the bruised leaves as an application for stings, and the dried plant in colic. Pharm., 184.

Aconitum ferox, Linn.- conite-Mitha-zahar (bazaar), mau-ra-likh (root), mathir'; described by Hooker and Thomson, I., 28 : see also Pharm., 3, 434. This species is found above 10,000 feet and is largely export ed. It yields a deadly poison used in rheumatism and neuralgia.

Aconitum heterophyllum, Linn.-Aconite-Atis (root) ; dcscribed by Hooker and Thomson, I., 29. This species also grows at high elcvations above 8,000 feet. It is used as a tonic, febrifuge, and aphrodisiac, and with A. Lycoctonum (Bish.) and A. Napellus (Piliya-kachang and diudhiya, the roots), occurring at similar elevations, is exported in small quantities to the plains. Pharm., 4, 434.

Acorus calamus, Linn.-Gur-bach, bach (root); described by Drury (U. P., 13). The dried rhizomes are used as a bitter, aromatic tonic in fevers, rheumatism, and dyspepsia, and are exported to the extent of about 26 tons every year from the Kumaun forest division. Pharm., 249.

Actiniopteris radiata.-The Asplenium radiatam of Royle-Mor-pankhi, Mor-pachh. This fern is used as an anthelmintic. The root of Goniopteris proliferum is used in fevers and that of Nephrolepis cordifolia in electuarics.

Adiantum Capillus-veneris, Linn.-Maiden's hair fern-the mubáraka of Kumaun. This fern and A. venustum (Pareseoshán, hansraj $)$ are exported from the Kumaun forest division, both as a
medicine and a dye, to the extent of about 10 maunds a year. They are both considered astringent, aromatic, tonic, and emetic in largo doses. The rhizomes and dried leaves of various other species of ferns are sold in the bazaars under the names iskutikentriytin and balúkanlán, corruptions of the names Scolopendrium and Polypodiun
※gle Marmelos, Corr.—Bael—Bel; described by Hooker, I., 516. The fruit is a specific in atonic diarrhoea and dysentery. Pharm., 46, 441.

Albizzia Lebbek, Benth.-Siras; described by Baker in Hooker, II., 298. The bark is applied to sore eyes and the root in making an ointment used in ophthalmia and in cutaneous affections and is given in decoction for diarrhœa.

Allium Cepa, Linn.-Onion—Piyaj. This common vegetable is used in special diseases as a stimulant, diurctic, and expectorant. A. sativum-Garlic-Lahsan-is supposed to have similar properties in native medicine.

Aloe indica, Royle—Glikazár ; described by Drury (U.P., 26). The bitter inspissated juice contains a cathartic principle. A. perfoliata, Roxb., occurs rarely in gardens in Kumaun. Pharm., 242.

Alstonia scholaris, R. Br.-Chhatiyun, satiyain of the Bhábar; described by Drury (U. P., 29). The bark is a powerful tonic, anthelmintic, and antiperiodic: the milky juice is applied to ulcers and mixed with oil in ear-ache. It is also valuable in dysentery and diarrhœe. A. lucida, the dudli of Kumaun, is found on the first range and is said to possess similar properties. Pharm., 137, 455.

Amarantus farinaceus and others of the same and allied genera are held to possess diuretic and purifying propertics. Pharm., 184.

Anagallis arvensis, Linn., var. carulea-Pimpernel—Jonkhmári, jainghani; described by Drury (F. P., II., 128). Triturated it is used to intoxicate fish and to expel leeches from the nostrils. It is also used in cerebral affections, leprosy, hydrophobia, and dropsy.

Anatherum muricatum, Beauv.-Kas or khas; described by Drury (U. P., 38). The roots are given in infusion as a febrifuge and in powder in bilious affections and also yield an oil.

Aneilema tuberosa, Hium., Murlannia scapiflora, Roylo-Mhisli-siy,yh and safed (roots). The rootlets furnish an astringent, tonic prepraration and are exported for this purpose from Kumaun. Plarme, 235.

Anisomeles ovata, R. Br.-Gobara; described by Drury (F. P., 1I., 557). This plant has carminative, astringent, and tonic properties and also yields an oil. Pharm., 168.

Anona squamosa, Limn.-Custard-apple-Sitaphal, sharifaht. Hooker, Fl. Ind., I., 63. The powdered seeds mixed with flour of graun and water make a hair-wash and the bruised leaves with salt make a cataplasm to induce suppuration.

Artemisia vulgaris, Linn.—Páti; described by Roxburgh, 599. This species is common in Kumaun ; it has stomachic and tonic properties and is given in fevers. A. scoparia, Wall.-Jhao-has similar uses. Pharm., 122,126 .

Argemone mexicana, Linn.-Kcuntela; described by Ilooker and Thomson, I., 117. Au introduced plant now completely naturalized. The seeds yield an oil, used as a mild, cooling laxaltive. The juice of the $p$ lant is diuretic, relieves blisters and heals excoriations and indolent ulcers. Pharm., 22, 440.

Argyreia speciosa, Choisy-Gao-putte, Lich-tárak; found wild in the Dehra Dun and the Bhabar, described by Drury (U. P., 49). The leaves are used as emollient poultices for wounds and externally in skin discases, having rubeticient and vesicment propertics. A. seltose occurs in the Sarju valley near Kapleot. Pharm., 157.

Artocarpus integrifolia, Limn.—Jack-tree—kathal; descrilued by Brandis, 425 . T'he juice of the trumk is used in glandular swellings, the young leaves in skin diseases, and the root in decoction in diarrlucia.

Asparagus adscendens, Roxb.-Khairuwa; described by Roxburgh, 291. The tuber of this species is used as a demulcent and tonic.

Asparagus racemosus, Willd.-Sitrával (plant), bozidlán (root), hucliyún (fruit). The root is used in special discases and has also demulecnt properties in veterinary medicinc. Pharm., 243.

## B.

Bœnninghausenia albiflora, Reich.-White rue-Pisu-gheis ; described by Hooker, I., 486. Exported and used as a medicine for poultry.

Balanites Roxburghii, Planch.-Inguaza; is found in Dehra Dún (Royle), and is described by Bennett, I., 522. The leaves have anthelmintic properties and the bark is used as a cattle medicine. The unripe drupes have strong cathartic properties, but when ripe are pleasant and the sceds are given for coughs.

Baliospermum indicum, Dnc.-Croton-Jangli jamélyota; described by Drury (F. P., III., 192). The seeds are used as a purgative, but in over-doses are an acro-narcotic poison. They are also used externally as a stimulant and rubefacient. The oil is a powerful hydragogue, cathartic, and useful for external application in rheumatism. Pharm., 201.

Barleria cristata, Linn.-Gorp-jlla, kéla-bánsa (leaves); described by Roxburgh, 471. The sceds are supposed to be an antidote for snake-bites and the roots and leaves are used to reduce swellings and in coughs.

Bassia butyracea, Roxburgl (sce page 715 antca). The butter is used for rheumatism and as a pomade and lip-salve. The oil of B. latifolia is used for soap and emollient ointments and the spirit distilled from the flowers as a stimulant. Pharm., 130, 131.

Bauhinia variegata, Linn.-Klwuirdl, kachnár; described ly Baker, II., 284. The root in decoction is useful in dyspepsita and flatulency ; the flowers with sugar as a gentle laxative; and the lark, flowers or root triturated in rice-water as a cataplasm to promote suppuration.

Benincasa cerifera, Savi-Bhunja, petha, kumhra (see page 700). This gourd has alexipharmic and tonic properties and is given in dysuria in nativo practice.

Berberis Lycium, Royle-Kashmal ; described by Hooker and Thomson, I., 110. The root is known as kingorc-ki-jar in the hills and dir-hald and dar-chol in the plains. An extract from the roots
is known as rasaut, and it is chiefly from this species that it is obtained in Sirmor and Garhwál. The medicinal extract is highly esteemed as a fobrifuge and as a local application in cye-diseases. It is said by some to have been known to the ancient Greeks and Romans as 'Lykion,' and pots labelled "Best Himálayan Lykion" have been found in the ruins of Pompeii, but this identification is disputed. In Kumaun B. aristata and B. asiatica yield rasaut. The average annual export of the root from the Kumaun forest division is about two maunds and from Garhwál about double the quantity. Pharm., 13, 436.

Boerhaavia diffusa, Linn.-Géda-puvna; described by Drury (F. P., III., 34). The root of this common weed is given in infusion as a laxative, anthelmintic, and cooling medicine. Pharm., 185.

Bombax malabaricum, D. C.-Senal; described by Masters in Hooker, I., 349. The gum is given in asthenic cases; the root furaishes one of the musali and is used as a stimulant and tonic and in large doses as an emetic, and the leaves are employed as an aphrodisiac and in special diseases. Pharm., 36.

Boswellia thurifera, Cole-Indian frankincense-the salhi of Garhwál ; described by Drury (U. P., 84). The gam is prescribed with clarified butter in special discases, with cocoa-nut oil for sores, and as a stimulant in pulmonary diseases. Pharm., 52.

Brassica nigra, Koch.-Black mustard—Kali sarson. This and the allied species, $B$. alba and $B$. juncea, are frequently used in medicine as rubcfacients and vesicants. Pharm., 25.

Briedelia montana, Roxb.-Kangraliya; described by Roxburgh, 705. Rcported to possess astringent and anthelmintic properties and found at $3-4,000$ feet.

Buchanania latifolia, Roxb.-Chironji; described by Brandis, 127. The oil extracted from the kernels of the fruit is used as a substitute for almond oil in native medicinal preparations and confectionery.

Butea frondosa, Roxb.-Palás, dhák; described by Brandis, 142. The inspissated juice obtainable by incision is used as a substitute for kino : the seeds as a vermifuge and anthelmintic and when
made into a paste as a remedy for ring-worm. B. parviflorce-maula-has similar properties. Plarm., 73, 74, 79, 446.

Buxus sempervirens, Linn.-Papri, shamáj; described by Brandis, 447. A tincture from the bark is used as a febrifuge.

## C.

Cæsalpinia Bonducella, Fleming-Karaunj; described by Baker, II., 254. The kernels are used as a tonic in fevers and made into an ointment with castor-oil and applied externally in hydrocele. An oil is extracted from the leaves which is used in palsy and rheumatism. Pharm., 68, 446.

Callicarpa arborea, Roxb.-Gliwála; described by Drury (U. P., 97). The bark is aromatic and bitter and is applied in decoction in cutaneous affections.

Calosanthes indica, Blume-Pharkath; described by Drury (U. P. 100). The bark is astringent and used in applications to cuts and fractures. The seeds are applied to abscesses and the officinal syonals seems to be procured from the leaves.

Calotropis procera, R. Br.-Madár, ák; described by Brandis, 331. The root, bark, and inspissated juice are used extensively for their emetic, diaphoretic, alterative and purgative properties. Pharm., 141, 457, 458.

Canna indica, Linn.-Indian shot-Kiwára; described by Drury (U. P., 106). The root is used as a diaphoretic and diuretic in fevers and dropsy.

Cannabis indica, Linn.-Bhang. See intoxicating drugs, postea, and Pharm., 216, 463.

Capparis horrida, Linn.-Ulta-kánta, bipuwa-kánta; described by Hooker and Thomson, I., 178. Found in the Buábar. A cataplasm of the leaves is considered useful in boils, swellings, and piles.

Capsicum frutescens, Linn.-Mircha, kursáni; prescribed in native practice in gout, dyspepsia, cholera, and ague.

Careya arborea, Roxb.-Vákamba, kúmbhi; described by Clarke in Hooker, II., 511. The flowers are given as a tonic in sherbet after childbirth.

Carum copticum, Benth.-Lovage-Ajwain; described by Clarke, II., 682. This plant possesses valuable stimulant,
carminative and antispasmodic properties; it aids digestion, and is used in colic, colds, rheumatism and fever and is also esteemed as a diuretic. Pharm., 98, 99, 447. C. Carui, Linn.-Carraway-Kálajlıa-(Hooker, l. c., 680) occurs at the same elevations (8-10,000 feet) and possesses similar virtues. Both are exported to the plains.

Cassia Absus, Linn.-Banár; described by Baker, II., 265. The seeds are used in powder applied beneath the eyelids or in the form of an ointment in ophthalmia. Pharm., 78.

Cassia Fistula, Linn.-Kitola, itola, raj-briksh of the Bhábar; described by Baker, II., 256. This tree yields the commonest cathartic used in native medicine. The pulp around the seeds is a valuable laxative, the flowers are used as a febrifuge made into a confection known as gril-kand, and the root is a strong purgative. The bark and lcaves are applied to cutaneous eruptions. Pharm., 65.

Cassia Sophera, Linn.-Bandr of the Bhábar ; described by Baker, II., 262. The bark, leaves, and seeds of this tall weed are cathartic and the juice of the young leaves is applied in ringworm. C. Tora has the same native name in Kumaun ; its leaves are eaten by men and animals and the seeds are used as a remedy for itch. Pharm., 78.

Cedrela Toona, Roxb.—Túni; described by Drury (U.P., 128). The bark is astringent and has been found a fair substitute for quinine in fevers and bowel complaints, especially with young children. Pharm., 55.

Celosia argentea, Linn.-Siráli, samoáli, gogiya; described by Drury (F. P., III., 15). The seeds are used chiefly in special diseases.

Chavica Roxburghii, Miq.-Piper longum, Linn.-fruit piplamúl ; described by Drury (U. P., 131). P. longum, var. silvaticum, grows wild and the fruit is largely exported as a condiment and a stimulant in medicine. Pharm., 208.

Chenopodium album, Linn.-Bhatuwa; described by Drury (F. P., III., 5). It is used in special diseases and as a laxative in spleen and bilious disorders.

Cicer arietinum, Linn.-Gram-Chana (see page 693). The hairs of the stom and leaves exude an acid used as a refrigerant in fevers; the seeds are considered stimulant and when roastcd are used as a substitute for coffee berries. Pharm., 80 .

Cinnamomam Tamala, Nees-Taj (bark), tejpát (leaves); described by Brandis, 374. The bark and leaves are used as a carminative, aromatic and stimulant in coughs and dyspepsia and generally as a substitute for true cinnamon. Pharm., 1.96 .

Cissampelos Pareira, Limn.-Pari; described by Hooker and Thomson, I.,203. The dried root has diuretic, tonic and slightly aperient qualities and forms part of the plli-jari or 'yellow-root' of the native Materia Medica. The leaves are applied to abscesses. Pharm., 7.

Citrullus Colocynthis, Schrad.-Indráán (see page 701). The fruit affords a safe and active cathartic in hepatic and visceral congestion. C. Hardwickii, the air-alu of Kumaun and pahariiindrayan of the plains, has similar properties. Pharm., 94.

Citrus Aurantium, Linn.-Oragge-Nârangi-(2) C. medica-Bijaura-(3) C. var. Limonum-Jámira-and (1) C. var. Iimetta-Amritphal-are all used in medicine as tonics and purifiers of the blood, refrigerants in fevers, flavouring materials in infusions, pomades, \&c., anti-scorbutics, stomachics, and carminatives. The juice is exported from the Kumaun forest-division to a great extent every year. Pharm., 42, 43, 45.

Cleome viscosa, Linn.—Jangli-harhar; described by Hooker and Thomson, I., 170. The seeds are considered antlelmintic ; the leaves are used as a vesicant, and boiled in clarificd butter are applied to wounds, and the juice to ulcers. The root is administered in decoction as a febrifuge. This plant is often confounded with Gynandropsis pentaphylla.

Clerodendron serratum, Spr.-Ganth-baharangi; described by Drury (U. P., 141). The leaves of this common plant are boiled in oil for applications in ophthalmia : the roots boiled in water with ginger and coriander are given in nausea, and the seeds are slightly aperient. The leaves of C. infortunatum, Linn.-Bhatalso afford a cheap and efficient tonic and antiperiodic. Pharm.,
164. C. Siphonanthus, R. Br.-Arni-also occurs and its roots and leaves are officinal in native practice.

Cochlospermum Gossypium, D. C.-Katera, gajra; described by Hooker and Thomson, I., 190. This small tree yields a gum used as a demulcent in coughs and special diseases. Pharm., 27.

Colocasia antiquorum, Schott.-Kachu, arwi; described by Drury (U. P., 155). The inspissated juicc of the petioles is a capital styptic for wounds. Pharm., 250.

Commelyna obliqua, Don.-Kanjura, lana. The root is useful in vertigo, fevers, and bilious affections, and is said to be used as an antidote to snake-bites.

Corchorus olitorius, Linn.-Banphal; found in Dehra Dún ; described by Masters in Hooker, Fl. Ind., I., 397. The leaves are emollient and used in infusion as a refrigerant in fevers and special diseases. The dried plant toasted and powdered is used in visceral obstructions.

Cordia latifolia, Roxb.-Bairálu, baurúla; described by Drury (U. P., 160). The fruit is used as an expectorant and astringent. Pharm., 157.

Cordia Myxa, Linn.-Koda ; described by Drury (U. P., 161). The pulp of the fruit is used as a laxative and the seeds mixed with oil are deemed a specific in ringworm. The juice of the bark in infusion is given with cocoa-nut oil in gripes. Pharm., 157.

Coriandrum sativum, Linn.-Coriander-Dhaniya; described by. Clarke, II., 717. The dried ripe fruit and the volatile oil are both used in medicine as an aromatic stimulant in colic and the like. Pharm., 101.

Costus speciosus, S. M.-Keyı, keoli, leút-shirin (root) ; described by Drury (U. P., 164). From the root a strengthening tonic is made and it is also used as an anthelmintic.

Crinum asiaticum, var. toxicarium, Herb.-Clindar, kanwal, pindar, kanmu; described by Roxburgh, 283. A valuable emetic; in small doses nauseant and diaphorctic. The dricd sliced roots are also emetic : the leaves with castor-oil are used in rheumatism and the juice in ear-ache. Pharm., 234.

Cucurbita Pepo, Linn.-Bhúnga, petha; and C. maxima-gaduwa (see page 702). Both these gourds are used in micdicine; the leaves as applications for burns and the seeds as anthelmintics. Pharm., 96.

Cuminum Cyminum, Linn.-Stra (see page 705.) Both fruit and oil possess carminative properties allied to dill and coriander : the seeds are largely exported to the plains. Pharm., 108.

Curculigoorchioides, Gœrtn.-Petúri; described by Drury (F. P., III., 458). The tuberous roots are some of those known as músli-siydih and are held in the highest esteem by native physicians as a specific in special discases. Pharm., 235.

Curcuma longa, Roxb.-Turmeric-IIaldi (see page 706.) This is much used as an application in bruises : the fresh juice as an anthelmintic ; the fumes of the burning root in coryza and the root in decoction for relieving catarrh and purulent ophthalmia. Pharm., 231.

Cymbopogon Martini, Munro-Bujina, pála-kikari. The oil, known as raus-ka-tel and Nimar oil, enters largely into native perfumery. The roots of C. laniger-Piriya-are also used as an aromatic stimulant (see Drury, F. P., III., 641). Pharm., 256.

Cynodon Dactylon, Pers.-Dúb; described by Drury (U. P., 180). This grass yields a cooling decoction from the roots and young leaves found useful in fever.

Cyperus rotundus, Linn.-Motha; described by Drury (U. P., 182). The roots are held to be diaphoretic, diuretic, and astringent Pharm., 250.

## D.

Dalbergia Sissoo, Roxb.—Sisu; described by Drury (U. P., 186). The leaves and saw-dust in decoction are esteemed in eruptive and special diseases and to allay vomiting. The oil is also applied externally in cutaneous affections.

Datisca cannabina, Linn.-Bujr-lhanga, bhang-jala (roots); described by Clarke, II., 656. The roots are exported as a medicine useful as a sedative in rhemmatism and to aid in dyeing red.

Datura alba, Linn.-Dhatíra; described by Drury (U. P., 188). The leaves and seeds are used as anodynes and antispasmodics. Pharm., 175, 460.

Daucus Carota, Linn.-Carrot-Gajar. This common vegetable is used as a poultice for ulcers and boils.

Delphinium Brunonianum, Royle-Nepári; described by Hooker and Thomson, I., 27. Occurs at 14,000 feet and is exported for its higbly musk-scented leaves, used in native perfumery and for temple offerings.

Dendrocalamus strictus, Nees-Bambu-Báns, básila; described by Brandis, 529. The bambu yields a siliceous secretion in the joints of the female plant, called bans-lochan or tabaskir, considered by the Baids to be useful as a stimulant and aphrodisiac. The root is said to be a diluent, the leaves are used as an emenagogue and anthelmintic and the dried stems as splinters in surgery, which seems to be the only really valuable use that the products of the bambu are put to in medicine. The product banslochan is exported in small quantities from Kumaun. Pharm., 256.

Desmodium triflorum, D. C.-Kudaliya ; described by Drury (U. P., 190). The fresb leaves are applied to wounds and abscesses that do not heal well.

Dioscorea versicolor, Wall.-Yam—Genthi, gajir. The tubers yield a farinaceous food for invalids.

Diospyros Melanoxylon, Roxb.-Tendu; described by Brandis, 294. This and the other species of ebony afford an astringent from the bark which is used in decoction in diarrhœen, dyspepsia, and the like as a tonic. Pharm., 132.

Dolichos sinensis, Linn.-Lobiya (see page 695). This and other similar pulses are prescribed in special diseases and as stomachics.

Drosera peltata, Gm.-Mukha-jali ; described by Clarke, II., 424. The leaves bruised and mixed with salt are used as a blister in Kunaun.

## E.

Eclipta erecta, Linn.—Moch-kand, bhangra, bábri; deseribed by Drury (U. P., 202). The fresh plant is applied with gesamum
oil in elephantiasis ; the expressed juice in affections of the liver, spleen, and dropsy, and in large doses as an emetic ; also as a black hair-dye. The average annual export from the Kumaun forest division is about 5 maunds. Pharm., 128.

Elæagnus umbellata, Thunb.-Ghiwain, kankol; common in the hills from the Jumna to the Sárda; described by Brandis, 390 . The seeds are reported to be used as a stimulant in coughs, the expressed oil in pulmonary affections, and the flowers as a cardiac and astringent.

Elæodendron glaucum, Pers.-Shauriya (Kumaun) and jamuvaa (Dehra Dún) ; described by Roxburgh, 214. The root is held to be an antidote in snake-bites; a decoction or cold infusion of the fresh bark of the roots is applied to swellings.

Embelia robusta, Roxb.-Bayabirany (fruit) ; described by Brandis, 284. The fruit is said to be used to adulterate black pepper like that of $E$. Ribes, which has the same vernacular name and is given as an anthelmintic and internally for piles. The greater portion of the bayabirang exported from Kumaun seems to be the fruit of Myrsine afficana.

Eragrostis cynosuroides, Ret.-Dábh. A common grass said to possess diuretic and stimulant virtues.

Eugenia Jambolana, Lam.-Phaunda; described by Brandis, 233. The leaves and bark are astringent.

Euphorbia pentagona, Bois.-Selund. This and other species of the same genus yield an acrid milky juice having cathartic and anthelmintic properties. Pharm., 204.

Exacum tetragonum, Roxb.-Titakhana; described by Roxburgh, 133. It is used as a tonic in fevers and a stomachic bitter. Pharm., 149.
F.

Feronia Elephantum, Corr:-Kath-bel; found in the Siwáliks and Bhábar ; described by Drury (U. P., 220). This tree yields a gum used for the same purposes as gum-arabic ; and the leaves are carminative and stomachic, especially with children. Pharm., 48.

Ficus Carica, Linn.-Fig—Anjtr; described by Brandis, 418. The fruit is used medicinally as a lavative.

Ficus indica, Roxb. (F. bengalensis, Linn.)-Bar, bat; described by Drury (U. P., 221). The juice collected from incisions in the bark of the banyan-tree is considered a specific in cracked heels, excoriations, and sometimes for toeth-ache, lumbago, and croup. Pharm., 217.

Ficus religiosa, Linn.-Pipal ; described by Drury (U. P., 225). The young shoots are used as a purgative and lave some $\mathrm{re}_{\mathrm{i}}$ utation in skin diseases; the hark of this and the preceding is used as a tonic in desoction. The seeds are given in electuary as a purifier of the blood.

Ficus hispida, Linn., f.--Kágoha, gobla, dhúra, totmila; described ly Brandis, 423. The fruit, seeds, and bark are possessed of emetic properties. Pharm., 217.

Ficus glomerata, Roxb.-Grilar; described by Brandis, 422. The bark is used as an astringent and a wash for wounds. The milky juice is given in piles and diarrhoea and in combination with sesamum oil in cancer. The root is useful in dysentery.

Flacourtia sepiaria, Roxb.-Kandai; described by Brandis, 18. This tree yields an antidote to snake-bites from an infusion of the leaves and roots : the bark triturated in sesamum oil is used as a liniment in rheumatism.

Fœniculum vulgare, Linn. Fennel-Sonf; described by Clarke in Hooker, II., 695. It is used as a carminative and stomachic, cultivated. Pharm., 100.

Fraxinus floribunda, Wall.-Angu; described by Brandis, 302. A concretc saccharino exudation (manna) from the stem is obtained by incision and is a substitute for the officinal manna. Pharm., 136.

Fumaria parvifiora, Lam.; Var. Vaillantii, the Khairuwa of Kumaun, also known as pitpdpra, mijálu ; described by Hooker, $f$., and Anderson in Hooker, I., 128. The dried herb is employed as a diurctic, anthelmintic, diaphoretic, and aperient, especially as a blood purifier. The average annual export from the Kumaun forest division is about 32 maunds.

## G.

Gentiana Kurroo, Royle.-Kurı, keitki-Himálayan gentian. This plant occurs near the snows. There are four or five allied species,
all of which are exported to the plains to the extent of about five tons a year, and are there sold as a valuable bitter tonic. See Royle, Ill. Bot., Him. Moun., pl. 58, fig. 2, and Pharm., 149.

Geranium ocellatum, Camb.-Bhánd; described by Edgeworth and Hooker, f., in Hooker, I., 433. A very common plant in Kumaun, which possesses diuretic and astringent properties.

Gloriosa superba, Linn.-Bish nangál, bish ningála; described by Drury (U. P., 234). The root is used in special diseases, but is said to be poisonous in large doses. Pharm., 242.

Gmelina arborea, Roxb.-Kumbhár, gumbháv; described by Drury (U. P., 234). The root is given in coughs, rheumatism, and special diseases, and is said to have anthelmintic properties like $A$. asiatica. Pharm., 164.

Gossypium herbaceum, Linn.-Cotton-Kapas. The down of this well-known shrub is applied to burns ; the sceds to increase milk, also in epilepsy and as an antidote to snake-poison; the root as a diuretic, emenagogue, and demulcent, and the leaves in decoction as a tonic in fever and diarrhœa. Pharm., 33.

Grewia asiatica, Linn.-Pharsiya; described by Masters in Hooker, I., 386. The leaves are used as an application to pustular eruptions and the fruit in sherbet as a refrigerant in fevers and a gargle for sore-throat.

Gynandropsis pentaphylla, D. C.-Kathal parhar; described by Hooker, $f$., and Thomson in Hooker, I., 171. It occurs common in the Bhábar ; the leaves are used as a rubefacient and vesicant; the expressed juice is given with salt in earache; the seeds in powder are given with sugar internally in fevers and bilious complaints, and the entire plant with sesamum oil is used as an ointment in cutaneous affections. Pharm. 25. This plant is often confounded with Cleome viscosa, in native shops.

## H.

Hedychium spicatum, Smith—Kachúr-kachu, kapur $r$-kachri,banhaldi. It possesses carminative and stimulant properties and is especially used as a cattle medicine : it is exported from Kumaun to the extent of a few tons annually. Pharm., 232.

Helicteres Isora Linn.- Shonkha-phal, maror-phal; described by Masters in Hooker, I., 365. The seeds according to 'the doctrine of signatures' are considered useful in colic and diarrhœa and as a blood purifier: and are exported from the Kumaun forest division to the extent of about a ton per annum.

Heliotropium brevifolium, Wall.--Safed-lhangra, chiti phail. The whole plant is laxative and diuretic; the juice is used as an application to sore-eyes, gum-boils and sores generally to promote suppuration and as a cure for the sting of nettles and insects.

Herpestis Monniera, H.B. et K.—Jal-nim; described by Drury (U. P., 249). A dose of six máshas of the leaves stepped in water is an esteemed aperient; the water may be used as an embrocation in skin diseases and croup, and the juice with kerosine-oil is used in rheumatism Pharm., 161.

Hiptage Madablota, Gœertn.—Aita-lugala; described by Hooker, I., 418. The leaves are esteemed useful in cutaneous diseases.

Holarrhena antidysenterica, R. Br.-Kuár and moriya of Bijnor and kuier, kúda, kura of Kumaun; described by Brandis, 326. The bark is a specific in dysentery : hence the name, and the seeds are also said to possess similar properties. Pharm., 137, 455.

Hordeum hexastichon, Linn.-Barley—Jau. The husked seeds form pearl barley, a favourite food for invalids and in decoction a drink in fevers. Pharm., 253.

Hymenodictyon excelsum, Wall.-Bhúlan, bhalena, bhamena, dhauli; common in the Kota Dún ; described by Brandis, 267. The inner coat of the bark possesses the bitterness of cinchona and its astringent properties. Pharm, 117.

Hyoscyamus niger, Linn.--Henbane -Khorasáni ajwáin (seeds); occurs wild and is also cultivated. The seeds are given in native medicine as an anodyne and sedative in mental diseases. Pharm., 178.

## I.

Ichnocarpus frutescens, R. Br .-Duidhi; described by Drury (U. P., 259). The root possesses alterative, tonic properties and is employed as a substitute for sarsaparilla: the stalks and leaves are used as a decoction in fevers. Pharm., 138.

## J.

Jasminum grandiflorum, Linn.—Jáhi; very abundant in low valleys; described by Brandis, 313. The flowers and their essence are used as an application in skin diseases, headache and weak eyes: the leaves are used in toothache. Other species of this genus are also found in Kumaun and are employed in making perfumed waters.

Jatropha Curcas, Linu.-Safed ind; described by Drury (U. P., 276). The oil from the seeds is used as a purgative, but is uncertain : it is also applied diluted in rheumatism : the leaves warmed with castor-oil form a poultice for bruises: the seeds in over-doses are poisonous, and the milky juice is used to destroy maggots in sores on sheep. Pharm., 203.

Juglans regia, Linn.-Walnut-Akor, akhrot, kharot. The bark is used as an anthelmintic : the leaves are astringent and tonic and in decoction a specific in strumous sores: the fruit is given in special diseases and rheumatism.

Justicia Adhatoda, Linn.-Bashing ; described by Drury as Adhatoda vasica (U. P., 16). The flowers, leaves, and roots are considered antispasmodic and anthelmintic; the juice is found useful in pulmonary affections, and a tincture is also commonly given as an expectorant. Pharm, 162.

## K.

Kydia calycina, R.W.-Puta; described by Masters in Hooker, 1., 348. The bark is mucilaginous and is used to clarify sugar.

## L.

Lepidium sativum, Linn.-Cress-Halang. The seeds of this common vegetable are used as a tonic laxative and antiscorbutic and as a gentle stimulant in indigestion.

Lilium wallichianum, Royle-Findora. The dried bulb scales possess demulcent properties and are used like salep in pectoral complaints.

Limonia acidissima, Linn.-Bali ; described by Hooker, I., 507. The root is purgative, sudorific, and used in colic: the leaves in epilepsy and the dried fruit as a tonic and disinfectant. Pharm., 43.

Linum usitatissimum, Linn.-Flax. The seeds are the linseed of the pharmacopeeia, of which the uses are well known. Pharm., 37.

## M.

Mallotus phillipinensis, Müll.—Roini, roli; described by Drury as Rottlera tinctoria (U. P., 378). The powder on the seeds is a valuable anthelmintic, vermifuge, and purgative. Pharm., 202.

Malva rotundifolia, Linn.—Sonchala; described by Masters in Hooker, I., 320. The seeds are demulcent and are used especially in bronchitis, inflammation of the bladder, and hæmorrhoids, and externally in cutaneous affections and coughs.

Malva sylvestris, Linn.—kanji, tilchuni; described by Masters in Hooker, I., 320. It is a valuable demulcent in pulmonary affections and a substitute for the marsh mallow of Europe.

Mangifera indica, Linn.-Mango-Amb. The sliced rind of this well-known fruit is astringent and used as a stimulant tonic in debility of the stomach : the kernels are styptic in hæmorrhoids, astringent in diarrhea, and tonic in fever. Pharm., 59.

Melia Azedarach, Linn.-Bakáyan, dek, jek, betain; described by Brandis, 68 . The bark of the root and the pulp of the seeds are anthelmintic in small doses and poisonous in large doses. Pharm., 55.

Melia indica, Linn-Nim; described by Brandis, 67. The bark, leaves, and seeds are all really valuable; the bark as a febrifuge and substitute for quinine ; the leaves as a cataplasm for wounds and sores; and the seeds for their oil, which is used as an anthelmintic and an application to foul sores. Pharm., 55.

Mentha viridis, Linu.-Spearmint-Palári pudina. The oil obtained by distillation from the fresh herb in flower is inferior only to peppermint and is useful in cholic, nansea, and flatulence. Pharm., 166.

Mimosa rubicaulis, Lam.-Agla ; described by Baker in Hooker, II., 291 ; M. pudica, Linn.-Lajawanti; described by Hooker (l.c.) The seeds of both are used as purifiers of the blood, and the leaves are given in infusion in piles, and pounded they are applied to burns.

Mirabillis Jalapa Linn.—Gúl-bánsa. The root forms a safo and efficient purgative equal to jalap, and the leaves are applied to abscesses. Completely naturalised in Kumaun. Pharm., 184.

Momordica charantia, Willd.-Karela; described by Druary, U. P., 306 (see page 700). Used as a laxative and in preparation as an ointment for sores and the juice of the leaves as an anthelmintic.

Moringa pterygosperma, Gœrtn.—Sahajna-Horse-radish tree ; described by Hooker, II., 45. The fresh roots are vesicant and rubefacient and uscful in rheumatism. Used internally, the fresh juice of the roots has stimulant and diuretic properties and the root in decoction furnishes a gargle. The seeds yield a fine oil useful in rheumatism, and the tree itself a gum used as an anodyne in headache and as an application to buboes. Pharm., 61.

Morus indica. Linn.-Indian mulberry-Tútri; described by Brandis, 408. The fruit forms a sherbet used as a refrigerant and the bark a vermifuge and purgative. The fruit of $M$. serrata, IRoxl.-Kemu-and M. levigata, Wall., Siyáh-tút-is said to possess similar properties. Brandis, 409.

Mucuna pruriens, D. C.-Cowhage-Goncha; described by Baker in Hooker, II., 187. The hairs of the legume are mechanically anthelmintic and are given in round worm : see Pharm., 73. The sceds are given with milk in special diseases and snake-bites and the leaves as a vermifuge. M. atropurpurea, the baldhakiof' Kumaun, is said to possess similar properties.

Murraya Kœnigii, Spreng.-Gani, gándla; described by Hooker, I., 503. The seeds yield a clear transparent oil known as simboli oil ; the root is laxative and both bark and roots are stimulant and used in cutaneous diseases and to check vomiting. Pharm., 49.

Musa Sapientum, Linn.—Plantain-Kela. This well-known fruit is demulcent, antiscorbutic, and alterative ; the tender leaves are used as a dressing for wounds, blisters, and sores, and as eye-shades in ophthalmia ; the root and stem are considered in native practice purifiers of the blood and are good in scorbutic complaints and special diseases. Pharm., 233.

Myrica sapida-Káiphal; described by Brandis, 493. The fruit is eaten, and the bark is used externally as an anthelmintic, stimulant, and rubefacient, and in the arts as a tanning agent. Natives use it in epilepsy and to rub the body after ilhess. The
average annual export of this bark from the Kumaun forest division is about fifty tons. Plarin., 217.

Myrsine africana, Limn., the so-called box-Pahari-cha, chapra; described by Brandis, 286. The fruit is said to be a powerful cathartic vermifuge. It is sold in the bazatars as batyabirany, a name also of Embelia Ribes; used also in dropsy, colic, and as a laxative. About a maund is exported every year from the Kumaun forest division. M. semiserrata, Wall., also called chitpra, is said to possess similar properties.

## N.

Nardostachys Jatamansi, D. C.-Spikenard—Bárhhar, shambal, balkar. Royle, t. 54,f. 2. This plant occurs above 12,(000 feet and its roots with those of certain species of Valeriim, especially V. Hardwickii (shameo, roots), are exported through the Kimann forest division to the extent of about twenty maunds per annum. They occur in the form of short pieces of an underground stem, about the thickness of a quill, covered towards one extremity or almost entirely with coarse, dark, hair-like fibres. It has all the propertics of Valerian in a ligh degree and is used as a stimulant and antispasmodic in hysteria and epilepsy. N. grendiffora, a larger species, also occurs in Kumaun at similar elevations. Pharm., 120. : Bird., 46.

Nelumbium speciosum, Willd.-Lotus-Kanval; described by Hooker $f$. and Thomson in Hooker, I., 116. The nuts are eaten as a tonic in disorders of the digestive functions.

Nerium odorum, Aiton.-Oleander-Kaniyir; described by Drury (U. P., 323). All parts of the plant are poisonous and are used in native practice in leprosy, cutaneous affections, and as an anthelmintic. The bark in paste is used in ringworm and itch and a decoction of the leaves externally as a vermifuge. Pharm., 139.

Nicotiana Tabacum, Linn.-Tobacco-Tamáku, dhamáku. For the medicinal uses of tobacco see Pharm., 178, 460, and O'Shaughn., 471.

Nyctanthes Arbor-tristis, Linn.-Kúri, harsinghar; described by Drury (U.P., 323). Used in native practice for ringworm
and to promote the adhesion of broken bones, also in indigestion : the bark is an astringent and is used as a gargle and in applications to sores and ulcers.

## 0.

Odina Wodier, Roxb.-Jingan, jıban; described by Hooker, II., 29. The bark is used in decoction as a lotion in impetigo and obstinate ulcers : the gum and leaves have also astringent propertics and are applied to bruises and wounds. Pharm., 60.

Olea glandulifera, Wall-Gair, galdú, garur; described by Brandis, 309. The bark and leaves are astringent and are used as an antiperiodic in fevers.

Onosma echioides, Linn.-Maharanga, lál-jari, and ratan-jot (root), gauzabán (leaves), gul-i-gau-zabán (flowers). The bruised root is applied to cruptions, the leaves as an alterative, and the flowers in cases of rheumatism and palpitation of the heart as a cardiac and stimulant. Exported through Dehra Dún. The root is also used as a dye. It appears that under the name 'ratanjot' the roots of Geranium nodosum, Linn.; of Potentilla nepalensis, Hook.; Macrotomia euchroma, H. f. et. T.; and Jatropha Curcas, are also collected and sold.

Ophelia Chirayta, Gris. ; Agathotes chirayta, Don.—Tita-khána, chirayta. Some call this species the true Dakhini chiretta or true Nepál chiretta. The former name is properly applied to a SouthIndian species, Andrographis paniculata, and the latter name may perhaps suit, as 0 . Chirata occurs in Nepál. Equally good chiretta is obtained from O. purpurascens, $O$. cordata, O. speciosa, Agathotes angustifolia and A. alata. All yicld a valuable bitter extract used as a tonic and febrifuge and corrector of biliary disturbance. About six tons are exported cvery year from the Kumaun forest division. See further Pharm., 149 : As. Res., XI., 167.

Oxalis corniculata, Linn.-Chalmori; described by Edgeworth and Hooker $f$. in Hooker, I., 436. The leaves, stalks, and flowers possess refrigerant and antiscorbutic properties and are used internally in fevers, dysentery, and scurvy, and externally to remove warts. The juice is useful in removing iron-moulds.

## P.

Pœonia emodi, Wall.--Chandra (the plant), sujuiniya (the young edible shoots), bhúma-madiya, yet ghás of the Bhotiyas; described by Hooker $f$. and Thomson in Hooker, I., 30. The tubers are some of those exported under the name lith and are probably those known as padam-chhál. There is nothing in the local Materia Medica requiring further investigation more than the roots exported under the name 'bikh' and 'nirbisi.' Under the former come the various species of aconite. A. erox is the maura, mázir or máhur bikh, and Madden tested it to see whether it deserved the name ' $m$ itha,' sweet, and found it was so: but this was soon succeeded by the most distressing burning all over the mouth and fauces, though nothing was swallowed. Dr. Royle says that Polygonatum verticillatum, Linn., is called mitha-dhudhiya in Sirmor and Smilacina pallida is called dúdhiya-mohura, and both are poisonous. The cylindrical tuberous roots of Delphinium kashmerianum, Royle, found at Pindari in Kumanu and Bhojgara on the south side of the Kawari pass in Garhwál (11,000-14,000 feet), are absolutely identical with the ordinary nirbisi roots. See Madden, An. Mag., N. H., 2nd Ser., XVIII., 445.

Parmelia kamtschadalis, Esch.-Lichen--Chalchaliva, pat-tharke-phit. Several species are exported to the plains and are used in native practice as a tonic febrifuge and antiperiodic. See Pharm., 260.

Peacedanum graveolens, Benth.-Dill-Soya; described by Clarke in Hookcr, II., 709. An excellent carminative for relieving flatulence iu children. Pharm., 101.

Pharbitis Nil, Choisy-Bannra; described by Drury (U. P., 350). A safe and effectual cathartic. Pharm., 150.

Phyllanthus Emblica, Linn.-Amla, aonla; described by Brandis, 454. The dried fruit is astringent and when fresh is given as a tonic aperient: the flowers are refrigerant and aperient and the bark is astringent. See Pharm., 204, and O'Shaugh., 551. The leaves of Paraphyllanthus urinaria (serahi) and of Phyllanthus niruri, Liun., are given in infusion as a diuretic and the fresh roots of both in jaundice. See Drury.

Picrorhiza Kurrua, Roxb.-Kuruwa. Found only at high elevations about 11,000-14,000 feet : the bitter roots are exported with Saxifraga ligulata under the name pákhán-bed, and with Gentiana Kurroo under the name kitki, to the extent of abont three tons a year and are used as a tonic. Nima quassioides occurs in apper Garhwál (5,500-8000 feet) and is known as karwi and has similar uses.

Pinus longifolia, Rosb.-Pine-Chir. This pine is very comnon in Kumaun and yields a tropentine and resin : for uses see Pharm., 222, 219. The turpentine from $P$. Gerardiana is used principally in special diseases, and that from $P$. Deodara in cutancous diseases and as a diuretic. Pharm., 225.

Pistacia integerrima, J. L. S.--Rakra, kakra-singi; described by Hooker, II., 13. The gall-like excrescences lormed on the leaves and petioles in. October are exported as a medicine and are estcemed useful in coughs, asthma, fever and dysentery, and as a sedative. They occur black, hard, rugose, hollow, irregularly crooked, often $6^{\prime}-7^{\prime}$ long. The average annual export from the Kumaun forest division is about seventy maunds, Brandis, 122, 574.

Pithecolobium bigeminum, Mart.--Kachlora; described by Brandis, 173. A decoction of the leaves is used in leprosy and as a stimulant to promote the growth of hair.

Plantago major, Linn.-Luhuriya. It is doubtful whether this has the properties of $P$. decumbens, Forsk., the isbaghol of the lonzars. Pharm., 182.

Plumbago zeylanica, Linn.--Chita, chitra; described by Roxburgh, 155. The roots triturated in water form a vesicant and in tincture a good antiperiodic: they are exported from the Kumaun forest division to the extent of about twelve maunds annually. Pha:m., 170: O'Shaugh., 508.

Pongamia glabra, Vent.-Pápar, Sulch-chain; described by Baker in Hooker, II., 240. The seeds yield an oil much used in skin diseases and as an embrocation in rheumatism : the lerives are also officinal. Pharm., 79, and J. Agri.-H., Cal., X., 23.

Pontedera"vaginalis, Linn.--Nauka; described by Drury (U.P., 364). The root is chewed for toothache and the bark is eaten with sugar for asthma.

Populus ciliata, Wall.-Chalniya, channiya, chan, gar-pipal; described by Brandis, 475 . It is occasionally used as a tonic stimulant and purifier of the blood.

Portulaca oleracea, Linn.--Small purslain-Lúniya-kúlfah; described by Drury (U.P., 364). The bruised leaves are used as an anodyne and are given as a refrigerant and antiscorbutic in cutaneous diseases. Bird., 38.

Premna integrifolia, Linn.-Bakarcha of Garhwhl ; described by Drury (U.P., 365.) The root is given in decoction as a cordial and tonic ; the leaves beaten up with pepper are also administered in colds and fevers. The whole plant is given in decoction in rheumatism and neuralgia. The milk of the bark of $P$. mucronata, the agniín of Kumaun, is applied to boils and the juice is given to cattle in colic.

Primula speciosa, Linn.-Bish-kopra, jal-lkittra. It is found along streams from 3,500-5,500 feet in Kumaun : it is said to be poisonous to cattle and is used externally as an anodyne.

Prinsepia utilis, Royle.-Chirara, jhatela, dhatela, phaláwa, bhekla; described by Hooker, II., 323. This shrub yields an oil used as a rubefacient and as an application in rheumatism and pains from over-fatigue : a small quantity is exported from the forests and pays a duty of five rupees per maund.

Prunus Communis, var. domestica, Linn.-Prune. See page 712. The dried drupe is considered a laxative and emollient and is used in medicinal confections. Pharm., 86. The alu-buthéra is used as a refrigerant and laxative both in a cold infusion and a confection. $\quad P$. persica-the peach-is given as a demulcent and antiscorbutic and stomachic. The oil from the kernels is considered a valuable vermifuge and strengthener of the hair. The kernel of $P$. Puddum is used in stone and gravel, and that of P. Padus yields a poisonous oil, like oil of almonds, much used in medicinal preparations.

Psidium Guyava, Linn.—Guava-Amrid ; described by Baker in Hooker, II., 148. The bark of the root is given in clecoction in
infantile diarrhœa and the young leaves as a tonic in diseases of the digestive functions. Plarm., 92.

Pueraria tuberosa, D.C.; Hedysarum tuberosum, Roxb.-Bilái-kand, bili, biváli-panwa (Kumaun), sural (Jaunsár), sarár, sarwála (Bijnor); described by Baker in Hooker, II., 197. The tubers are dug up and exported in large quantities to the plains, where they are considered demulcent and refrigerant in fevers and useful as a cataplasm for swollen joints.

Punica Granatum, Linn. -Pomegranate-Anar (cultivated); dárim (wild) ; naspál, kushiála (rind of fruit). The root-bark and dried rind possess powerful astringent properties from the presence of tannin. The former is considered anthelmintic in European practice and the latter astringent. See Pharm., 93, 447.

Putranjiva Roxburghii, Wall.—Jíti, putrajiva; described by Drury (U. P., 372). Given in decoction in colds and fevers.

Pyrus Cydonia, Linn.-Quince-Bihi. See page 713, Cydonia vulgaris. The seeds are used as a demulcent in native practice and as a tonic; also in decoction in dysentery and special diseases : Pharm., 86.

## Q.

Quercus incana, Roxb.-Bánj; described by Brandis, 482. The acorn (sil-sup $\boldsymbol{c i n}^{\prime}$ ) washed and powdered is used as an astringent in indigestion, diarrhœa, and asthma. Pharm., 209.

## R.

Randia dumetorum, Law.-Mainphal, manyull, karhar ; described by Drury (U. P., 373). The fruit is highly esteemed as an emetic and is used to poison fish and the bark of the root in infusion to nauseate. Pharm., 118.

Raphanus sativus, Linn.-Radish-Muili. The seeds of this common vegetable have diuretic and laxative properties and the roots are prescribed in native practice for special and urinary diseases.

Rheumemodi, Wall.-Dolu. This species is found near the Pindari glacier and at similar elevations in Kumaun and Garhwad ; the average annual export from the Kumaun forest dirision is about $1,000 \mathrm{fb}$. This and ir. Webbianum, Royle, are used as a
substitute for Turkey rhubarb. $R$. emodi is less active as a purgative and more spongy in texture. See Pharm., 187 : O'Shaugh., 519 : Panjab Products, 370 : J. A.-H. Beng., I., 76 : Birdwood, 70 : Pereira Mat. Med., II., 485.

Rhododendron campanulatum, Don.-Chimúl; described by Brandis, 281. The leaves are exported to the plains, to be made into a snuff called huld́s-kashminti, useful in colds and headaches.

Ricinus communis, Linn.-Castor bean-Rendi. This wellknown plant yields the medicinal oil used as a purgative, \&c. Plarm., 201, 462 : O'Shaugh., 556 : Drury (U. P., 375).

Roylea elegans, Wall.-Tit-patti, kauri. The leaves are used as a bitter tonic febrifuge.

Rubia cordifolia, Linn.-Majetlic. The natives consider the roots most useful in cases of poisoning, cutaneous eruptions, dysentery, and as a tonic to promote menstruation. Pharm., 118 : Drury (U. P., 379).

Rumex acutus, Roxb.-Jangli palak; described by Drury (F. P., III., 49). This plant has cooling properties: the leaves are applicd to burns and the seeds are applied as the lij-band of the bazars. $R$. acetosa is also widely distributed and known under the same vernacular name and also as 'Alnora,' whence the name of the capital of Kumaun, as Mussooree is derived from the vernacular name of Coriaria nepalensis.

## S.

Salix tetrasperma, Roxb.-Gar-byush; described by Brandis, 462. The bark in decoction is of some account as a febrifuge. Pharm., 213 : O'Shargh., 606.

Saxifraga ligulata, Wall.; Var. ciliata, Royle. The roots of this and perhaps $P$. Kurrua (antea) and G. Kurroo (antea) are all exported to the plains as pákhán-bled or páthdn-bhed and jintiána and aro used as a tonic in fevers and also in diarrhoea and coughs and as an antiscorbutic. The averago annual export from the Kumaun forest division is about thirty maunds.

Sapindus detergens, Roxb.-Kanmar, ritha; described by Drury (U. P., 393). The nut is used externally in cutaneous
affections and internally in epilepsy and headache and as an expectorant; also in the arts as a detergont. It is exported from the Kumaun forest division to the extent of about twenty tons per annum.

Scindapsus officinalis, Scholt.-Gaj-pipali, háth-ungliya. The dried and sliced fruit has stimulant, diaphoretic, and anthelmintic virtues. Pharm., 250.

Semecarpus Anacardium, Linn., F.-Bhiláwa, bhalicu, Lhuila; described by Hooker, II., 30. The acrid viscid juice between the laminæ of the shell possesses powerful caustic propertics and is used as a vesicant: see further Pharm. 60 : K. Dey, 105. The average annual export from the Kumaun forest division is about five maunds.

Sesamum indicum, Linn.-Tili. See page 764. This plant furnishes the sesamum or sweet oil, used as a substitute for olive oil in native practice. Pharm., 151 : Drury (U. P. 402): O'Shaugh., 479.

Sesbania mgyptiaca, Pers.-Jaint; described by Baker in Hooker, II., 114. The seeds have stimulant and emenagoguic properties and are used in cutaneons diseases and itch: the leaves are used in poultices to promote suppuration, and the juice of the bark internally as an antiscorbutic.

Shorea robusta, Roxb.-Sál ; described by Drury (U. P., 405). The resin (rál or dhamar) is an efficient substitute for pine resins in plasters: in native practice, the resin is taken internally in special diseases and applied as a styptic to wounds. Pharm., 33.

Solanum incicum, Linn.-Katang-kári; described by Drury (U. P., 408). The root is used in decaction in dysuria and in fevers and coughs: and when powdered as an anodync. The juice of the leaves boiled with ginger is used to stop nausca. Pharm., 181.

Solanum tuberosum, Linn.-Alu. The tubers are occasionally used as a substitute for salep.

Solanum esculentum-Baigan, blutta. See page 703. The leaves possess nareotic properties : ncarly every specics of this genus in Kumaun affords some aid to the native Materia Medica, Pharm., 181.

Spondias mangifera, Pers.-Hog-plum-Ambara; described by Hooker, II., 42. The bark is used in dysentery and a decoction of the wood in special diseases ; the juice of the leaves forms an application in earache and the gum and fruit are eaten.

Sterculia urens, Roxb.-Kuli, kulu; described by Masters in Hooker, I., 3555. The leaves and tender branches steeped in water yield a mucilaginous extract useful in pleuro-pneumonia in cattle.

Streblus asper, Lour.-Silora, riisa; described by Drury (U.P., 211). The milky juice is applied to cracked heels, sore hands, and has astringent and septic qualities. The bark in decoction is given as a lotion in fevers.

Symplocos cratægoides, Ham.-Lod, lodh; described by Brandis, 299. The leaves are considered astringent and are used in diarrhoea and as an application to fresh wounds and the bark in tanning. About nine tons are exported every year from the Kumaun forest division.

## T.

Taxus baccata, Linn.-Yew-Thiner, brálmi; described by Brandis, 539. The leaves are used in native practice in epilepsy and indigestion.

Tephrosia purpurea, Pers.—Sarphonka; described by Baker in Hooker, II., 123. The leaves, and seeds possess astringent, tonic, febrifugal properties. The leaves of $T$. candida, the lehtiya of Kumaun, are used to poison fish.

Terminalia Chebula, Retz.-Húar ; described by Drury (U.P., 431). This and other species of the same genus yield nuts much used in medicine and tho arts. See Pharm. 89 : K. L. Dey, 117 : Birdwood, 34.

Tetranthera laurifolia, Jacq.-Gar bijaur, meda-laker; described by Brandis, 379. The oil from the berries is used in rheumatism ; the bark triturated in water or milk, or even dry, is applied to bruises and is given internally in infusion in diarrhoea; the leaves have a rich aromatic odour. Pharm., 88 : O'Shaugh., 548.

Thalictrum foliolosum, D.C.-Pila-jari, pengla-jari, barmat; described by Hooker $f$. and Thomson in Hooker, I., 14. The roots are exported from Kumaun under the name mamira and are highly alued in ophthalmia and as an antiperiodic. Pharm., 5.

Tinospora cordifolia, Miers-Gulancha; described by Hooker $f$. and Thomson in Hooker, I., 97. The stems yield the well-known extract known as gulancha or giloi, a much-esteemed specific in stings as well as infever and rheumatism. The leaves bruised and mixed with honey are applied to ulcers, with oil to the head in neuralgic affections, and in decoction for gout. The extract is made from the root by boiling for twelve hours and then straining and evaporating the water. The annual averago export of the extract from the Kumaun forest division is about two maunds. Pharm., 9, 435.

Toddalia aculeata, Pers.-Kanj; described by Hookcr, I., 497. The root-bark has tonic, stimulant, and anti-periodic properties. Pharm., 47, 442.

Trichodesma indica, R. Br.-Ratmandi. The natives consider it to be an antidote in snake-bites; the leaves are used as a poultice and in cold infusion as a purifier of the blood. Pharm., 158.

Trichosanthes palmata, Roxb.-Indráyan; described by Clarke in Hooker, II., 606. The roots and fruit are poisonous and aro used in pleuro-pneumonia in cattle. Pharm., 96. T. cucumerina, Linn., gives seeds, tender shoots, and dried capsules, all of which are used as medicine. O'Shaugh., 351.

Trigonella Fœnum-græcum, Roxb.-Fenugreek—Methi; described by Baker in Hooker, II., 87. The seeds are stimulant, aromatic, and laxative, and are given in colds, coughs, diarrhea, and special diseases.

Typha angustifolia, Linn.-Boro. The down of the ripe fruit is used as an application to burns and the lower succulent parts of the stem to clear muddy water.

## J.

Urginea indica, Kuath. ; Scilla indica, Roxb.-Iskil, kúndri or. kunda of Bijnor and ghesuwa of Kumaun ; described by Drury (U. P., 399). It is exported largely from the lower hills. The nauseous bitter young bulbous roots have expectorant and diuretic properties in small doses, and in large doses they are emetic and cathartic. Pham., 241 : K. L. Dey, 104.

## V.

Vallaris dichotoma, Wall.-Dúdhi; described by Drury (P. F. II., 198). The juice is applied to wounds.

Valeriana Hardwickii, Wall.-Shumeo, asírun. The roots are exported and are said to possess anti-spasmodic properties: when dry they are burned as a perfume, and are also used as a flavoring agent and to keep off insects from clothes. Pharm., 120.

Vernonia anthelmintica, Willd.-Káli-jíri; described by Drury (U. P., 449). The bitter seeds are powerfally diuretic and anthelmintic and are given in infusion in coughs and flatulency. Powdered and mixed with line-juice they are used to expel vermin from the head, and mixed with oil in scabies and anasarca and in plasters for abscesses. Pharm., 126.

Viola serpens, Wall.-Thungtu, banafsha; described by Baker in Hooker, II., 184. The flowers are considered diaphoretic and laxative : the seeds are diuretic and the root emetic (like ipecacuanha) and purgative (Brown).

Vitex Negundo, Linn.—Shiwali, simúli, filfl-bári (fruit); described by Drury (U. P., 452). The root and fruit have anodyne, diuretic, and emenagoguic properties, and the leaves are given in colic. Exported from Kumaun. Pharm., 163 : O'Shaugh., 484.

## W.

Withania somnifera, Don.-Asgand (root); described by Drury (U. P., 355). The leaves are bitter and narcotic and are used in infusion in fever: the seeds coagulate milk and the roots are aphrodisiac and diuretic. Pharm., 182 : O'Shangh., 466. The seeds of $W$. coagulans, Don., have also sedative properties and are given in colic. Both are exported from Kumaun.

Woodfordia floribunda, Salis.; Grislea tomentosa, Roxb.Dhaula, dhai ; described by Clarke in Hooker, II., 572. The dried flowers are used as an astringent tonic in affections of the mucous membrane, hœmorrhoids, and bilious complaints. The leaves are also officinal in native practice. Exported from Kumaun.

## Z.

Zanthoxylum alatum, Roxb.-Tejbal, timír; Sansk. jwarantika, 'fever ender'; described by Hooker $f$. and Thomson in

Hooker, I., 193. The bark and seeds are used in native practice as a tonic in fevers and bowel complaints : the small branches are used as toothbrushes and the thorns as an application in toothache : the fruit is used to intoxicate fish. Supposed to possess generally stomachic and carminative properties. The average annual export from the Kumaun forest division is about half a maund. Pharm., 48.

Zingiber officinale, Ros.-Ginger-Adrak, sonth. This wellknown plant yields the ginger of commerce, extensively used in medicinal preparations. See Pharm., 228.

## B.-NARCOTICS AND SPIRITS.

Tobacco, opium, hemp, and the preparations made from them, are the principal vegetable substances used for their narcotic and intoxicating properties in these provinces, but to them we may add the various forms of alcohol obtained by distillation and the preparations of betel and areca. The use of tobacco in the plains is universal amongst males from their twelfth year, and the practice has so far entered into the social arrangements of the people that few matters of importance are discussed without the hukka being passed around. In the hills tobacco-smoking is becoming more common every year, and now, perhaps, all except a few Brahman families smoke tobacoo either pure or mixed, and these even chew the leaf pounded with lime, a practice common to every caste. Opium is principally consumed by Musalmáns, and its use in the hills is very limited. The preparations of hemp are in great request amongst Hindús, and are much indulged in by Jogis and others of the wandering religious mendicant classes. Spirits are consumed chiefly by the lower castes of Hindús. Brahmans and Baniyas profess to hold it in abhorrence, and the use of it is forbidden to Musalmáns by the Koran. As a general rule these restrictions are observed, but still there are very many individuals of these classes who openly disregard the rules of their religion and many more who do so in secret. The statistics derived from the Excise Department would otherwise be inexplicable. Still, taking into account the quantities of opium, hemp, and spirits that must be consumed in a country like India without paying any license or contributing in any way to the revenue, there is only a
moderate consumption on the whole. It has often been observed that you may pass through any fair or assembly, except during the Diwali, the Hindu carnival, without secing a drunken man, and there can be no doulst but that the consumption is very small and quite insufficient in the hills, at least, to have much effect upon the public health. Although hemp is produced in such quantities in Garhwál and Kumaun, the preparations from it are not a favourite form of intoxication in the hills and are seldom used by the permanent inhabitants.

## Tobacco.

Nicotiana Tabacum, Linn. Tobacco-Tamáku, dhamóku.
Tobacco is raised in large quantities in the forest clearings along the foot of the hills, where the conditions

## Tobacco.

 necessary-a rich alluvial soil, warmth, and abundance of manure-exist. The last is furnished by the cattle which are sent there for grazing in immense numbers from Novembor until May. In the Garhwál Bhábar the cultivation of tobacco is carried on by men of the gardener caste from the plains, who remain long enough to plant and gather the crop. The indigenous Bbuksas of these parts consider that they are prevented by their caste rules from growing tobacco, or rather are too indolent to undertake its cultivation. Further east all classes cultivate the plant, and great quantities are exported to the plains from the Kumaun Bhábar and the Tarái. The quality of the leaf is not so delicate as that of the better sorts of the plains varieties, but the quantity produced from a given area is greatly in excess of that raised elsewhere. In the hills, a far superior variety is cultivated from Jaunsár to the Kali, but not in quantity sufficient to be of much commercial importance. That grown on both banks of the Alaknanda near Srinagar in Garhwál is specially esteemed. The Kumaun vernacular names above given represent two varieties, $N$. Tabacum and the $N$. rustica or Latakia, which latter seems to have been grown in the hills from time immemorial, and when carefully prepared is palatable to Europeans. Dr. Stewart, writing of its cultivation in the western Himálaya, states that " more of it than of the ordinary kind can be grown per acre, especially as in many places the flowers are not plucked off, but are mixed with the leaves for smoking, and it brings in a greaterprice than the ordinary species. It is said to be much stronger than the latter and to be generally smoked mixed with a large proportion of it. Its qualities when smoked in the European pipe give assurance that, if properly cured, it would rival Turkish tobacco." Some efforts have been made lately by Mr. E. C. Buck to improve tobacco cultivation in Kumaun, but the experiments have failed and their history will be found in the annual report of the Department of Agriculture and Commerce.

The Sikhs, Wahábis, and certain Hindu sectaries are forbidden the use of tobacco by their religious guides, but the first console themselves with the preparations of hemp and the second use opium. The earliest mode of procuring and inhaling the smoke was to make two holes in the ground, in one of which the fire and tobacco were placed and a pipe connected the two. The smoker then crouched on the ground and sucked the smoke through the second hole. This method may still be seen in the hills. Another mode was to twist a leaf and smoke through the narrow end, still a favourite with coolies in the hills. An improvement was then effected by drawing the smoke through a bambu, and thus avoid the uncomfortable crouching position, and eventually the huklca was invented. The cocoanut served as the first form of the hukka, and though metal is now used for the receptacle for water and the original form has been modified, the cocoanut is still the basis of all the forms of the luakka from the elaborate and costly pechwan of the nobleman to the simple pipe of the cooly. Musalmáns seem to affect those hukkas that have stands, whilst Hindús adopt the round or oval shape, which are fitted chiefly to pass from hand to hand. In the plains tobacco is seldom smoked in its pure state ( $s$ dada), but is mixed with from a half to an equal weight of molasses, either of the sort known as guir or that known as shira, to which a little saji, or impure carbonate of soda, is added. In the interior of the hills, however, the pure leaf is gencrally the only sort procurable, but in the principal bazars the fashionable mixtures may be obtained. One of these in high repute amongst the wealthy is known as khamera and cousists of a certain quantity of tobaoco of the Latakias sort, to which is added the sence of the Pandanus odoratissimus or keora; the dried leaves of the muskplant, Delphinium brunonianum; sandal-wood dust; a conserve
of roses known as gitl-kand; the fruit of the Zizyphus jujuba; apple-preserve, cardamoms, and the wilted leaves and stems of the betel palm known as pánri, in certain proportions kept secret by each maker and which form his particular brand or manufacture. Snuffing tobacco, though not unknown, is rarely seen. Its use, however, as one of the ingredients of 'betel' should perhaps come under the head of chewing.

## Opium.

Papaver somniferum, Linn.-Poppy-Post, posta; juice of the capsule, opium ; afyи́n, afilm. A plant belonging to the natural order Papaveracece. The cultivation of the poppy is a Government monopoly and is chiefly confined to the plains. The capsules, whilst immature, yield by incision a juice which on solidification is known as the opium of commerce. When ripe or dried they yield an intoxicating liquor by inspissation. The use of the drug was known to the ancients, and some say that it was the pharmakon nepenthes of Homer. Dr. Royle considers that it was introduced into India from Persia, and in this suggestion he may, perhaps, be correct, as the common names for opium are of Persian origin. The $A$ in- $i$ Akbari refers to theo pium monopoly in Sirkarrs Kora (Fatehpur district), Allahabad, and Glạ́zipur in the time of Akbar, and we know that from time immemorial the opium poppy has been cultivated in Nepál and Kumaun.

The three principal preparations of poppy in use are the abkári or excise opium, madal and chandu. The first is supplied from the Gházipur factory and is sold at the rate of sixtecn rupees per seer of eighty tolas. As a rule, abkári opium is taken in the form of pills, but many soak the preparation in water for some hours and drink the solution thus formed, leaving the impurities at the bottom of the cup : very moderate consumers take about one tola or 180 grains Troy or $11 \cdot 662$ grammes per month, and the average consumption of habitual opium-eaters may be set down at five tolas each per mensem. In some cases as much as two tolas a day are taken boiled in milk. Opium-smoking has of late years increased very much in these provinces. The results are the same as in other countries, the drug inducing stupor, reverie, and voluptuous
listlessness. Still the individual can easily be roused to business, and, unless taken in excess, the effects are not more injurious or lasting than those attendant upon a too liberal indulgence in spirituous liquors. The temptations to excess are, perhaps, stronger in the case of opium, and with over-indulgence come sickness, constipation, indigestion, want of appetite, emaciation, impotency, and premature old age. In small doses as far as one grain, opium when eaten acts as a stimulant, increases the pulse in strength and frequency, and excites the mind by a happy train of thought. It is believed to promote digestion, and for this purpose it is taken usually in the afternoon or evening, so that its effect may come on before the time for the evening meal. This condition is however succeeded by drowsiness, thirst and loss of appetite, and the habitual eater then increases bis dose, when after a smoke of tobacco from the hukka the excitement again begins and is followed by a poriod of stupor and eventually a profound sleep, " the pupils are slightly contracted, the pulse slow and full, the breathing slow, and the temperature of the body somewhat increased." Beyoud four grains to healthy persons not accustomed to opium it may be considered to act as a poison. Milk is taken by opium-eaters to keep the bowels open, and as in the case of lhang and, indecd, spirits when once the habit of using the drug has been fixed, it is almost impossible to shake it off. Kahárs and men who have much trying physical labour to get through in a short space of time can, frequently, take large doses without apparent injury. ${ }^{1}$

Madak and chandu are forms of opium extensively used in these

> Madak and chandu. provinces. In preparing them the opium is first reduced to a watery extract, which is then strained two or three times through cloth and afterwards boiled over a slow fire until it thickens somewhat. The impurities left in the process of straining are again washed and strained two or three times to extract any portions of the active principle which may remain. The refuse, called joga, is then thrown away and tho residuum of pure extract of opium that remains is called kimam and forms the basis of both madak and chandu. One sor of excise opium yields a little more than half a ser of kimam. To make

[^121]madak, the leaves of the guava, pan, or, in some cascs, the rose are collected and cut into very fine picces and then boiled in water. When they become soft they are strained in a cloth and dried and then fried on an iron pan over a slow firc. These leaves thus prepared are called jesu, and equal quantities of jesu and kimam form madak. This preparation is made up into small pills about the size of a pea, which sell in the retail shops for a pice each. The consumer buys these pills, breaks one of them into six to twelve parts, which are called 'chittas,' each of which serves for one operation or whiff. The ordinary hukka is used, but the chillam or upper portion for receiving the drug and fire is much smaller. The chitla is placed on the chillam and lighted by a charcoal pencil, and the smoke is taken inwards in one inspiration and swallowed. The result is considerable pleasurable excitement, which as it begins to wear off is renewed by consuming another chitta until satiety is produced. One pill is sufficient to intoxicate a new smoker, but many consume a dozen pills with impunity.

The basis of chandu is the same kimam from which madak is

## Chandu.

 made, but instead of leaves the half-burned ashes of the chittas of madak are mixed with the kimam in equal quantities and the resulting compound is called chandu. For this preparation there is a particular pipe made of wood and about twelve to fifteen inches long. A small brass or tin bowl is fixed towards one end and communicates with the stem by a small aperture. The chandu formed into a paste and made up into pills is placed in the bowl, and this is lighted from a lamp and gives a gurgling noise while burning. The smoker reclines on a pillow with his eyes closed, and the pipe is lighted by an attendant and refilled when necessary. Like the madak-smoker, the chandusmoker takes in all the smoke arising from one application of the chandu by one deep inspiration and swallows it. After every inspiration there must be a rest, and the heated tongue is moistened by chewing sugarcane or by the application of a rag moistened in sherbet. Two or three applications are sufficient to affect a beginner, but there are many who can doze away over pipes of chandu the whole day. The effect of madak and chandu smoking is equally pornicious with opium-eating, with this difference that intoxicationsupervenes at a much earlicr period, because the smoke containing the active principle of the opium is directly absorbed by the blood in the lungs, and being carried into the circulation acts, at once, on the brain; whilst in eating opium the process of solution, absorption, and digestion is much slower. Muhammadans are by far the greater smokers and eaters of opium as compared with the Hindús, and they make up by indulgence in this vice for the prohibition of spirituous liquors. Love of sexual intercourse has much to do with inordinate indulgence in opium, and for a time, like the preparations of hemp, it acts as a powerful aphrodisiac, but in the end it induces impotency and leaves the opium-drunkard a physical and moral wreck, utterly careless for the present or the future and a mere semblance of a human machine.

## Hemp.

Cannabis sativa, Linn.-Hemp-Gúr-bhanga (female plant), phúl-bhanga (male plant). (See Fibres postea.)

The principal parts of the hemp that are used as intoxicating
Hemp. agents are the charas, gánja and bhang, or saliji and their preparations. The best charas is obtained from the female plant and consists of a resinous exudation from the leaves, stems and seeds when ripe, and is collected from them by rubbing them in the hands or on the naked thigh or by scraping the resin from the plant with a blunt iron knife. The quantity and quality of this resin differs with the soil and locality. In some places the plant developes a woody tissue, whilst in others the bark splits and a resin is secreted. In the plains in many places the hemp plant yields excellent gánja, but neither charas nor bhang; and again in the hills the charas is the principal product. The best qualities of charas are imported from Yárkand, Bukhára, and Afghánistán. In former times only the pure resin collected by the scraping process was imported, but now a system of manufacture has sprung up by which a much larger return is effected. When the plants have arrived at maturity, which is known by the bark commencing to split, they are cut down and soaked in water and when well moistened the resinous juice is pressed out. This is then boiled and reduced to the consistence of a paste, in which form it is imported by the Afghán fruit-sellers. It
contains, in addition to the resin, much of the juice of the plant, its colouring matter and other foreign substances, and is altogether inferior to the resin collected by the old scraping process. The Kábulis sell this preparation to the contractors at about one and a half rupee per ser, and they again to the licensed vendors at from four to five rupees per seer, and the later retail it at about two chhattáls for a rupee or eight rupecs a seer. The drug is consumed in the following manner :-About the weight of a two-anna silver piece or 22 grains Troy is taken and covered up with twice its weight of prepared tobacco in the shape of a ball. This is dried over a charcoal fire, and during the process the charas melts inside. The dried ball is then reduced to powder and mixed with tobacco is placed on the chillam of an ordinary cocoanut hukka and smoked in the same way as tobacco. Charas seems to be a milder form of the drug than gánja and is used by the better class of people and those who do not care for intoxication pure and simple.

> Gánja.

Gánja consists of the dried flower heads and smaller leaves from which the resin has not been romoved. It yields to alcohol twenty per cent. of resinous extract composed of the resin (charas) and green colouring matter. Distilled with a large quantity of water traces of essential oil pass over, highly odoriferous of the drug. The colour of the bundles of ganja is dusky green, the odour narcotic and the touch adhosive. The gánja produced in Kumaun and Garhwál is considered of little value and is not, so far as I am aware, exporled. The ganja consumed locally is imported from the lower districts. Two sorts of ganja are sold in these provinces-the pattar and the biluchar. The patter is imported chiefly from Holkar's territories and is of quality inferior to the Bengal gánja. It is purchased at from five to six rupecs per maund in Indur in the rough state, including the stalks and useless leaves, and also pays a duty of about four annas per maund on exportation to British territory. The farmer of the drug revenue pays the cost of carriage and sells it to the licensed retail vendors at from Rs. 20 to Rs. 22 per maund. The retail sellers separate the real gánja from the rough plant and throw away the refuse, which amounts to from five-eighths to
two-thirds of the whole, or in one maund of rough plant only thirteen to filteen sers of real gánja will be found. This sells at from three to four rupees per ser, and about one quartor of a ser will form a month's supply for an ordinary smoker. This pattar gánya is chiefly consumed by the lower classes of Hindús, and especially by all the mendicant sects of Bairígis, Nágas, Sanyásis, \&c.

The biluchar variety is imported from Lower Bengal and is far superior to the pattar. It is grown in the Rajsháhi district and sells there in the rough at from Rs. 18 to Rs. 22 per maund. The Bengal Government charge a duty of from Rs. 2 to Rs. $2-8$ per sor, or Rs. 100 per maund, on all exports of gánja to these provinces. The farmers of the drug revenue separate the real gánja from the rough plant and sell to the licensed retail vendors at from Rs. 10 to Rs. 12 per ser, and the latter retail the drug at one rupec per chlatík (1oz. 17 dwt . 12 grs . Troyr), so that Bengal gánja is as dear as excise opium in these provinces. One or two chlatáks are sufficient for a month's consumption to an ordinary swoker. The Bengal gánja is much stronger than the pattar variety, so that a much smaller quantity produces the same result. It is used only by the better classes, being the more expensive of the two. Gúnja is not in general used so much as tobacco. Kahárs when they complete a portion of their journey often take it as a stimulant, and others with weak digestions smoke a little before a meal to excite a feeling of hunger and promote digestion. It may serve as a stimulant for the time, but its after-effects are lassitude and depression. Gínja is also uscd as a sedative to promote sleep, which it does after an interval of excitement by intoxication.

Ganja is prepared for smoking by taking a portion of the dried leaves, say 20 grains in weight, in the palm of the left hand; these are rubbed with the right thumb, a few drops of water being added to moisten it. Then an equal quantity of dry but soft tobacco leaf is added, and the whole is formed into a paste. This is then cut into thin layers with a knife and again rubbed and pressed into a paste with more water. The compound when well mixed is again sliced, and the process is continued two or three times until the gánja and tobacco are thoronghly amalgamated. It is then smeared with the fingers over a very narrow, small, earthen chillam, and a small cake
of lighted charcoal is placed on the top. The chillam is placed on the ordinary hukka, consisting of a hollow wooden cylinder fitted into a dry cocoanut shell which is half full of water; auother cylinder attached to the middle of the cocoanut forms the stem through which the smoke is swallowed. Gánja smokers are, as a rule, sociable, and the pipe is passed around after each one has had one good pull at it. Each smoker swallows the smoke, which conveys the active principle in that form to the lungs and stomach. With strong Bengal ganja it is difficult to retain all the smoke inspired at a single time, and a cough usually interrupts the operation. This custom is as much due to economical considerations as to good-fellowship, for no one could smoke time after time and the gánja keeps burning away all the same. One dose of gánja is quite sufficient to give a moderate feeling of intoxication to four or five persons. To those unaccustomed to it a single inspiration produces giddiness and even stupor for a time, whilst habitual smokers can take their turn for half an hour. Hcaviness, laziness and agreeable reveries ensuc, but the person can be readily roused and perform routine duties. $\Lambda$ s in the case of opium, gúnja is often made use of as an aphrodisiac.

> Bhang.

Bhang comprises the larger leaves and capsules of the hemp without the stalks. In these provinces there are three varieties of bhang in common use, viz., the Hardwár bhang which comes from Garhwál, the Oudh which comes from the Gonda district, and the Panjabi which comes from Jalandhar. Of these the Oudh variety is the strongest and therefore the best, so much so that one part of it intoxicates as quickly as two parts of the other varieties. The blang-producing hemp grows wild and is sold in the rough with the stalks and refuse leaves at about one rupee per maund in the producing districts, but to this must be added the cost of carriage. The farmer of the drug revenue sells the cleaned plant to the licensed vendors at from ten to fifteen rupees per maund according to the distance from the base of supply. The latter retail the drug to consumers at eight annas per ser or Rs. 20 per maund. The names sabji and sidhi are, also, applied to lhang in its gree state, and májum is a conserve of lhang which is noticed hereafter.

Bhang is prepared for use by soaking the dried leaves for a time in cold water and carefully washing and freeing them from all sorts of impurities, such as dust, seed, kunkur, and the stalks and stems. The leaves are then bruised in a mortar or on a flat stone and made into a thick paste. The paste is then ready for use, and when required is diluted with water according to taste and the solution is drunk. Many persons mingle spices with the paste during the pounding operation, such as black pepper-corns, aniseed, cloves, cardamoms, sugar, and melon and cucumber seeds, but the pepper forms the principal ingredient. An ordinary drinker will consume one ser of bhang or eight annas worth per mensem. Most Hindús who do not indulge in wine, such as Brahmans, Baniyas and the like, take bhang. It is the special drug of the Hindu mendicant classes as madak is affected by the Musalmín fakírs. The Chaubes of Muttra, the Pragwáls of Allahabad, and the Gangaputras of Benares, are noted for their indulgence in excessive bhangdrinking. In the Panjab, the Bhangi misl, or sub-division of the great Sikh coufederacy, was so called from the real or fancied fondness of its members for the use of the drug. Bhang taken in moderate quantities is exhilarating and tonic: it creates an appetite and promotes digestion. In large doses, when the intoxication is sovere, its effects are vory remarkable : the patient is raised to a state of eostacy and cares neither for his own life nor the lives of others. Sometimes he cries in a delirium of joy and then again breaks out into exulting laughter. Even in moderate doses its effects are noteworthy. Dr. O'Shaughnessy made several experiments to ascertain the effects of the drug on men and animals, and in the course of them several of his pupils commenced experiments on themselves which are thus reported :-" In all, the state of the pulse was noted before taking a dose, and subsequently the effects were olserved by two pupils of much intelligence. The result of sevcral trials was that in as small doses as the quarter of a grain, the pulse was increased in fulness and frcquency; the surface of the body glowed ; the appetite became extraordinary ; vivid ideas crowded the mind; unusual loquacity occurred; and with scarcely any exception great aphrodisid wás experienced. In one pupil, Diuonath Dhar, a retiring lad of excellent habits, ten drops of the tincture, equal to a quarter of a grain of the resin, induced in
twenty minutes the most amusing effects. A shout of loud and prolonged laughter ushered in the symptoms, and a transitory state of cataleptic rigidity occurred for two or three minutes. Summoned to witnoss the effects, we found him enacting the part of a Raja giving orders to his courtiers; he could recognize none of his fellow-students or acquaintances; all to his mind seemed as altered as his own condition ; he spoke of many years having passed since his student's days; described his teachers and friends with a piquancy which a dramatist would envy; detailed the adventures of an imaginary series of years, his travels, his attainment of woalth and power. He entered on discussions on religious, scientific, and political topics with astonishing eloquence, and disclosed an extent of knowledge, reading, and a ready apposite wit which those who knew him best were altogether unprepared for. For three hours and upwards he maintained the character he at first assumed, and with a degree of ease and dignity perfectly becoming his high situation. A scene more interesting it would be difficult to imagine. It terminated nearly as abruptly as it commenced, and no headache, sicknoss, or other unpleasant symptom followed the innocent cxcess. Dr. Goodeve and more than thirty students were present at this: occurrence. In the symptoms above described, we are unavoidally led to trace a close resemblance to the effects produced by the reputed inspiration of the Delphic Oracles; perhaps it would not be: very erroneous to conclude that it was referable to the same kind of excitement."

## Májum.

Majum or conserve of blang is a preparation much affected by

## Majum.

 the better classes. In one maund of májum, as used in these provinces, there are three sers of bhang, two sers of ghi or clarified butter, and thirty-five sers of sugar. It is prepared in this way :-take three sers of clean bhang and soak it for a night in cold water ; next morning take out the bhary wash it well and put it into a basket, to allow the water to drain off. Then place a large shallow iron-pan on a slow fire and throw into it about two and a half sers of good ghi. When this melts and begins to boil throw into it the bhang and fry it until it becomes crisp. Then add water and boil for some hoursuntil the lhang becomes soft and pulpy. Then strain through a cloth and pound in a mortar until a paste is made. You next take a maund of sugar and put it in the pan, adding a sufficient quantity of water to melt it. The sugar is then boiled, and while boiling is clarified with milk; when properly purified the bhang paste is added in small quantities at a time and carefully stirred to ensure its mixing with the sugar. When thoroughly amalgamated, the compound is taken out and spread on flat brass plates about an inch thick, and when this hardens by drying, it is cut into small square pieces with a knife. The quantity of ghi and bhang make up for the loss in clarifying the sugar, and the result is one maund of majum. The confection costs about Rs. 18 to 20 per maund and is sold to the licensed vendors at Rs. 40 per maund, and these latter retail it at one pice per square to their customers. Two squares are sufficient to produce a moderate amount of intoxication to an ordinary person. Pcople seldom get used to taking majum daily, and it is generally taken for purposes of pleasure and as an excitant to debauch.

Another mode of preparation is as follows :-Four ounces of sidhi and an equal quantity of $g h i$ are placed in an earthen or welltinned vessel, a pint of water is added, and the whole is then warmed over a charcoal fire. The mixture is constantly stirred until the water all boils away, which is known by the crackling noise of the melted butter on the sides of the vessel; the mixture is then removed from the fire, squcezed through cloth while hot, by which an oleaginous solution of the active principle and colouring matter of the hemp is obtaincd, and the leaves, fibres, \&c., remaining on the cloth are thrown away. The green oily solution soon concretes into a buttery mass, and is then woll washed by the hand with soft water so long as the water becomes coloured. The colouring matter and an extractive substance are thius removed, and a very pale green mass, of the consistence of simple ointment, remains. The washings are thrown away, for if used they are intoxicating and produce constriction of the throat, great pain, and very disagreeable and dangerous symptoms. The operator then takes two pounds of sugar, and adding a little water, places it in a pipkin aver the fire. When the sugar dissolves and froths, two ounces of milk are added; a thick scoun rises and is removed, more milk and a little water are
added from time to time, and tho boiling continued about an hour, the solution being carefully stirred until it becomes an adhesive syrup, ready to solidify on a cold surface; four ounces of new milk, dried before the sun, in fine powder are now stirred in, and lastly the prepared butter of hemp is introduced, brisk stirring being continued for a few minutes. A few drops of atar of roses are then quickly sprinkled in, and the mixture poured from the pipkin on a flat cold dish or slab. The mass concretes immediately into a thin cake, which is divided into small lozenge-shaped pieces. A ser thus prepared sells for four rupees. One drachm by weight will intoxicate a begimer and three drachms one experienced in its use. The taste is sweet and the odour is very agrecable.

The pure resin of the hemp is very soluble in alcohol and ether, partially soluble in alkaline and insoluble in acid solutions. When pure it is of a blackish grey colour, hard at $90^{\circ}$, softens at a higher temperature and fuses readily. It is soluble in several volatile and fixed oils. Its odour is fragrant and narcotic ; the taste is slightly warm, bitterish and acrid. The late Sir W. O'Shaugnessy gives ${ }^{1}$ a very interesting historical account of the plant and of the experiments made by him on its properties and uses. Mention of the drug is made by the Sanskrit, Arabian, and Persian writers at a very early date. Some trace a reference to it in the gánja mentioned by Manu, but Williams refers the name to the Abrus precatorius, whilst giving the adjective gánjakini to anything made of hemp. It is noticed as early as $658 \mathrm{H} .(1259$ A.D.) by Musalmín writers, and was early introduced into Egypt, where, under the name of hashish, it is still eagerly consumed by the lower classes. As in India, its use by religious zealots has led to terrible scenes of slaughter and rapine, so in Egypt, the sect most addicted to it was called the Hashishin or Assassins. ${ }^{2}$ Throughout the east, from an early period, it has been used as a medicine and now forms an article of the Indian Pharmacopœia, prescribed in cases of tetanus, hydrophobia, cholera, delirium-tremens, and neuralgia. A careful chemical examination of the different forms of Indian hemp and their preparations is still a desideratum and worthy the attention of the many able chemists residing in India.

[^122]
## Spirits.

The ordinary country spirit is manufactured in all the hill dis-
Spirits. tricts. It is made from shiva and yur, two forms of the products of the sugarcane. These are placed in a covered tub with water, barley, and certain spices and allowed to ferment. When fermentation has taken place, the tub is filled with water and after two or three days the mixture is ready for distillation. The still in common use is the ordinary rude apparatus of two vcssels of metal connected by a tube of bambu. In one the liquor to be distilled is placed and a fire lighted under it; the liquor passes through the tube into the other vessel which is kept cool by being placed in water. This once distilled liquor, known as tharra, is of two qualities : the rási or weaker and the phálka or strong spirit. If re-distilled the product is known as makattar. The process of fermentation takes from ten to twelve days in the hot-weather and double that time in the cold season. The liquor produced from molasses is dearer, but much stronger than that prodnced from the mahua. By one distillation, however, it seldom reaches to $50^{\circ}$ under proof by the Syke's hydrometer, but by several distillations spirits even above London proof may be obtained. In Kumaun, as a rule, the use of spirituous liquors is confined to the lower castes, though gradually spreading to the better classes ; but in Garhwal the Hindús are less scrupulons, and, according to Traill, all but a few Brabman families drink spirits manufactured there from rice or barley. At the same time, however, they will not drink the spirits manufactured in the plains or after the plains method, objecting both to the materials employed and the caste of the makers. In Garhwál the spirit is made by Rajpuits, not Kalwárs as in the plains. A coarse spirit is also manufactured from mandua, and the Bhotiyas prepare another called dáru.

## Betel.

Chavica Betel, Miq.-Pán. The pán is imported from the plains. The leaves are used in chewing and are membranaceous or the adult ones coriaceous, shining above, glabrous on both sides; the inferior ones ovate, broadly cordate, equal-sided; slightly unequally cordate or rounded at the base, five to six nerved. The ingredients in the masticatory in common use are the pán leaves;
supári, the nut ${ }^{1}$ of the Areca catechu or betel-nut palm, a native of the eastern islands and cultivated in Lower Bengal and Travancore ; chuina or lime; and kath or catechu, the produce of the lehair tree (Acacia catechu). Women usually add a small quantity of tobacco to the compound and many add the small cardamom. The average quantity consumed by pin-eaters is about five leaves a day, costing about one and a half pice, or $2 \frac{1}{4}$ farthings. The mixture is pleasant and refreshing, but like other things its inordinate use is injurious to the digestion. Marco Polo mentions the use of the plant, which he calls tembal; the name of the caste still employed in its sale and preparation is Támboli. The shreds of the unused leaves and the juice of the stalks (pinnri) are made use of in the preparations of tobacco for smoking.

## HI.-Vegetable substances used in manufactures.

## A. -OIL-SEEDS.

The only oil-seeds of importance grown in the Kumaun division and the tract under the hills are the rapeseed and linseed of commerce. The medicinal and other oils have no great value as articles of export and are only procurable in very small quantities. The Bhábar exports great quantities of rapesced, for which the climate and soil appear to be eminently suited. As so much confusion exists in the synonymy of the mustards, the botanical description of the more important species is given here to aid in distinguisling it.

Brassica nigra, Koch. Hook, Fl. Ind., I., 155. S.erysinoides, Roxb., Fl. Ind., 499—Asl rai, ghor rái, makara raí, and banárasi rái of Kumaun and sarshaf of the hospitals, where the seeds are used for poultices and also in veterinary practice. The leaves are used as a cress. The oil is used chiefly for medicinal purposes.

Brassica campestris, Linn., Hook. Fl. Ind., 156. S. dichotoma, Roxb., Fl. Ind., 497.

Erect, lower leaves lyrate, upper auricled, flowers corymbose, beak of por flat, seedless. An erect, stont, simple or branched,

[^123]glabrous or slightly hispid annual, 1-3ft. high. Leaves large, petioled, more or less pinnatifid, upper oblong or lanceolate. Flowers large, bright yellow, pedicels $\frac{3}{4} \mathrm{in}$., ascending or spreading. Pods $1 \frac{1}{2}$-3in., glabrous, sub-erect; valves with midrib and flexuous veins. Seeds small, smooth, pale or dark.

Var. dichotoma, Roxb., the jariya, jadiya of the hills and lohota laita of the Bhábar, where it is grown only in a few valleys in Kota, and káli sarson of Northern India.

Var. glauca, Roxb., the ríra, ráda, rára-sarson of Kumaun, banga-sarson of Dehra Dún, and pila-sarson of Oudh and Rohilkhand : seldom grown in the Bhábar, as it yields a crop good in quality, but poor in quantity.

Var. glauca, Royle, the dain, dain, and lai of Kumaun and Garhwál: sometimes lkhetiya, tori, and toriya of Northern India, where this varicty is in general cultivation : grown very largely in the Bhábar.

The jariya variety is sown in the beginning of September in fields where manure has been lying. The stalks are cut from the root and when dry the grain is threshed out and the oil is expressed in the common kolu or oil-press. It is a favourite crop near Almora. The rárca variety is grown all over the hills in small quantities only, as it requires much manure and is liable to injury from hail. It is sown in first-class unirrigated land in November-December and gathered in April. It yields about three maunds of oil to an acre. The lai variety is cultivated all over the hills up to 11,000 foct and is the staple mustard crop of the Bhábar. These threo varieties are grown as oil-seeds and afford the rape-seed of commerce.

Brassica juncea, H.f. et T.: Sinapis juncea, Linn.-Räi, sarson. There are several varieties of this specics. The S. ramosa, Roxburgh (498), is the barlái of Kumaun, and the S. rugosa, Roxburgh (499), is the bádsháhi-lái or bhotiya-lái introduced by the Gorkhális from Nepál. Both these varieties are cultivated chiefly for their leaves, which are eaten as a vegetable cooked and dressed with spices and clarified butter. The brown seed of B. juncea proper, however, yields an oil that possesses properties similar to those of $B$. nigra, and for which the seeds may be substituted in the
preparation of poultices. Eruca sativa, Lam., the día and chára of Kumam, is cultivated as a vegetable and also for the oil from its seeds, which is less pungent than mustard-oil. It escapes frequently in cultivated tracts, coming up accidentally with other crops.

Linum usitatissimum, Linn.-Flax ; seed is known as linseedAlsi, tisi. An annual belonging to the natural order Lineacea; seeds oval, pointed in shape, compressed, with a sharp margin ; brownish coloured; smooth and shining outside, but white internally. The native country of the flax plant is not known, though it has been thought to be indigenous to Central Asia and has been cultivated for centuries in India. The Iudian sced is better for oil and the European seed for fibre. In these hills it is cultivated only for the oil and the oil-cake, which is used as fodder for cattle.

Sesamum indicum, Linn.; the seed is known as til and the oil as mitha tel. An annual belonging to the natural order Pedaliaceca. There are two varieties known to commerce, the black and the white grain, and a third parti-coloured is found in these provinces. The white-grained called tili is cultivated in Kumaun, and the blackgrained variety grows wild there and in the Bhabar. As a rule the fresh seed is expressed at once, but in many cases where a finer oil is required the dark colouring matter of the epidermis is removed by bleaching in hot water or washing in cold water several times. The oil produced from these whitened seeds is considered a uscful substitute for olive oil in the preparation of medicines and in manufactures. The mode of extracting the oil is usually the same in the hills and Bhábar. The seed is first sifted, cleaned and dried, and then put into a kolu or press worked by hand or by oxen. A little water is added, and after some time the oil rons out. The oil is then strained or allowed to stand in shallow vessels, when the impurities sink to the bottom. Every three parts of good seed yield one part of oil, which has risen in price much of late years and renders til a very valuable crop. Besides its use in painting and medicine, the oil is burned in lamps, forms a substitute for saladoil in cooking, and is the basis of most of the perfumed oils in use in India. The last are made by adding one woight of flowers to three weights of oil in a bottle; the mixture is then cooked and exposed to the sun for forty days, when the oil is supposed to be
sufficiontly impregnated for use. The seeds of sesamum are largely used in religious ceremonies by Hindús, and mixed with sugar in the form of a sweetment (ladu) forms an appropriate present for old and young at all festivals.

Ricinus communis, Linn.-Castor bean-Ind, rendi, arand. This bean is commonly cultivated in small quantities in the lower valleys for home consumption.

Bassia butyracea, Roxb.-Chizira (Kumaun); the butter made from its fruit is called chiuru-ka-pina and phulel; the phalwa and phalwara of Almora. A tree belonging to the natural order Sapotacece, $30-40 \mathrm{ft}$.: leaves obovate, tomentose beneath : corollia 8 -cleft : stamens $30-40$ on longish filaments: pedicels aggregate, and are, as well as the calyx, woolly: drupes oval : flowers smallish, white. Roxb. Fl. Ind., II., 527 ; Reprint, 411 : Don. Fl. Nep., 146. Flowers in November. It occurs abundantly in the valley of the Kálí, where the bees feed on its fragrant flowers and those of the jaunclela (Achunanthera Wallichui) : hence Sor honey is so esteemed (see page 715). The timber is of little value, the principal product being the 'vegetable butter' extracted from the fruit and which is used as a pomade or cold-crean, also in rheumatism and stiffness of the limbs. Its medicinal properties deserve further investigation (Ind. Phar., 131). It dissolves readily in alcohol, burns without smoke or smell, and makes good soap and candles. Solly's analysis gives solid oil, 34 parts of fluid oil and 6 parts of vegetable impurities (J. Agri.-Hort., Ben., I., 23). It retains its consistency up to $95^{\circ}$ and completely molts at $120^{\circ}$ and does not become rancid by keeping. The phalel is produced by bringing the kernels of the fruit into the consistence of crean, which is then put into a cloth bag with a moderate weight laid upon it and left to stand until the oil or fat is expressed, which becomes immediately of the consistence of lard and is of a delicate white colour (see Roxburgh's description in As. Res., VIII., 477 ; and Drury, U. P., 67). B. latifolia, Roxb., mahua, occurs occasionally in the Bhábar and affords an oil from its seeds, but is of little economical value here.

The medicinal oils, as already noticed, consist chiefly of sesamum oil impregnated with the various herbs and flowering plants that they are named after or with the different gum-resins. Oils in
small quantitics made from tea, poppy, and many fruit trees and flowering shrubs were exhibited at Agra in 1867, but owing to the imperfect arrangement of the cataloguo no data exist for estimating their value commercially or ascertaining their uses.

## B.-DYES AND TANS. ${ }^{1}$

The dyes of vegetable origin in these provinces may be broadly divided into two classes: first, those produced from plants specially cultivated for the purpose; and second, those obtained from plants or trees growing wild or which are cultivated on account of some other product. There are no representatives of the first class in the hills, and to the second class belong turmoric and the great mass of dyes exported from the hills as a portion of the minor forest produce, but which are of little commercial value. The tanning matcrials of vegetable origin are all the products of trees and plants that grow wild and afford a valuable assistance to the supply of similar materials found in the plains. In neither case, however, does it appear that much can be done in the way of making further use of these substances until their character and qualities have been more thoronghly examined. At present it is believed that, with few exceptions, they do not present any such features as would give good grounds for the hope that they might become of much importance or objects of a regular trade, but until competent persons undertake their investigation it is unnecessary to discuss the finality of this verdict. The local market for either tans or dyes is inconsiderable, and the plains' markets are now filled with the products of the latest discoveries in Europe which in cheapness and quality far surpass the hill materials and are now ousting the local dyes from general use. A demand for bark for tanning purposes will, however, always exist as it would not be profitable to import it.

## Dyes.

## (a.)-Extracted from the root.

Rubia cordifolia, Linn.-Madder-Majethi, manjit. It should be remembered that the vernacular name majethi is sometimes given
${ }^{1}$ For more detailed information on this subject, see " Economic Products of the North-Western Provinces, Part III;" Allahabad, 1878.
in Kumaun to Impatiens Balsamina, which also yields a red dye, but it is properly applied only to Rubia. There are two species, R. Manjistha, Roxb. (1,374), abundant 4,000-9,500 feet with black fruit and deep red flowers, and $R$. cordifolia, and both are distinct from the European madder (R. tinctomom) and yield a brighter dye, but whether owing to inherent defects or improper appliances the dye is not so durable. It is in common use with the Bhotiyas and gives with alum a reddish-brown colour. Some attempts have been made to introduce the cultivation of the European madder plant, but they were neither continuous nor exhaustive, though successful in Afghánistán and apparently also in Kumaun. The average annual export from Kumaun is about ten maunds.

Carcuma longa, Roxb.-Turmeric-Haldi (root). See Condiments. This root is chicfly grown as a condiment, but one variety which when cut has a rich unctuous appearance also yields a yellow dye. When it comes into contact with an alkali it turns red, and is sellom used except for the commonest purposes and by the poorer classes.

Berberis aristata, D. C.-Chitra, totar. The bark and root of this species and B. Lycium, known as kingoru-ki-jar or dírhald, dárchob, yield a yellow dye. They are both common in the Himálaya of these provinces. Tho colouring principle is found chiefly in the root and affords an excellent dye for leather. The average annual export from the Kumaun forest division is not more than two maunds.

Mariscus cyperinus- Nagarmotha, pamotha. The roots are used in dyeing to give a scent to the cloth and also in medicine. Some identify nagarmotha with Cyperus juncifolius.

Datisca cannabina, Linn.-Akalbir (root), bajr-bhanga (plant). The yellow root is exported to aid in dycing red and is also used in medicine.

Hedychium spicatum, Em.一Kachúr-kachri, Kapúr-kachri. The root has a strong perfume and is used in dyeing to scent cloth; also to scent tobacco and as a medicine. The average annual export from the tract between the Ganges and the Sárda is about ten tons.

## (b.) - Eatracted from the bark or stem.

Acacia Catechu, Willd.-Khair (the tree)-Catechu, cutchkath, katha (the dye). The manufacture of catechu or cutch, or terra japonica as it is variously called, has gone on from time immemorial at the foot of the hills. The men employed are of the Dom caste and are called Khairis from the vernacular name of the tree. They continue at work from November until the rains set in and are aided by their families. Madden's description of the manufacture still holds good. He writes :-"One portion of the Khairis is constantly employed in cutting down the best trees, and for these they have to search far in the jungles; only those with an abundance of red heart-wood will answer. This is chopped into slices a few inches square. Under two large sheds are the furnaces, shallow and with a slightly convex clay roof, picrced for twenty ordinary sized earthen pots. These are nearly filled with chips, and water is then poured in and boiled until the contents of twenty will only fill two pots. This operation takes place in about an hour and a half. The liquor resembles thin light port, and the katha crystallizes on leaves and twigs thrown into it for the purpose. Each pot yiclds about a scer of an ashy white colour. The work is carried on for twenty hours out of the twentyfour by relays of women and çildren; the men merely preparing the wood, which, after being exhausted, is made use of as fuel." The best samples of kath are clean and whitish or of a pink colour, but some are dirty and mixed with forcign matter. In 1848, kath was worth six rupees a maund in the forests. In the Dún the kath is not allowed to crystallize on twigs, but is poured into clay moulds and made into cakes. Kath is used as an ingredient in the prepared pán so commonly chewed by natives and gives the red colour to the saliva. As a dye it gives brown tints and is largely used for colouring sails and fishing-nets. The average yearly export from the forests between the Ganges and the Sárda is about 120 tons, though but little catechu is now made west of the Rámganga. The bark of this tree is also used in tanning.

Taxus baccata, Linn.-Yew.-Thaner, geli, gallu, lu'st. The bark yields an inferior red dye only used in the Bhotiya parganahs.

Symplocos cratægoides, Ham.-Lodh, lod. The bark and leaves yield a ycllow dye and are used in combination with madder. The average annual export from the tract between the Gauges and the Sárda amounts to about twenty tons, of which about nine tons come from the Kumaun forest division.

Alnus nepalensis, Don.-Himálayan alder-Udls, kunch, koish. The bark is used in tanning and in dycing red and is one of the ingredients in the native-made red ink.
(c.)-Extracted from the leaves.

Justicia Adhatoda, Linn.-Arvisa. This plant yields a yellow dye from its leaves by boiling them in water in the proportion of 10 tb to 16 ft until half the water has evaporated. In combination with indigo it gives a dark-blue green. The leaves are procurable at from 20 to 25 seers per rupee.

Cinnamomum Tamala, Nees.-Dillchini, kirkiviya, sinkauri, and leaves tejpát. The leaves are more commonly used as a condiment (see Condiments), but they are also of use in calico-priuting in combination with myrobalans. The average annual export from the tract between the Ramganga and the Surda is about 33 tons of the leaves and 24 tons of the bark.
(d.)-Extracted from the fruit-rind.

Acacia arabica, Willd.-Buthill. This tree does not flourish in the Kumaun Himalaya, though stunted specimens are found as high as $3-4,000$ feet. It occurs, however, in the drier tracts along the foot of the hills and yields a black dye from the pods, which are simply pounded and boiled. The gum is also used extensively by dyers and calico-printers and the bark in tanning.

Mallotus phillipinensis, Müll-Kamela, ruína, roli. The ripe fruit of this small tree is covered with a powder that yields an orange dye. It is commonly used in dyeing silk and wool and gives a rich flame colour of great beaaty and permanence and is one of the best of its kind. It sells at from 3 to 4 seers per rupee. Stewart writes :-" The ripe capsules are gathered off the bushes in March, and after being allowed to lie in a heap for a few hours are rubbed and kneaded with the feet on the ground to remove the powder, the broken capsules being then separated by winnowing, sifting, and picking. One man will collect about a
seer of the powder in a day, which is bought by the dealers at five seers for a rupee. The above process will quite account for the commercial kamela not being very clean; but besides this, although the Bhuksas, who gather it, deny that any adulteration takes place, it is said never to reach the plains' market in its comparatively pure state." The substances added are stated to be the pounded bark of Casearia tomentosa, Roxb., the chila of Garhwál, and the red powder on the fruit of the Ficus indica, Roxb., the common banyan or bargad. On the other hand kamela itself is used to adulterate arnotto. The bark is employed in tanning. About 2,000 maunds of the powder are exported every year from the Kumaun forest division.

Punica Granatum, Linn.- Pomegranate-Andur, dúrim, and the rind of the fruit náspál. The rind of the pomegranate is used as a $\tan$ and dye for leather and gives cloth the greenish colour known as kakrezi. It is, however, generally used with some other dye as a concentrator, in which case the pulverised rind is boiled along with the dye. The flowers also yield a flceting dye of a light-red colour. Morocco leather is tanned and dyed with the bark of this tree, of which the export amounts to the large quantity of 270 tons per annum from the Kumaun forest division alone.

Terminalia Chebula, Reṭz.-IIar, harara. The dried fruit are the black or Chebulic nayrobalans of commerce used as a dye, tan, and medicine. Galls are also found on the leaves which in conjunction with alum yield a good permanent yellow dye. The average yearly export from the forests between the Jumna and Sárda amounts to about 50 tons, of which the Kumaun forest division yields 550 maunds or about 20 tons.

Terminalia belerica, Roxb.-Bakera. The dried fruit of this species also forms one of the myrobalans of commerce used in dyeing cloth and leather and in tanning. Native ink is made from it and it is also used in medicine. The average annual export from the same tract as the preceding is about ten tons.

Phyllanthus Emblica, Linn.-Aonla, amlika. The fruit of this species furnishes the Emblic myrobalans of commerce used as a dye, a tan, and in medicine. The bark is also used in tanning. The fruit is pounded and boiled in water, and in combination with
sulphate of iron yields the bluish-black colour abunsi, and alote is used as a hair-dye and ink-material. The annual export from the Kumaur forest division is abont four tons.

在gle Marmelos, Corr.—Bel. The rind of the frait is occasionally used with myrobalans by calico-printers, and by itself yields a fleeting yellow dye. The anuual export from the Himadayan forests is, however, very small.
(e.) -Eatracted from flowers.

Nyctanthes Arbor-tristis, Linn.-Har, harsinghár, pahiòra, ladtiri, kiyera. The flowers yicld a fine but fleeting buff or orangebrown dye. It is much used in combination with other dyes, and the flowers can be had in any quantity from the submontane forests at from 2-6 seers per rupee.

Butea frondosa, Roxb.-Dhàk, palàs, chichros. The flowers ( $k a s u$, tesu) yield a fleeting yellow dye with alum, much used in the Holi festival. The tree occurs abundantly along the foot of the hills, and is very remarkable from the effect produced by its large orange-red Howers.

Cedrela Toona, Roxb.-Titn, túni. The flowers of this wellknown tree also yield a yellow dye known as basanti, from the practice formerly in fashion to wear clothes dyed yellow at the spring festival (basant). A red dye is occasionally extracted from the seed.

Tagetes erecta, Linn.-Genda. The flowers of this plant, the common marigold, also yicld a yellow dye which is, however, but little used except by the poor.

Woodfordia floribunda, Salis.-Dhái, dhauァa, tháwa, dhárla. The red flowers of this large shrub are used in dyeing silk; the average annual export for this purpose from the tract between the Jumna and the Sárda being about 27 tons, of which about 200 maunds come from the Kumaun forest division. The leaves and twigs also yield a yellow dye.

Parmelia kamtschadalis, Esch.-Rose lichen-Charta, chatpúri, charchabtilu, chalchalira. This lichen is used in calico-printing to give a perfume to the cloth and a rose tinge. The average annual export from the tract between the Ganges and the Sárda is about 25 tons.

## Tans.

 (a.) -Tanning agents derived from the bark.Acacia arabica, Linn.-Babril. The bark of this tree is the most plentiful and effective of all those used for tanning purposes. The logumes and leaves also have similar properties in a less degree. Besides tanning a skin, the babúl bark dyes it a buff colour.

Cassia Fistula, Linn.-Amaltás, kitola, itola, kitwáli, simhára, sim. The bark of this tree yields a tan and dye and, like the preceding, the pods contain much tannin. The average annual export of the bark from the forests between the Ramganga and the Sárda amounts to about sixteen tons.

Shorea robusta, Gerrtn.-Sál. The bark of this tree, so well known for itstimber, contains tannin, though it is not much used as a tinning material.

Butea frondosa, Roxb.-Dhék, palás. The bark contains an excellent tanning agent much used where babúl is not procurable.

Myrica sapida, Wall.-Káaphal. The bark is used in medicine and as a tanning agent. The average annual export from the tract between the Jumna and the Sárda amounts to about seventy tons.

Bauhinia purpurea, Linn.-Kachnár, khairwál, gúricil. A common small tree, the bark of which is used in tanning.

Buchanania latifolia, Roxb.-Kath-bhilízoa, muriya, piyál. The bark of this tree is also a tanning agent.

Garuga pinnata, Roxb.-Kharpat. The bark yields a tanning material.

Zizyphus Jujuba, Lam.-Ber, khalis, guter. This tree yields a much valued tanning material in its bark. The export of oak bark of various kinds from the Kumaun forest division alone amounts on an average to between 50 and 60 tons per annum.
(b.) -Tanning agents derived from fruits.

Terminalia Chebula, Retz-Hur, haraira. This and the fruit of T. belerica form the Chebulic and Beleric myrobalans of commerce, used as ar ingredicat in timning mixtures.

Semecarpus Anacardium, Linn.-Bhiláwa. The fruit of this tree, better known as the 'Marking-nut tree,' is used in medicine and as an ingredient in varnish. When pounded and boiled in rape oil it is applied to stay putrefaction in hides.

The babúl, dhao, bahera, har and dhauri or bákli (Anogeissus latifolia, Roxb.) are also used as tanning agents, and the milky juice of the ák or madúr in curing catgut and cleaning leather.

## C.-GUMS AND GUM-RESINS.

There are six classes of gums known to commerce, each of which admits of numerous varieties : (1) gum-arabic ; (2) gum-senegal ; (3) cherry gum and the gum of other stone-fruit trees ; (4) gumtragacanth ; (5) gum of Bassora, and (6) the gum of certain seeds and roots. ${ }^{1}$ The first five spontaneously flow from trees and the sixth is extracted by boiling water. Representatives of (1), (3), (4), and (6) occur in Kumaun, and in addition we have the oleo-resin bhiláwa and tar and turpentine. The better classification, however, is that proposed by Cooke, viz.:-

## I-Gums -

A.-True gums-
(a)—Arabic kind as babúl (Acacia aralica).
(b) -Cherry kind as padam (Prunus Puddum).
B.-Pseudo-gums-
(a)-Tragacanth kind as kulu (Sterculia urens).
(b)-Dark or Moringa as sahajna (Moringa pterygosperma).
C.-Astringent gums as dhák (Butea frondosa).

## II.-Gum-resins-

A.-Emulsive as gota-ganba or gamboge.
B.-Fœolid as hing or asafootida.
C.-Fragrant-
(a) -Bdellium kind as grigal.
(l)-Benzoin kind as lubán.

[^124]
## III--Resins-

A.-Hard or Copaline-
(a)—Pale resins as safed damar (Vateria indica).
(b)-Dark resins as kúla damar.
B.-Soft or elemi as jangli-badain (Canarium commune).

## IV.-Oleo-resins-

A.-Balsams as bdedsan-lei-tel.
B.-Varnishes as bhiláwa.
C.-Turpentine and tar.

The average annual export of gums, some years ago, from the Garhwál forest division was about 265 maunds, and of birja or pineresin about 30,500 pitchers of $2 \frac{1}{2} t \mathrm{~b}$. each. From the Dehra Dún the export of semli gum is about 786 maunds, and of $d h a \dot{k}$ gum about 27 mannds, whilst about 200 maunds of gum are exported every year from the Kumaun forest division. Taking gums alone, the average yearly outturn from the Himálayan forests of these provinces is about 1,300 maunds. If encouragement were offered and trained collectors were employed, the quantity of produce of each kind of gum would be much more than at present; but so long as African gums can be sold in the London market at their present low rates, there is little hope that this branch of industry can be extended with profitable results.
I.-GUMS.
A.-True gums.

Acacia arabica, Willd.-Babuil. This common tree yields the East Indian gum-arabic or gum gattie of commerce used in mericine and the arts. The bazar collections, however, contain the gum of allied species under the same name, babut-ki-gond. The gum exudes spontaneously or is procured by incisions in the bark, when the sap runs out and hardens into small lumps varying in form and size. There are two kinds, the brown and white gam; the former is more esteemed in medicine and the latter in the arts. The gum exudes principally in MarchApril, and a good tree should yield about 2 tb in the year. The bazar specimens occur in broken tears of a brownish red to brown, light-brown and white colour, ratier brittle with is shining fracture and wholly soluble in water, forming a dark-coloured
mucilage. With this gum is usually collected and sold the gum of the following allied species:-
A. Catechu, Willd.-Khair.
A. Farnesiana, Willd.-Wiláyati babúl.
A. lenticularis, Ham.-Khain.

Albizzia procera, Benth.—Nafed-siras, kharanji.
A. Lebbek, Benth.-Siras.
A. odoratissima, Benth.-Wilayati siras.

巴gle Marmelos, Corr.—Bel. This tree yields a good gumarabic, occurring in tears like coarse brown sugar and of a similar colour.

Prunus Puddam, Roxb.-Padain, puya, paya. This and the other species of cherry yield a gum-arabic of the stone-fruit kind which, however, is not of commercial importance owing to the smallness of the yield and the presence of other gum-bearing trees.

Buchanania latitolia, Roxb.-Piyál, muriya, kath-bliláva. This tree occurs commonly in the Bhábar and yields a pellucid gum by incision, known in the plains as chironji-ki-gond.

Bauhinia variegata, Linn.-Kachnár. This and its allied species yield a gum known as sem-ki-gond. It is said to be a brownish mild gum that swells in water and is only partly soluble.

Careya arborea, Roxb. -Kumbh. This tree yields a greenish gum regarding which but little is known.

Cassia Fistula, Linn.-Kituáli, amaltús. A red jaice exudes from the bark and hardens into a gum called kamarkas, regarding which further information is desirable.

Cedrela Toona, Roxb.-Tín. This tree yields a resin rather than a gum.

Sponia orientalis, Planch., yields a gum of the cherry tree kind.

Anogeissus latifolia, Wall.—Dháwá, dhaura, bákli. It yields a fine white hard gum used chiefly by calico-printers.

Odina Wodier, Roxb.-Jlingan, jiban, sinelan. The gum is obtained from incisions in the bark and when solidified appears much like glue. It is used for ink-making and in the finer parts of stucco work. There are two sorts exported from Kumaun ; the
white (kanne) picked from the tree and sold at about ten seers for the rupee, and the black (jingan-ki-gond) gathered on the ground and sold at fifteen seers for the rupee.

Elæodendron glaucum, Hook.-Bakra, shauriya, mámri. The gum produced by this tree is known as the jamrási gum in the Central Provinces. It occurs in roundish tears and is soluble in water.

Feronia Elephantam, Corr.-Kath-bel, kait. The gum of this tree is recommended as a substitute for gam-arabic in medicinal preparations.

Woodfordia floribanda, Salisb.-Dhaí, dhaura. The gum of this tree deserves further examination. It appears to be of the tragacanth kind and swells in water. Specimens of the gum from the following trees known to yield gum should be collected and subjected to examination :-

Scientific name.	Vernacular name.		Scientific name.	Vernacular	
Citrus Aurantium	Narangi	53	Semecaipus Anacardium,	Bhiláwa...	124
, medica ...	Bijaura ...	51	'Terminalia Arjnma ...	Arjün ...	224
Phyllanthus Emblica,	${ }_{\text {Amika }}{ }^{\text {Panara }}$...	454	" tomentosa...		225
Erythrina indica ...	Pangara ...	139	" belerica ...	Bahera ...	222
Garuya пinnata ...	${ }^{\text {Kharpat }}$...	${ }^{62}$	, Chelsula		223
Jatropha Curcas ...	Safed-ind ..:	448	Zizyphus oxyphyla	Jigar	8.5
Melia Azelarach ...	Bukiuyan	68	" Emoplia	Heri	86
Morus indica	Tüt	408	" Jujubi	Ber	${ }_{89}^{86}$
Punica Giranatum ...	IJarim ...	241	", rugosa	Dhauri	89
Sapindus detergens ...	Rutha	107	Schleichera trijuga	Kusumbhat	
B.-Psecdo-Gums.					

Cochlospermum Gossypium, D. C.-Kimbi. This tree yields the gum katira of the local Materia Medica. It occurs in semitransparent, white, striated pieces very much twisted and contorted.

Sterculia urens, Roxb-Gulu, kuru. This tree also yields a gum katira that occurs in large light-brown transparent tough masses. Immersed in water like the other pseudo-gums it swells like a jelly, but does not dissolve except by protracted boiling. $S$. villosa, Roxb. (Brandis, 32), the ridála or udiyál of Kumaun, and
S. colorata, Roxb. (Brandis, 34), the bodula of Kumaun, yield a similar gum.
(b.)-Dark or Moringa kind.

Moringa pterygosperma, Gærtn.-Sahajna. This tree yields a gum of the sort known as mocharas, used in medicine. It occurs in irregular pieces of a whitish to a reddish-brown colour.

Bombax malabaricum, D. C.-Semal. The gum of this tree is also known as mocharas. It occurs in opaque, light-brown, knotty pieces, inodorous and of a slightly astringent taste, and contains a large proportion of gallic and tannic acids. It is chiefly used as an astringent in medicine.

Stereospermum suaveolens, D C.-Páral. This tree yields a gum of the same character as the preceding, but not in general use nor sufficiently exa mined.

> C.-Astringent Gums.

Pterocarpus marsupium, Roxb.-Blja-sál. This tree, rare in Kumaun, yields a grum of the kind known as kino. It is procared by incisions when the tree is in flower, and the gum is collected on leaves placed beneath the cuts in the bark. It forms a part of the commercial East Indian gum-kino.

Butea frondosa, Roxb.-Dhdik, palás. The gum of this useftal tree is the principal sort exported as gum-kino under the local name kamarkias. It occurs in the form of tears which when fresh are of a beautiful red colour, but when kept for any time become opaque and darker in colour. It is used in medicine and for tanning and dycing.

Ougeinia dalbergioides, Benth.-Sándan, chándan. This tree yields by incision a sort of gum-kino used medicinally for the same purposes as Butea kino.

## " II.-GUM-RESINS.

A.-Emulsive gum-resins.

Under this class come the products of trees of the genas Garcinia, none of which occur in these provinces.
B.-Fetid gum-resins.

Under this class we have asafoetida, gum-ammoniacum, and others that do not occur in these provinces.
C.-Fragrant gum-resins.

To this class belong the gum-resins which are not emulsive and do not possess the fæetid odour of the preceding, but none of them occur in these provinces.

## III.-TRUE RESINS.

## A.-Copaline resins.

Shorea robusta, Gærtn.-Sál. The resin of the sál constitutes one of the common dammars of the bazar and occurs in small rough pieces from a pale creamy colour to a dark-brown nearly opaque and very brittle. Each piece has a striated appearance, as if composed of several layers. It is devoid of taste and smell, sparingly soluble in alcohol, almost entirely so in ether and perfectly so in turpentine and the fixed oils. The superior kinds are sufficient substitutes for pineresins in medicine. Since the conservation of the sal forests has been taken in hand the export of this resin has very much declined. B.-Elemi or soft-resins.

No representative of this group is traceable in Kumaun, though several occur in Southern India.

## IV.-OLEO-RESINS.

A.-Balsams.

No representative of this group occurs in the North-Western Himálaya, though common in Eastern Bengal and Asán.

> B.-Natural Varnishes.

Semecarpus Anacardium, Linn.-Bhiláwa. The pericarp of the fruit is full of an acrid juice used in medicine and to form a black varnish. There is a considerable trade in these seeds, of which the exports from the forests between the Jumna and the Sárda every year amount to about 125 maunds. Varnishes are also said to be procured from the Odina Wodier noticed before for its gum, Buchanania latifolia, Rhus succedanea, and R. vernicifera, all of which occur in the Himálayan districts of these provinces.
C.-Turpentine and Tar.

Pinus longifolia, Roxb.-Chr, salla, kolon, saral, thansa.
The long-leaved pine is the principal source of the oleo-resin known as birja in Garhwál and lisha or lassa in Káli-Kumaun, and
of the oil called birja-ki-tel or tárpin-ki-tel. There are two kinds of resin: (1) the birja or berja sort, which comprises the tears exuding naturally from the bark; and (2) the bakhar-lirja, or resin produced by making long and deep incisions in the sap-wood. The latter is chiefly used by bangle-makers. The resin is highly charged with oil of turpentine, and of late years some attempts at extracting it

> Turpentine. have been made. The oil of turpentine sells at from twelve to fourteen annas per bottle, and the residue known as sundras, the black colophony of commerce, is sold on the spot at about four rupees per maund. I am not aware of any attempt having been made to value this product, but of a similar article from British Burma Dr. Forbes Watson writes (1873) :-
"The crude turpentine from British Burma has been very favourably reported upon. It is the produce of Pinus Khasyana and Pinus Massoniana, the market rate being about $4 d$. per Hb . in Burma. The reports of the two firms to which the sample was submitted for valuation are :-'No. 5-We have submitted the crude turpentine to the trade, and have their report to the effect that it appears to be of very fair quality. We estimate the market value would be from $£ 12$ to $£ 14$ per ton. No. 6 -We have carefully examined the sample of rough or crude turpentine and found the quality to be fine and equal to any ever imported from the United States, where the distillation for this market and that of the continent (Bordcaux excepted) is carried on. Crude has ceased to be an article of import; there was not any since 1868, where twenty years ago it was a great trade. The nominal value of the sample before us would be $13 s .6 d$. per cwt. Manifestly, if the value in Burma of this turpentine is about $4 d$. per H., or $37 s$. per cwt., and its value here is only from $12 s$. to $14 s$. per cwt., it would be far better to rely upon home consumption.' "

The average annual export of resin from the Garhwál forests during the five years 1869-73 amounted to about 35 tons. During the same period the average annual export of the birja sort from the Kumaun forests was 86 maunds, of the balhar-birja description 45 maunds, and of the oil about 10 maunds. This industry is now discouraged as much as possible owing to the
destruction of much valuable timber. The chips of the chir, Tar. deodir, and $P$. eacelsa, yield tar by dry distillation. The following account of the process is given by Mr. Baden Powell :-" First an earthen ghara or vessel with a wide month, and capable of containing about four sers, is sunk in the ground. Next a large ghara of about twelve sors capacity is taken, and three small holes are drilled in its underside: it is then filled with scraps of the pine wood, and over its mouth another small jar is placed and kept there by a luting of clay very carefully applied, and then both the jars are smeared over with a coating of clay. These two jars thus stuck together are next set on the mouth of the receiver or ghara sunk into the ground, and the joint or seat is made tight by a luting of stiff clay. Light firewood is now heaped around the apparatus and ignited, and kept burning from four to eight hours; the rationale of the process being that the heat causes the tar contained in the chips inclosed in the large ghara to exude, and it falls through the three holes drilled in the bottom, and into the receiver sunk into the ground. When the fire is out, the ashes are raked away, the jars very carcfully separated, so that pieces of dirt may not fall into the recoiver, and the latter is then exhumed and the contents poured out. It is only necessary to replace the receiver with the jars over it as before, duly charged with chips, and lute the joints up carefully, and the process can be carried on as before. With care the same jars may be made to do over and over again without cracking. One ser of wood yields about $2 \cdot 6$ chhatíks of tar and $4 \cdot 3$ chhatíks of charcoal. To procure a ser of tar requires 6 sers 4 chhataks of wood chips to charge the pot, and 2 maunds 6 sers and 9 chhatíks of chips for fuel. The estimated cost is one anna per ser, but this is far too low."

Besides the long-leaved pine the following conifers ${ }^{1}$ occur in the Himálayan districts of these provinces, and some yield resin, tar, and turpentine.

Pinus excelsa, Wallich. Brandis, 510. The tar produced from this tree is said to be equal to the best Swedish. It is a mixture of resin and oil of turpentine more or less blackened by the

[^125]admixture of empyreumatic products. It thickens after exposure to the atmosphere and is used for protecting wood-work in every position.

Pinus Gerardiana, Wallich. Brandis, 508. This tree is very resinous and is much used for torches. Major Longden obtained excellent tar from the clips. Gordon states that it affords abundance of fine turpentine and the cones exude copiously a fine white resin. Brandis says it is very resinous and that a good white resin may be obtained in quantity from the bark and cones.

Cedrus Deodara, Loudon. Brandis, 516. The deodár yields an oleo-resin like that of the chir and an oil which is used in medicine. Tar is also procured from the chips of the sap-wood.

Abies Smithiana, Forbes. Brandis, 525. Both Stewart and Royle mention it as a resin-bearing conifer. It docs not appear to be common east of the Alaknanda.

Nothing is recorded regarding the resinous properties of $A$. Webliana and dumosa and of C. tomulosa. Juniperus communis, recura and excelsa aud Taxus baccata are the great sources of dhúp or incenso in India and Pibet.

Elastic gum-resin.
Calotropis gigantea, R. Br.—Madár, ák. This and the allied species, C. Hamiltonii, Wight., yield an elastic gum-resin which is procured by making incisions in the plant and is used as a substitute for gutta-percha. Dr. Riddell calculated that ten aver-age-sized plants will yield as much juice as will make one pound of this substance. The juice when collected is evaporated in a shallow dish, either in the sun or in the shade, and, when dry, the substance is worked up in hot water with a wooden kneader in order to get rid of the acridity of the gum. The juice is also used to destroy the offensive smell of fresh leather and in medicine. The maddr also yields a kind of manna known as 'shukr-ul-ushr,' which is caused by an exudation from the piercing of an insect called galtigál.
Lac.

Lac is found all over these provinces, notably in the Bundelkhand, Bhábar, and Gorakhpur forests. It consists of a resinous
substance produced from the female of the Coccus Lacca, an insect which is found on the twigs and branches of the pípal (Ficus religiosa), bargad (Ficus indica), kathbel (Feronia Elephantum), ber (Zizyphus Jujuba), dhák (Butea frondosa), the Erythrina indica, Schleichera trijuga, Inga dulcis, and others. The Hindús have six names for lac, but they generally call it laksha (lakh, 'one hundred thousand)' from the multitude of small insects which, as they believe, discharge it from their stomachs and at length destroy the tree on which they form their colonies. ${ }^{1}$ There are two products from this resin, the lac dye and the various forms of the resinous lac. A description of the insect will be found hereafter in ite proper place. ${ }^{2}$

The process of manufacture may be briefly described as folManufacture. lows:-The stick-lac as it is brought in is picked and triturated in water, which takes out the colouring matter that forms the dye, and the residue deprived of all impurities forms the seed-lac. This is then sewed up in a long narrow bag about the size of a cable and passed over a charcoal furnace; when the resin melts and when quite fluid it is passed on to a man seated before another charcoal fire with a cylinder of glazed earthenware in front about two feet long and eight inches in diameter supported on pivots at each end : or in some places the stem of the plantain is used. The melted wax is allowed to drop on the cylinder and forms thin layers about eighteen inches square known as shell-lac. These are sorted according to consistence and colour ; orange, liver, garnet and their varieties being the order of excellence. Sometimes the seed-lac is merely melted into buttons or lumps, but this is usually only done with lac of inferior quality and for home consumption.

The analyses of Unverdorben and Hatchett give the constituents of stick-lac as-(1) an odorous resin soluble in alcohol and ether ; (2) a resin insoluble in ether ; (3) a bitter balsamic resin ; (4) laccic acid; (5) a dull yellow extract ; (6) colouring mattor ; (7) a fatty matter ; (8) some salts and earth. The resin according to Unverdorben con-tains-(1) a resin soluble in ether and alcohol; (2) a resin insoluble

[^126]Hist., VII., 31, 41.
in ether and soluble in alcohol ; (3) a resinous body little soluble in alcohol ; (4) a crystallizable resin; (5) an uncrystallizable resin. Hatchett's analysis of 100 parts gives resin, 68 ; colouring matter, 10 ; wax, 6 ; gluten, $5 \cdot 5$; foreign substances, 65 ; loss, 4. His analysis of shell-lac gives resin, 90.5 ; colouring matter, 0.5 ; wax, $4 \cdot 0$; glaten, $2 \cdot 8$; loss, $1 \cdot 8$.

The lac insect can be removed from one forest to another by merely taking the insect on the stick while in its transition state and applying it to the branches of a similar tree. There are two seasons of the insect's activity in Upper India, the one commencing in June and the other in November. The first crop is ready in September and the second in February or March, but neither are gathered until the scason for the next operation has commenced. Thus the March crop may be gathered in June and the September crop in November. Should, however, the object be more to obtain lac dye than resin, the sticks should be gathered before the insect escapes to commence its next season's operations. The best Indian lac of these provinces is manufactured at Mirzapur, where the materials are collected from all parts of the Northwest, but principally from the jungles of Central India as far south as Sambhalpur. Lac makes an excellent varnish and is used in combination with various colouring matters to make the durable laequer so well known in Benares toys. It is also used for sealingwax and for housepainters' varnish.

## D.-FIBRES. ${ }^{1}$

The forests and wastes of the lower hills and the submontane tract yield an immense quantity of materials for ropes, cordage, twine, basket-making and matting, but little of which has as yet received the attention due to it. The babar grass alone is sufficient in quantity to supply all India with a valuable material for making coarse cordage and paper. The bambu of the Garhwál Dúns might be utilised in the same way, and the reeds and grasses of the Bhabar and Tarái afford an inexhaustible supply of common twine and matting material. The hemp of Garhwál has more than a local

[^127]reputation and for a long time furnished a portion of "the annual investment" of the East India Company. The pulp manufactured from the Daphne papyracea yields materials for a paper that gives the engraver finer impressions than any English-made paper and nearly as good as the fine Chinese paper that is employed for what are called India paper-proofs. The paper mado from this shrub in Kumaun is almost as strong and durable as leather and is largely used for village records and court proceedings. It is exported to Tibet on the north and to the plains on the south for manuscripts and account-books. With this wealth of raw material in existence it is remarkable that so little has been done to render the fibre resources of our hills available to European enterprise, and it is the object of the following pages again briefly to bring them to notice.

Abutilon indicum, Don. A mallow found in the lower hills and Bhabar, the stem of which yields a cordage fibre. Hooker, Fl. Ind., I., 326. A. polyandrum, Schlecht, found up to 3,000 feet, also yiclds a fibre. Hooker, l. c., 325.

Hibiscus ficulneus, Limn., affords a very large proportion of strong fibre of a white colour useful for twine and light cordage. Hooker, l. c., 340. H. pungens, lioxb., and H. cancellatus, Roxb. (Hooker, l. c., 341, 342), also yield a soft, silky fibre useful for corlage, and are hence generically known in Kumaun under the name kupasiya.

Hibiscus cannabinus, Linn., san, grows wild and is also cultivated to a small extent in the Kota Dún and Bhabar. Hooker, l. c., 339 .

Kydia calycina, Roxb.; patta, pattiya; common in dry forests and along the submontane tract. Yields a strong coarse fibre from the inner part of the bark. Hooker, l. c., 348.

Bombax malabaricum, D.C., cotton-tree ; semal. The cotton from the pods is chiefly valuable as a half-stuff for paper. Experiment has shown that the staple is too short for use as a textile fabric (J. Agri-Hort. Ben., III., 122), and it is now chiefly employed for stuffing pillows and the like, and for this purpose there is a small export trade. Hooker, l. c., 349.

Sterculia villosa, Roxb., is the udála and udiyál of the Kumaun Bhábar. This tree grows to a considerable size, but it is only the saplings from two to threc years old that are useful for fibre. From these the layers of bark can be stripped off from one end to the other, the inner furnishing a fine and the outer a coarse cordage fibre that stands moisture well. One stem will yield about 2 Hb . of good fibre by steeping the bark well and beating it out with wooden mallets. The ropes made from it are strong enough for elephant harness, but are chiefly used for cattle halters. The rope is said to become stronger for a time from being frequently wetted, but it seldom lasts more than eighteen montlis if constantly exposed to moisture. The root of the tree is eaten in the hills. Hooker, l. c., 355.

Sterculia colorata, Roxb, the bodála and bodál of Kumaun, occurs somewhat commonly at the foot of and along the lower range of hills. The bark yields a fibre for cordage similar to that of the preceding species. Brandis, 34 .

Abroma augusta, Linn.: cultivated in gardens in the Dehra Dún where it is probably introduced. It yields a very strong fibre fit for cordage. Hooker, l. c., 375 .

Grewia asiatica, Linn.-Pharsiya, phalsa, dhámin. Occurs wild in the lower hills, cultivated in the plains. The inner bark yields a fibre like the basts of Europe. Hooker, l. c., 386.

Grewia oppositifolia, Roxb., the bhenwal and bhimal of Garhwál and bhengúl of Kumaun, occurs commonly in the lower hills 2,500-4,500 feet and up to 6,000 feet. It is occasionally cultivated. Hooker, l. c., 384. It yields an inferior fibre similar to the preceding and for which the branches are cut from July until March or, indeed, at all seasons except in the spring. The leaves are given to cattle, and the sticks are soaked for a month or forty days in water and when dry are beaten on stones and the bark is stripped off. One tree will give about five sers of the inner fibre fit for making into ropes and twine, which are used for tying up cattle and for stringing cots. It is neither very strong nor very durable. Women use the green bark for cleaning their hair. (Hud.)

Odina Wodier, Roxb.-jinghan, Jiban, sindan; occurs in the dry forests along the foot of the hills, ascending the outer range up to

4,000 feet. The bark yields a coarse cordage fibre. Hooker, II., 29.

Butea frondosa, Roxb.-Dhák, palés; is common in the Dúns and warm valleys and yields a very strong fibre from its bark used for caulking boats and making rope. Hooker, II., 164.

Desmodium tiliæfolium, Don.-Cliamara, matta; occurs along the outer range $3-8,000$ feet and yields from its bark a substance from which paper is made. In Kunaor there is some trade in this paper with Tibet. Hooker, II., 168 : Panj. Prod., 516.

Bauhinia racemosa, Lam.-Kachnól, gúrál; occurs in the dry parts of the plains and ascends the hills in Kumaun to 5,000 foet. The inner bark yields a strong cordage fibre. Hooker, II., 276.

Bauhinia Vahlii, W. et A.-Máljan, málu ; is a large creeper that occurs rather commonly in the lower hills and upper Bhábar from the Jumna to the Sarda, especially at the bottom of hot valleys and along the sides of precipices. The leaves are used for making umbrellas, and sewn together with twigs form baskets for holding pepper, turmeric, and ginger. They are also used as a substitute for plates at meals and by the petty shop-keepers to wrap up the goods that they sell. This creeper often attains a length of $40-50$ fcet, and is generally cut down in July-August, though it may bo cut at all seasons. In its natural state it is used for making ropebridges, but to manufacture rope from it, the outer bark is peeled off and thrown away and the inner coating is steeped in water and twisted when wet. A large creeper will produce a maund of this fibre known as selu. Before being used, the bark is boiled and beaten with wooden mallets, which renders it soft and pliable enough for being made into rope and twine used in the erection of ropebridges, for thatching, stringing cots, and the like. These ropes though strong are not very durable and roquire occasional soaking, though if constantly kept in the water they rot quickly and altogether do not last more than eighteen months. The broad flat seed of the pod is eaten fried in clarified butter. Hooker, II., 279.

Gerbera lanuginosa is the well-known tinder-plant or kapasiya of Kumaun. The tinder is derived from the tomentum on the
lower side of the leaves, which is also woven into twine and then netted into small bags for carrying hukkas, \&c., so much in use amongst the hill-men.

Careya arborea, Roxb.-Kimbhi; is a large tree that occurs in the forests along the foot of the Himálaya from the Jumna to the Sirda. The bark affords a fair fibre fit for cordage and twine. Hooker, II., 511.

Calotropis gigantea, R. Br.—Safed-ák, maddír; is a large plant or shrub; common along the foot of the hills. This is the species that prevails in the Bhinar, where large patches of it occur, especially near Kálidhúngi, but it does not occur westwards of the Ganges at Hardwúr. It yields a soft, silky fibre fit for eloth manufacture and for making the finer kinds of twine : see Sel. Rec. Bomr, XVII. ; Journ. Agri-Hort. Ben., VIII., 73, 226, 231.

Calotropis procera, $\mathrm{R} . \mathrm{Br} .-A k$, madar ; is the prevailing species from Hardwar southwards and westwards. This species also yields a valuable fibre. Brandis, 331.

Marsdenia tenacissima, W. et A., occnrs in the plains and ascends the hills up to 4,000 feet. The bark of the young shoots yield a fine fibre remarkable for its strength and toughness, formerly used by natives for bow-strings. Roxburgh, 258.

Marsdenia Roylei, Wight-Murkuila; a large knotty creeper that occurs along the outer ranges of the Himálaya up to 6,000 feet. It is cut at the knots and boiled in a mixture of ashes, after which the outside bark is thrown away, and the inner yields a fibre used for making fishing-nets and lines of great strength and durability and is capable of forming a cloth material. Brandis, 333.

Orthanthera viminea, Wight ; the chapkiya of Kumaun ; occurs along the foot of the Himálaya, ascending the lower valleys in Káli Kumaun for some distance. The bark is steeped in water and then yields a fibre that affords a good cordage material and is remarkable for its tenacity and length. Drury, F. P., II., 236.

Cordia Myxa, Linn.-Bairala, baurala; occurs wild in the forests below the Himálaya and is also cultivated in many parts of Upper India. The bark yields a fibre used for caulking boats and making rough cordage. Brandis, 336.

Daphne papyracea, Wall., the set-bantiwa of Kumaun, satpíra of Garhwál, and bhalu-suang and bholuwa of Nepál. Two varietics of this species are commonly found in Kumaun :-the one with white flowers and yellow fruit occurs at 4,000-8,000 feet, and the other with purple flowers and fruit at $7-8,000$ feet. Both yield a valuable paper-stuff from which the strong, tenacious hill-paper is made. The following account of the mode of manufacture is from a paper by Mr. B. H. Hodgsou in J. A. S. Ben., I., 8 :-

Mode of making the hill-paper usually called Nepálese.
"For the manufacture of the Nepálese paper the following inplements are necessary, but a very rude construction of them suffices for the end in view :-

1st.-A stone mortar, of shallow and wide cavity, or a large block of stone, slightly but smoothly excavated.
$2 n d$.-A mallet or pestle of hard wood, such as oak, and in size proportioned to the mortar and to the quantity of boiled rind of the paper plant which it is desired to pound into pulp.

3rd.-A basket of close wicker work, to put the ashes in, and through which water will pass only drop by drop.
$4 t h$.-An earthen vessel or receiver, to receive the juice of the ashes after they have been watered.

5 th.-A metallic open-mouthed pot, to boil the rind of the plant in. It may be of iron, or copper, or brass, indifferently ; an earthen one would hardly bear the requisite degree of fire.

6 th.-A sieve, the reticulation of the bottom of which is wide and open, so as to let the pulp pass through it, save only the lumpy parts of it.

7th.-A frame, with stout wooden sides, so that it will float well in water, and with a bottom of cloth, only so porous that the meshes of it will stay all the pulp, even when dilated and diffused in water, but will let the water pass off when the frame is raised out of the cistern; the operator must also have the command of a cistern of clear water, plenty of fire-wood, ashes of oak (though I fancy other ashes might answer as well), a fire-place, however rude, and lastly, quantum sufficit of slips of the inner bark of the paper tree, such as is peeled off the plant by the paper-makers, who commonly use the peelings when fresh from the plant; but that is not indispensable. With these 'appliances and means to boot,' suppose you
take four sfers of ashes of oak, put them iuto the basket abovementioned, place the earthen receiver or vessel beneath the basket, and then gradually pour five secrs of clear water upon the ashes, and let the water drip slowly through the ashes and fall into the receiver. This juice of ashes must be strong, of a dark bark-like red colour, and in quantity about 2 Hb . ; and if the first filtering yield not such a produce, pass the juice through the ashes a second time. Next, pour this extract of ashes into the metal pot already described, and boil the extract ; and so soon as it begins to boil, throw into it as many slips or peelings of the inner bark of the paper plant as you can casily grasp, each slip being about a cubit long and an inch wide ; (in fact the quantity of the slips of bark should be to the quantity of juice of ashes, such that the former shall float freely in the latter, and that the juice shall not be absorbed and evaporated with less than half an hour's boiling). Boil the slips for about half an hour, at the expiration of which time the juice will be nearly absorbed and the slips quite soft. Then take the softened slips and put them into the stone mortar, and beat them with the oaken mallet till they are reduced to a homogeneous or uniform pulp, like so much dough. Take this pulp, put it into any wide-mouthed vessel, add a little pure water to it, and churn it with a wooden instrument like a chocolate mill for ten minutes, or until it loses all stringiness, and will spread itself out when shaken about under water. Next, take as much of this prepared pulp as will cover your paper frame (with a thicker or thinner coat according to the strength of the paper you need), toss it into such a sieve as I have described, and lay the sieve upon the paper frame, and let both sieve and frame float in the cistern : agitate them, and the pulp will spread itself over the sieve ; the grosser and knotty parts of the pulp will remain in the sieve, but all the rest of it will ooze through into the frame. Then put away the sicve, and taking the frame in your left hand, as it floats on the water, shake the water and pulp smartly with your right hand, and the pulp will readily diffuse itself in a uniform manner over the bottom of the frame. When it is thus properly diffused, raise the frame out of the water, easing off the water in such a manner that the uniformity of the pulp spread shall continue after the frame is clear of the water, and the paper is made. To dry it, the frame is set endwise, near a large fire ; and so soon
as it is dry, the sheet is peeled off the bottom of the frame and folded up. When (which is scldom the case) it is deemed needful to smooth and polish the surface of the paper, the dry sheets are laid on wooden boards and rubbed, with the convex entire side of the conchshell ; or, in case of the sheets of paper being large, with the flat surface of a large rubber of hard smooth-grained wood; no sort of size is ever needed or applied, to prevent the ink from running." See also As. Res., XIII., 385.

In Nepíl this paper is manufactured exclusively by the tribes inhabiting cis-Himálayan Blıot, known as Múrmis, Lepchas, \&c., or generically as Rongbo, in contradistinction to the Sokpo, the namo given to the inhabitants of trans-Himálayan Bhot. The manufactories are mere sheds, established in the midst of the great forests of the upper ranges which afford an inexhaustible supply of the material as well as of wood ashes and good water, both of which are essential to the manufacture of the raw material into the blocks from which the paper is made. Specimens of these blocks sent to England have been pronounced by experts to be of unrivalled excellence as a material for the manufacture of that sort of paper upon which proof-engravings are taken off.

Wikstrœmia virgata, Meisner ; the chamliya of Kumaun ; is also common in the lower ranges from $5,000-7,000$ feet. The paper made from its bark is considered inferior to that made from the bark of the preceding, as it allows the ink to run unless sized, but the bark also affiords a strong cordage material, and ropes made from it are used in Naini Tál. Brandis, 386 : Drury, F. P., III., 86.

Bœhmeria nivea, H. et $\Lambda$. ; China-grass, Rheea ; grown experimentally in the Dehra Dún and at Saháranpur. Yields the wellknown rheea fibre which is specially noticed hereafter. Brandis, 402.

Bœhmeria macrophylla, Don.-Gargela; occurs common in the lower hills up to 4,000 feet. B. platyphylla, Don., is also very common and is known as gargela; both yield a fine fibre fit for twine. Dr. Jameson notes that B. lobata, under the native name ullah, is found in Kumaun and also yields a fibre. Brandis, 403.

Girardinia heterophylla, Decaisne, the awa-bichhu of Kumaun and bábar of Simla, is a very common weed in the forests along the
foot of the Himálaya and yields a fine, strong fibre much used for cordage and twine, but cannot stand much moisture. Brandis, 404.

Villebrunea frutescens, Blume, the phussar-patta, poi-dhaula and kigsshi of Kumaun, is commonly met with along the foot of the hills ascending to 5,000 feet. It occurs in the neighbourhood of Naini Tál and Blím Tál and along the valley of the Sarju and Ganges. It has the appearance of a small bambu and grows 6-8 feet, varying in the thickness of the stem from the size of a quill to that of the thumb. It is cut down for use when the seed is formed. The bark or skin is then removed and dried in the sun for a few days; when quite dry it is boiled with wood-ashes for four or five hours and allowed to cool. When cold it is macerated with a mallet on a flat stone while cold water is applied and gradually the woody matter disappears, leaving a fine fibre which is admirably adapted for fishing lines and nets as well for its great strength as for its power of resisting moisture. Brandis, 406.

Maoutia Puya, Wedd. ; the priya of Kumaun and Nepál, though sometimes known under the sume vernacular names as V. frutescens, is common in the lower hills and Bhábar, ascending to 5,000 fect.

Debregeasia bicolor, Wedd. ; the tushiyára of Kumaun ; is very common all over the lower hills ascending as high as 7,000 feet and is purticularly abundant in the Siwáliks. It yields a very strong cordage fibrc. Brandis, 405.

Memorialis pentandra, Wedd. ; the jaiphal-jari of Garhwál ; is also somewhat comonon in the lower hills and yields a useful cordage fibre. Drury, F. P., III., 210. Swetenham notices a large nettle as occurring in Garhwall, from the bark of which a fibre is obtained after only three days' steeping by merely peeling off the rind from one end to the other. He considered it to be in every way fur superior to the fibre of hemp. Huddleston mentions the jarkandálu, kand-álu or kalra as yielding a fibre from which sandals and ropes are made in the north of Kumaun. It grows 8-9 feet and the stalks are about as thick as a man's finger. They are gathered in the cold season and, after being steeped in water for a few days, yield a fibre by peeling from the thick end in the manner of hemp. Both these notices probably refer to $G$. leterophylla, Decaisne.

Artocarpus integrifolia, Jinn., (Jack-trec) and A. Lakoocha, Roxb., both yield a cordage fibre from their bark. The former is but rarely seen in the Kumatun division, and the bark of the latter is seldom used for this purpose.

Cannabis sativa, Linn. ; C. indica, Rumph.; gúr-bhanga (female plant), phál-bhanga (male plant). An anmual 3-14 feet high according to soil and climate. Root white, fusiform, furnished with fibres. Stem erect, branched, green, angular, covered all over with an extremoly fine but rough pubescence. The stem is hollow within or only filled with a soft pith, which is itself sur-

## Hemp.

 rounded by a tender, brittle substance consisting chiefly of cellolar texture with some woody fibres, which is called the 'reed,' 'boons,' and 'shove' of the homp. Outside this we have the thin bark composed of fibres extending in a parallel direction all along the stalk. These fibres consist of delicate fibrils, united together hy cellular tissue and all covered by a thin membrame or cuticle. Found abundantly in the Himílayan districts of the North-Western Provinces. The wild hemp known as ganára-blhanga, ban-bhanga or jangli-bhanga, is of little use for fibre.The female plant yields seed for oil and the drugs gánja (see page 755), charas, \&c. The male plant yields only fibre from which the bhangela cloth of Garhwál is manufactured; also called kothla, bora, and gaji, and the ropes (sel) for bridges. For the history of the plant see Royle (Fib. Pl., 315) and Drury (U. P., 106). The possibility of attaining success in the cultivation of hemp in these provinces was pointed out by Dr. Roxburgh as early as 1800 , and on the cession of these provinces, skilled Europeans were sent to carry on experiments in the Muridabad and Gorakhpur districts. In Garhwál and Kumaun its cultivation was encouraged, and for many years the East India Company procured a portion of its 'annual investment from the Kumaun hills in the shape of hemp.' With the abolition of the Company's trade the cultivation languished and is now entirely dependent on the local demand, which, however, is by no means small. ${ }^{1}$

[^128]The following account of the cultivation is derived from Huddleston and Batten's notes. There are two varieties common in Garhwal, the wild and the cultivated. The former is practically useless either for fibre or the drug, so we shall confine our notice chicfly to the latter. The cultivated variety in Garhwíl is grown chiefly on high lands having a northern exposure in well-prepared and abundantly manured soil close to the village site. Occasionally

Cultivation freshly cleared forest land gives a crop for one year without any need for artificial manure. Irrigation is never resorted to, nor is it needed if the soil be properly prepared. The plant does not flourish below 3,000 fcet, as the heat of the valleys is projudicial to its growth, and it seems to thrive best at elevations of $4-7,000$ feet. The mountainous region occupied in Garhwál by the Badhán, Lohba, Chaundkot, Chandpur, Dhaupur and Dewalgarh parganals, has the greatest area under hemp cultivation. These parganas arc marked by lofty ranges, extensive forests and a fairly even temperaturc. The northern parganalis bordering on the snowy range have no hemp cultivation whatsoever, and there is very little in the parganas bordering on the plains, so that it may be said that the hempproducing area in Garhwál lies between the Pindar on the north and tho southern Nayar on the south and is bounded on the cast by the western Rámganga and on the west by the Ganges. The cultivation of the plant as practised in this tract is as follows. The ground, after boing well cleared and prepared for the seed, is sown, in the end of May or early in June, at the rate of 26 to 33 sers per bisi. ${ }^{1}$ During the early growth of the plant the ground is kept free from weeds and the young plants are thinned, leaving a few inches between each, and until the crop has attaintd a good height, the ground is kept free from all rank vegetation, after which it attains a height of 12-14 feet and is cut in Septem-ber-November. 'There are two classes of the cultivated plant, the female and the male. The latter is cut some 4-6 wecks earlier than the former and yields a much stronger and superior fibrc. On the stalks being cut green, they are dried for several days in the sun by being piled against the walls of the terraced fields until they

[^129]become quite brown. The charas is extracted by rubbing the hands over the tops of the plant when the seed is ripe and is best in the female plant. The exudation collected is scraped off the hands and made into rolls for salc. The leaves are also pounded for gánja and sabzi. When the stalks are sufficieutly dry they are tied up into bundles and steeped for 15-16 days in tanks or running streams, being kept under water by stones laid upon them. When taken out, they are beaten with wooden mallets and then dried in the sun. The fibre is then peeled off from the thick end of the stalk to the top, and after being again beaten and freed from impurities is tied up into hanks for sale and manufacture of sackcloth for wear and for bags. For wear, the people simply fold the cloth around the shoulders and fasten it in front with an iron skewer, in the manner the inhabitants of the upper parganaths wear their blankets. Hemp-cloth is still the chief clothing fabric of the poorer classes in Garhwal during the summer months.

In Kumaun, hemp is cultivated chiefly in Changarkha, especially in pattis Lakhanpur, Dúrún, Rangor, and Sálam. There is also a considerable quantity grown in patti Baraun of the Gangoli parganahs, and in a few villages in pattis Assi-Chálisi, Uchyúr, Mahryúri, Gumdes, Dhyániran, and Malla Chaukot. As in Garhwíl there is much prejudice against growing the plant, and it is left almost entirely to the Doms, the Rajpúts considering it degrading to them to be styled "hemp-growers." So much is this the case that the phrase'tera ghar bhang bono holo'-'may hemp be sown in thy house'-is one of the most common abusive imprecations. Still there are some differences in the obloquy attached to hemp cultivation, for whilst the Khasiyas may, without loss of caste, grow hemp and manufacture rope therefrom for house consumption, they must abandon the manufacture of hempen sack-cloth to the Doms, of whom the Koli, Bora and Agari sections possess almost an exclusive monopoly of hemp-weaving. All tribes, however, can traffic in the seed and rope, and even in the charas, without prejudice to their social position.

In Kumaun the sowing takes place from the middle of May to the end of June. In warm situations the hemp is sown rather later, in order that the heat and damp of the rains may cease
before the plant shall have time to run into useless stalk and excessive seed. During July-August the ground about the plants is hoed and fresh earth is leaped up about the roots. The female plant ripens from about the middle of October to the middle of November, and the male plant, that yields the more valuable fibre, somewhat carlier. In Kumaun, the sitnation of hemp-growing villages is rarely so high as in Garlıwál, and a cold climatn, though preferred to that found at elevations below 5,000 feet, is not considered absolutely necessary. The favourite situation for the cultivation of hemp in Kumam is a cool, dry, apland ground with a good soil and with facilities for manuring. Sites near the homestead or close to cattle-sheds in the pasturing grounds of the upper langes are consequently chosen for the abondance of manure. Hemp is supposed to exhaust the soil, and the wheat and barley, which are commonly sown in succession thereto, are said to be defective botle in quality and quantity.

When Dr. Rutherford held his contract for the snpply of hemp for the East India Company's investment, he seems to have managed his enterprise by making advances to the headmen of villages or the priucipal cultivators; and should the cultivation of hemp ever again become a commercial speculation, this would secm to be the best method for obtaining success. The produce of a lisi has been estimated at about three seers (61b.) of charas, four maunds (3201b.) of hemp fibre, and $30-35$ seers ( $60-70 \mathrm{tt}$.) of seed, yielding about five seers ( 10 tb .) of oil. In 1814, the fibre was produced for four rupees per mand delivered at the cultivator's doors or five rupees delivered at Kotdwara or (hilkiya, and it would appear that now a price of from six to seven rupees per maund of 82 Hb . would ensure a constant supply. In 1840, the entire value of the hemp produce in Kumam, including seed, fibre, and drug, was little more than Rs. 1,000, and Captain Huddleston estimated the total area under hemp in Garhwail during the same year as only 250 acres, yielding about forty tons of fibre per annme ; but there is every reason to believe that the outtum has since considerably increased in quantity, and a rough estimate would point to 780 acres under hemp in Garhwál alone in 1880. The seed is collected to be used as a vegetable food, for which purpose, indeed, it is chiefly eultivated in the Sor and Siral pavganahs, or to be pressed for the
extraction of hemp-oil or to be dried and retained for seed. The charas or juicy essence is collected for exportation, being hardly, if at all, used in the hills. It now sells at from four to five rupees per seer, and is resold by the farmer of the drug monopoly at eight rupees per seer. The farm of charas in Kumawn alone during 188081 was sold for Rs. 3,357. The leaves, too, are dried and exported for use in the various preparations of bhang. 'The fibres, as already noticed, are made into ropes or sack-cleth. In Kumaun the sale of the untwisted fibres is more common than that of the twisted or manufactured stuff. In 1840, the seed sold at about three rupees per maund, and is now worth about three to four rapees per manad, and in some places where it is chiefly used for culinary purposes is even cheaper. The fibre where it was produced sold at from two to three rupees per maund in 1840 and is now worth from three and a half to four rupees a maund. The bhangela or hemp-cloth is made up into sheets for weaving or into kollas or sacks, and the finer sorts into thailis or lags for carrying flour and lime. A large sack-cloth bag cost but six annas at Almora in 1840 and is now wortl twelve annas. Bags of a smaller size cost about two rupees per dozen in 1840 and are now proportionately more expensive. The produce is so small and the demand for bags for sending potatocs to the plains so great that these sacks are yearly advancing in price, and a considerable trude in them exists at Rámnagar and Kotdwára.

Mr. J. H. Batten, in one of his reports, gives the following opinion on the prospects of hemp cultivation in Kumann :-"If a large demand for hemp, the produce of these mountains, were to arise and it were to become generally known that capital to a

> Prospects of the hemp industry. considcrable amount was ready to be expended for the purpose of procuring the article, a very great increase of hemp cultivation might be expected even in Kumaun Proper, but especially from the Chaugarkha parganah. If European capital should hercafter be employed in increasing the growth of the excellent hemp existing in this province, I should certainly recommend that the means first used for the purpose should be an outlay of money in advances to and purchases from the present growers and manufacturers, rather than in the attempt on the part of any enterprising individuals to procure land and grow homp for themselves. Notwithstanding
their prejudices, I think that the example of their neighbours, if the latter attained to any fair degree of prosperity from the increase of trade, would soon be followed by many villagers throughout Kumaun, who now are indifferent to or despise their advantageous situation for the growth of hemp, and large tracts of land now waste would be brought under cultivation. There are not in Kumaun, as in Garhwíl, many waste villages still left uuowned and unclaimed; and from what I have seen of the character of the people in Kumaun Proper, I think that any stranger who should purchase or rent land within the boundary of a village, for the purpose above indicated, would be quite as liable to litigation, inconvenience with his neighbours, and prejudices against his position, as in any part of India, however populous in comparison. In the case of advances and purchases on the contrary, the transactions of capitalists would be confincd to simple contracts, of a nature to which, if found necessary, the law is open at a cheaper cost, and under simpler forms, than in most other parts of the country." Captain (now Sir Henry) Ramsay, in a report on the same subject, writes:-" I would not advocate the system of making advances to individual cultivators: it is not improbable that some ill-disposed persons might create a suspicion that Government intended evil instead of good and actually produce the effect of making those who now grow hemp discontinue its cultivation for a time ; the best plan I think would be to enter into engagements with rospectable zamindárs for large quantities and allow these contractors to make their own arrangements. The cultivators are quite equal to taking care of themselves in such dealings."

Hemp is also grown in the northern parganahs of Nepal, and the mode of cultivation there is thus described by Mr. B. H. Hodgson:"The seed is sown from March to April. Damp soils, comprising

> Cultivation in Nepál. black earth, are fitted for this crop. Before ploughing the field, sufficient manure is to be sprinkled over it, then completing the work of the plough, the seeds are to be sprinkled, and having broken the clods into dust, the field is to be made cven. At seven or eight days after sowing the seeds the plants come up, but their rapidity of growth and their size and strength depend on the abundance of the rains or artificial watering. If the plants bo
very thick, they must be thinned, so as to stand three inches distance from each other. They flower and fruit in Súwan (July), and at the begimning of Bhádon (August) are in their full growth ; but while yet succulent and in flower they are to be cut, with the exception of some secd plants, which are not to be gathered until October. It is the bark of the young but full-grown or Sáwan plants (which is soft) that is used for making bhangela. That of the old or October plants is hard and not suitable for manufacture. After the plants lave been cat off at the ground, they must be placed in the sun for eight or ten days, or until they be dried sufficiently. They must then be stecped in water for three days, and on the fourth day the plants must be taken out of the water and peeled. The peelings are to be washed and put in the sun; and when quite dried, they are ready for manipulation. They are then to be torn into thin threads with the nails of the hands; next twisted with a spinning-whecl (tikuli), and when the threads are thus prepared, they are to be boiled with ashes of wood and water in a pot for four hours, and to be washed again for the purpose of whitening. This is the way of preparing bhangela thread, out of which sack-cloth is woven. One ména (half a kacheha ser) of seed is sufficient for a ropini of land (one-fifth of a buidsháhi bígha or 605 square yards), which produces ten or twelve loads of bhang. Hemp grows equally well on slopes and flats, and near the tops as well as on the sides of the mountains, if not too low. But a moist rich soil is indispensable. The plant attains to a beight of eight to ten feet, and should be cut when the flower is falling and the seed forming." For an account of its cultivation in other comtries, sce Royle (Fib. Pl., 333).

Hemp prepared for the European market should have the fibres laid parallel to each other and then be simply tied near the thicker end, so as to form heads like the Petersburgh hemp, not twisted, plaited and tied, as is the custom in our hills. The Himilayan hemps show strength, divisibility, fineness and softness of fibrein fact all the essentially good qualities which a fibre should possess.

Chamærops 'Martiana, Wall., the jhangra, jager, and thaikil of Kumaun, occurs on Bhatkot, Thákil, Dhuj, and in the valley of the

Liaiju. The fibre is used for cordage and the leaves for mats and Euskets. Brandis, 546.

Calamus Rotang, Linn.-Rattan-bet; occurs abundantly in the Eastern Dún, in places in the Siwálik tract and along the o-tive hill; castwards. It yields the common rattan so much used in upholjteey and for basket work. Brandis docs not consider C. Royleanac, Giffith, as distinct. This species has also its western limit in the Dehra Dún and is known under the same vernacular name and uisid for the same purposes. About fifty bullock-loads are exported every year from the Kumaun forest division. Brandis, 559.
'Jypha angustifolia, Linn.; Var. elephantina, Roxb.-Bora. This species occurs throughout the North-Western Provinces ancl Oudh, ascending the bills in the Kili valley, and indeed in mosi of the valleys bordering on the plains. It is the reri of the upper districts, and the varicty elephantina is the paderi or pateri of the hills. The leaves are much used in the manufacture of soft matting, and from Kumaun alone about twenty bullock-loads of the raw material and 3,500 pieces of the matting are exported every year. T. latifolia, Limn., is called patera in Bijnor and kanda-tela in Garhwil, and the leaves are largely employed in the manufacture of a coarse matting called boriya, of which some 900 maunds are annually exported from Kamaun. In fact these two species afford the chief matting materials in common use. I an not aware that the leaves lave ever been used for other purposes. Roxburgh, 648 : Drury, F. P., III., 495.

Arundo Karka, Roxb., the karka and nal of the Kumaun Bhábar, is of common occurrence in suitable localitics. A. (Phragmites) Roxdurghii, Kunth., is the bichhra of Garhwál and the khaila and khailuzoa of the Kumaun Blábar, ascending up to 3,500 feet in the valleys. A. nepalensis is the nal, nal-tura, and tot-nal, common in the Bhábar and found at Bhím Tíl. All these are sent to the plains under the generic name ' nal' and are applied to cane-work in chairs, matting and similar uses, and the fibre of the flower-stalks is manufactured into rope. About 220 bullock-loads are yearly exported from the Kumaun forest division. Roxburgh, 117.

Saccharum Munja, Roxb.-Múnja. The upper half of the culm is known as sirki-múnja or sirki; the lower half as sentha or sarpat;
the blade twisted and beaten yiolds the strong cordage known as múnj; the tufty leaves are called sarkura towards Hardwár. Múnj abounds along the banks of rivers and in sandy places and generally along the base of the hills from the Jumna to the Sarda and up the valleys to 3,500 feet. The fibre is made from the sheathing leaves of the culm and forms the material from which the janeo or sacrificial thread of the Hindus is made. Minj is commonly employed as a tow-rope from possessing great elasticity and strength, with a power of resisting moisture common to few other fibres. It is also used for the rigging of boats, the bottoms of cots, chairs, and footstools, matting, in the manufacture of coarse paper, and as a string for fastening the bambu framework for the roofs of honses, and indeed for all common purposes in every district. The sirki is used for thatching, a covering or pawlin for carts, and for chairs and the like. Under the names bind and manj a considerable amount of the varions products of this grass are sont to the plains. The returns for four ycars from Kumam give an average export of 1,600 bullock-loads of the unmanufactured article and about 75 maunds of the rope. Drury, F. P., III., 653.

Saccharum spontaneum, Linn., is the kásh, jasha or jhánsh of Kumaun, according to Madden. It occurs commonly in the Bhábar and lower hills and is found near Almora, where its longrooting surculi are substituted for the kusha grass in religious ceremonics by the local Brahmans. The leaves yield a thatching grass and matting material and a fibre useful for string for common purposes. Roxburgh, 79. Eragrostis cymosuroides under the names da ${ }^{2} h$ and kusa is used in the religious ceremonies of the Hindus.

Saccharum fuscum, Roxb., is a common reed of the Bhábar, where it is known as tát, neja (grass), and mora; it is the kilik of the plains. The culms are used in the manufacture of screens and pens. The average anmual export of this reed from Kumaun amounts to over 800 bullock-loads. Drury, F. P., III., G53: Roxburgh, 79.

Saccharum Sara, Roxb., is the sarhar or samir of the submontane tract, where it is very common. This reed is also used as a matting material and for chairs and the like, but the fibre is inferior to that of S. Munja, with which it is often confounded.

It is said, however, to be employed as a tow-line in Mirzapur, and must therefore possess tenacity and strength. Roxburgh, 82.

Eriophorum comosum, Wall., Scirpus comosus, Roxb.; bíbar, bab, bálila, and at Alnora pan-babiyo, only found in the Siwíliks and in low hot localities in the interior on base and steep slopes. It forms but a small portion of the fibre exported to the plains as bábar or bhibar grass. The jhitha or rope bridges erected where sangas or planked bridges cannot be made are chiefly formed of this fibre in Kumaun. They are safe for men and sheep and last about a year, when the ropes require renewal. The chlinkas or bridges of a single cable bearing a transverse seat are sometimes made from it, and it is also extensively used in rafting timber. The principal portion of the bubar grass of commerce is derived from the Spodiopogon angustifolius, Trin. Drury, F. P., III., 530.

Cyperus tegetum, Roxb.; Papypus pangorei, Nees ; motha; grows wild and is also cultivated on the edges of inundated fields for the sake of its culms, which form an excellent material for matting. The culms whilst green are split into three or four pieces, which, in drying, contract so much as to bring the margins into contact, in which state they are woven into mats and thus show nearly a similar surface on both sides. C. rotundus, Linn., also known as motha, is applied to similar uses in a lesser degree. Roxburgh, 68, 70.

Imperata arundinacea, Cyrill., is the shiro of the Bhabar and lower hills, ascending to 7,500 feet. The culms are used for the same purpose as those of múnj, and the leaves for thatching and matting. Drury, F. P., III., 652.

Anthistiria arundinacea, Roxb., is the ulu, ullah, kangúr and kandúra of the Bhabar and affords the same products as the preceding. Drury, l. c., 650.

Anatherium muricatum, Beauv., is the gandar of the submontane tract. The roots are commonly known as kas or khas and the culms as sink. The latter are exported from Kumaun with the sirki of the múnj under the same name and are used for the same purposes. The roots are exported for making tatties, dyers' brushes, and fans. Drury, l. c., 644.

Spodiopogon angustifolius Trin.; Andropogon involutus, Steud.; the bábar of the tract from the Jumna to the Sárda. Dr.J. L. Stewart writes :-"This grass, which is abundant in the Garhwál Himálaya and occasional on the skirts of the Siwáliks, appears to furnish almost all the material called bábar so largely used for string in these parts (Bijnor). Botanists from Wallich and Royle downwards lave stated this to be the produce of Eriophorum comosum, of which, however, only a very small proportion of that brought to the plains consists. Dr. Brandis first drew my attention to the probability of the ordinary belief being erroneous, and subsequent inquiry has shown the case to be as above stated. The string is very coarse but strong, and, although there is great waste in the manufacture, exceedingly cheap. It is well adapted for boat-ropes, the rope-work of bedsteads and other ordinary purposes. Possibly the bábar may come into play as a paper material; at least it is worth the trial, and probably larger quantities of the raw article could be got than of any other fibre in this part of the Himálaya." (J. Agri.-Hort. Cal., XIII., 293). The raw material is procurable for about eight annas per maund and the fibre at four times that price. About 25,000 bullock-loads are yearly exported from the Kunaun forest division.

Cymbopogon laniger, Desf.; Andropogon Ivarancusa, Roxb.; is known variously as miriya, bún, ganguli, dáb, and piriya in the submontane tract. It ascends the hills up to 5,000 feet at Almora and is found along the Sarju as far as Bágeswar ; flowering in April. The culms are exported with those of the mora for similar purposes, and the leaves are used for thatching and coarse matting. The culms and leaves of $C$. Martini, Munro, are applied to similar uses. Roxburgh, 92.

Bambus.-The genera included under the common name bambus are sufficiently numerous and important to deserve special notice here in connection with their use as a half-stuff for paper-making. Following the arrangement of Brandis, we shall briefly refer to each in the order given by him in his 'Forest Flora': -

1. Arundinaria falcata, Nees-Ningál. Madden notes that the people of the Dánpur pargana in Kumaun enumerate no less than eight kinds of ningála or ringál as it is pronounced in Garhwál,
viz.,-tham, utham, kutino, malingo, jhitnro or jhúngra, deo-ningdla, gorningala, and dom-ningála. The last is probably the common or káli-ningála found abundantly along the Gágar range, and, like the jhimro, in much request for pens. Dr. Falconer referred it to the genus Thamnocalamus. The tham is said to be the largest of the whole and is sent down to the plains for hukka pipes. The deoningala is the A. utillissima of Edgeworth, and occurs in great abundance in the snowy range, especially in the upper valley of the Pindar. It affords excellent material for matting, baskets, fishingrods and the like. The gor-ningála is the gol of Bisahr, with their culms eighteen feet high, occurring in dense clumps of a hundred or more each. Brandis (p.562) gives to $A$. falcata a range of $4,500-10,000$ feet, ascending to 12,000 fect from the Ravi to Nepál, abundant in places, gregarious, often forming underwood in moist forcsts of Abies Smithiana, A. Webliana, and Quercus semecarpifolia. It flowers in May and the seeds ripen in August.
2. Thumnocalamus spathiforus, Munro-Ringál.

This is probably the kaili-ninyála of the preceding notice, occuring in Dánpur. It is recorded from Deoban in Jaunsár, Dúdatoli in Garhwál, and Kumaun at elevations 8,000-11,000 feet. T. Falconeri, Hook. $f$., is also recorded from the Madheri pass in Kumaun. See Brandis, p. 563.
3. Dendrocalamus strictus, Nees.-Báns.

To this species belongs the great mass of the bambus exported as minor forest produce from the Jumna to the Sárda. For the Garhwál forests, Dr. J. L. Stewart gives the following classification of cut bambus, beginning with the least valuable :-

1. Chhanejú, (chhanejú, K.), long and thin, used for roofing purposes.
2. Láthi or láthichúr (lúthi-báha, K.), thicker, shorter, solid, for walking-sticks and clubs.

3 Balu, similar, but thicker, for sides of cots.
4. Kanerwa (kanderu, K.), between the last two in thickness, but chiefly used for roofing purposes.
5. Saráicha ( saráinchu, K.), much thicker, shorter, hollow; also used for roofing purposes.
6. Dash'tta, similar, but much longer.
7. Bhengi (balaga, K.), thickest of all and less hollow, used for tent and dooly poles. See further Brandis, p. 569.

Bambus form the most important portion of the minor forest produce of all the forest divisions and one that increases in value every year, but it is to the matorials for half-stuff in paper-making which they afford that we wish to invite attention here, and for this purpose will refor to a paper ${ }^{1}$ by Mr. J. Routledge on the subject. In his opening paragraph, he writes :-" Of all the fibre-yielding plants known to botanical science there is not one so well calculated to meet the pressing requirements of the paper-trade as 'bambu,' both as regards facility and economy of production as well as the quality of the 'paperstock' which can be manufactured therefrom. Grown under favourable conditions of climate and soil there is no plant which will give so heavy a crop of available fibre to the acre and no plant that requires so little care for its cultivation and continuous production." Attempts have been made in England to obtain from the bambu a half-stuff or pulp for paper manufacture, but these have failed chiefly from using the plant when it had attained to some degree of maturity and the fibre had become extremely dense and the external skin hard and silicious. In this state the processes for softening the material and converting it into pulp by long-continued boiling or digesting in very strong solutions of caustic alkali at a bigh temperature were troublesome, expensive, and dangerous. Mr. Routledge would therefore take the young plant, and by a system of close plantations well watered and systematically cropped ensure successive growths available for preparation into stock. His estimate is as follows :-"Allowing 208 feet square to represent one acre divided into |twelve beds each $96 \times 26$ feet with twelve paths $96^{\prime} \times 8^{\prime} 8^{\prime \prime}$ wide and one intersecting road $208^{\prime}$ $\times 16^{\prime}$ wide, leaves a space for planting equal to 2,496 feet, or 29,952 feet in the twelve beds; allowing the stems to be 2 feet apart and (say) only 12 feet high, we have 7,488 stems, which at 12 tb each will yicld 40 tons to the acre." Assuming that these 40 tons of green stems will lose 75 per cent. of moisture in drying, we have 10 tons of dry stems to the acre, which will yield 60 per

[^130] 1875.
cent., or six tons of unbleached fibrous paper-stock baled up in merchantable condition. It is unnecessary to enter into $\mathrm{Mr}_{\mathrm{r}}$. Routledge's system of treating the bambu for the manufacture of paper-stock, our object being merely to show that a practical papermaker considers it possible to turn the preparation of bambu fibre into a profitable commercial speculation. Nothing has yet been attempted in this direction in India.

## WOODS.

The timber-producing trees of the Himálaya of these provinces are sufficiently described in the admirable work of Dr. Brandis on the Forest Flora of North-West and Central India, to which the reader must be referred for

## Timber trees,

 descriptions of those trees noticed hereafter and of those which do not claim a reference in a work like the present one. The forests themselves will be enumerated in the succeeding chapter, and here we shall only refor generally to their more valuable timber-products. The forests below the hills and those clothing the outer spurs contain sál, sisu, tim, and trees belonging to the genera Acacia Terminalia, Anogeissus, Adina, and Stephegyne, besides the grasses popularly known as bambus, all of which are of the first importance for house-building, forniture, agricultural implements and boat-building. From them is derived the greater portion of the revenue in the State forests, and omitting them, there would be little of any practical value to record. In the upper hills, the conifers clothe almost every ridge and valley within the zone of arboreons vegetation, and with oaks and rhododendrons, the box, maple and birch afford, if proper precautions be observed, an inexhaustible supply of every class of wood equal in quality to that procurable in Europe. The sal of the submontane tract and the cedar of the hills are held in the highest esteem and have been much worked in all easily accessible forests, but there are other trees that afford a timber equally suitable for most of the parposes to which the former are now applied. The beikli, sain, haldu, and gosam of the submontane tract and some of the oaks, the pine, spruce and fir of the hills give very valuable timber fit for everything except perhaps railway-sleepers, and it will be necessary, should the existing demand continue, to call on the reserve of thesetrees to supply all common wants. This can best be done by raising the duty on the more valuable timber, and the sooner a movement of this so. $t$ is made, the better it will be for the future of the sál and deodár forests, which now require rest and care. Bambus have already been sufficiently described on a previous page (p. 809), and it will not be necessary to notice them further here. We shall, therefore, restrict ourselves to a bricf description of the most important trees in the forests of the submontane tract and of the conifers, oaks, and a few other timber trees in the hills. All of these have an ascertained value and are the chief sources of the timber supply for the plains.

Shorea robusta, Gœrtn.-Sál, kandár, sákhu (plains). Brandis, 26 : Hook., I., 306. The sál occurs along the foot of the hills from the Jumna to the Sarda and also in the Dúns. It ascends the hills in places to 3,000 feet and is found in the valleys to a great distance inland, notably along the Sarju and Rámganga. It is the most valuable and most sought after of all the timber trees of the submontane forests and from time immemorial has been exported to the plains. It is usually the characteristic tree of the tracts which it affects, and though other trees occur, the sál predominates. In the Pátli Dún and other places where pure sad forests exist and thrive, the soil is usually composed of alluvial deposits, and drift in the valleys and plateaus and sardstone or conglomerate interspersed with blue shale on the ridges. Brandis notes that the climatic conditions favourable to its growth are a rainfall of 40-100 inches and a mean temperature during the four seasons within the following limits :- cold-season, $50-70^{\circ}$ : hot season $77-85^{\circ}$ : rainy season, $80-88^{\circ}$ : autumn, $74-77^{\circ}$. The sal grows, as a rule, to a height of 60 to 90 feet with clear stems $30-40$ feet long and $6-8$ feet in girth. Further east under Nepál it attains much larger proportions and measurements are recorded of trees 100-150 feet in height and 20-25 in feet girth. Captain Wood has estimated the growth to be on an average (in the Oudh forests) 54 feet in 65 years and 72 feet in 95 years. The wood is reddish coloured, coarse-grained, even-fibred, hard, strong, tough, and so heavy that it cannot be transported by water without the aid of floats. The average weight of a cubic foot is $50-60 \mathrm{lb}$.-with variations $40-69 \mathrm{tb}$.-and its specific gravity is over 1,000 . The transyerse strength as ascertained
from numerous experiments varies from 609 to 972 . Baker found that a six-feet bar, two inches square, broke at 12381b., and Brandis also records a number of experiments.

Cedrela Toona, Roxb.-Tín, túni. Brandis, 72. The tín is not now very common west of the Rámganga except in the low moist valleys leading into the Pátli Dún and in parts of the eastern Dehra Dún, and even to the east of that river the reserves have been denuded of most of the mature trees. The tưn attains a height of $60-70$ feet, with a girth of 6-10 feet. The heartwood is close-grained, hard, capable of taking a high polish like mahogany, and when properly seasoned is deservedly known as an excellent furniture wood. A cubic foot weighs 29-361b, and the co-efficient of transverse strength ranges from 420-560. In one of Baker's experiments, a six-feet bar, two inches square, broke at 800 Hb . Stewart notes the interesting fact that in the small family to which the tion belongs there are four other valuable timber-trecs, only one of which, the mahogany (Swietenia Mahogani), is extra-Indian. The others are Satin-wood (Chloroxylon Swietenia, D. C.) ; rohuna (Swietenia febrifuga, Roxb.), and Chittagong wood (Chickrassia tabularis, A. Juss.), all of which arc indigenous in Southern India and the last also in Eastern Bengal. The tín ranks as a first-class timber in the forest tariff. The wood of C. serrata, Royle (Brandis, 73) the dula of Kumaun and 'bastard-toon' of Europeans, is of a lighter colour than that of the true tún and is used in the hills for house-building and the like.

Schleichera trijuga, Willd.-Gosam, gausam, kosam. Brandis, 105. This tree occurs in the Siwálik tracts and Dúns, ascending the valleys to 3,000 feet. It attains a height of $60-70$ feet and a girth of 5-6 feet. The wood is reddish brown, close-grained, tough, hard and heavy, and weighs $66-70 \mathrm{Hb}$. to the cubic foot. It is much used for the crushers (churan) for oil and sugarcane mills, pestles, rollers, agricultural implements and carts, and all work in which toughness and strength are desirable.

Dalbergia Sissoo, Roxb.-Shisham, sissu. Brandis, 149 : Hooker, II., 231. The sisu occurs throughout the submontane tract and Dúns in moist places on the banks of streams and on islands in the rivers. It attains a height of 40-60 feet, with a
girth of 6 , and in very rarc cases up to 12 fect. The sap-wood is light coloured and the heart-wood is of a deep brown colour, closegrained, hard and capable of taking a high polish. A cubic foot of seasoned wood weighs 45-501b., of unseasoned wood $64-701 \mathrm{H}$. The co-efficient of transverse strength ranges from 700 to 900 , being superior to nearly all other woods. A six-feet bar, two inches square, broke at $1,104 \mathrm{bb}$. in one of Baker's experiments. Sisu is useful for all work requiring strength and elasticity, and is much employed for furniture, house-building, boat-building, carts, beds, saddle-frames, and agricultural implements. It is considered a first-class wood in the forest tariff.

Ougeinia dalbergioides, Benth.; Dalbergia Oogeinensis, Roxb. —Sándan, sínan, chándan. Brandis, 146 : Hooker, II., 161. It occurs chiefly in the valleys of the outer hills, ascending to 5,000 feet and attains a height of $40-50$ feet with a girth of $3-5$ feet and occasionally 7-8 feet. The wood is close-grained, hard, strong, tough, and very durable. A cubic foot weighs 57-60tb., and it is much valued for wheels, ploughs, furniture and indoor household work. It is one of the first-class timbers in the forest tariff.

Acacia Catechu, Willd.; Mimosa Catechu, Linn., M. Sundra, Roxb.-Khair. Brandis, 186. The khair occurs along the submontane tract and in the Duns, ascending the valloys to 3,000 feet. It has been much worked for the extraction of kuth, and in the more accessible tracts few large trees remain. It attains a height of 30-40 feet, with a girth of 4-6 feet and occasionally 8-10 fect. The heart-wood is of a deep red colour, close-grained, hard, tough, elastic and heavy. It is admirably suited for crushers (chúran) for oil and sugarcane mills, and for this purpose yiclds only to the tamarind. It is also largely used for axles, pestles, pins, plough-shares, cotton-rollers, wheels, bows, spear-handles and the like, and is one of the most valuable of the second-class woods. Its product, kath, has been noticed elsewhere (p. 775).

Terminalia tomentosa, W. et A.; T. crenulata and coriacea, W. et A.; Pentaptera crenulata, coriacea, and tomentosa, Roxb.Sain, ásin, asain, sáj. Brandis, 225. This tree is common in the submontane tract and the Dúns, attaining a height of 80-100 feet,
with a girth of 8-10 feet. The heart-wood is dark-brown, tough, strong, elastic, and very durable. A cubic foot of seasoned wood weighs 601 t , varying from $50-70 \mathrm{Hb}$. The co-efficient of transverse strength is 860 , varying from 591-1,104. In one of Baker's experiments a bar six feet long and two inches square broke at 9031b. It is used for indoor household work, carriage shafts, agricultural implements, rice-pestles and boat-building, and is one of the best of the second-class woods now coming into general use.

Terminalia Chebula, Retz.—IIar, harara. Brandis, 223. This tree occurs in the Siwalik tract and outer hills ascending to 5,000 feet and along the hot valleys in the interior. It attains a height of $60-80$ feet and a girth of $5-10$ feet. A cubic foot of seasoned wood weighs $54-60 \mathrm{ft}$. The timber is of a brownish colour, closegrained, heavy, capable of taking a ligh polish and fairly durable. It is used for furniture, indoor household work, and agricultural implements. T. belerica, Roxb., the bahera of the submontane tract, yields an inferior wood, of little value, though used for planks.

Anogeissus latifolia, Wall., Conocarpus latifolia, Roxb.-Dhauri, bakli, dháwa. Brandis, 227. This handsome tree is common over all the submontane tract and is found in Dehra Dún, imparting a fine copper tint to the foliage of the forests in winter. It attains a height of 60-70 feet, with a girth of $6-9$ feet. The timber is close-grained, of a brown colour, hard, tough, and elastic. A cubic foot of the seasoned wood weighs $57-651 t$, and of the unseasoned wood 75-801b. The co-efficient of transverse strength, according to Skinner, is 1,220 , but is placed much lower by others. From its elasticity, the bakli varicty is especially fitted for cart-poles, axles, axe-handles and the like, and it is gradually coming into great demand as the prices of the superior timbers have risen. It is well fitted for all house-building and agricultural purposes, though said to be not very durable when exposed to moisture. The bark of the bákli variety appears to be of a lighter colour than that of the dhauri variety, while the leaves are smaller and it grows to a greater hcight.

Adina cordifolia, H. f. et Benth.; Nauclea cordifolia, Roxb.Haldu. Brandis, 263. The haldu occurs abundantly in the open
plain along the foot of the hills from the Sírda to the Ránganga and less commonly westwards through the Dehra Dún to the Jumna. It ascends the valleys to 3,000 fect. It is not gregarious and is remarkable for its trunk being often buttressed like that of the semal. Trees 60-100 feet high and with a girth of 10-18 feet are not uncommon in the Blábar. The average weight per cubic foot is 42 tb ., varying $36 \cdot 3-49 \mathrm{tb}$. The co-cfficient of transverse strength is about 700. The wood is ycllow, smooth fibred and fine-grained and is fairly durable. It seasons well, works easily and takes a fine polish, and is suitable for turnery, though sometimes apt to warp and crack. It is now much used for indoor household work, planks, boxes, the keels of boats, combs, writingtablets, gun-stocks, and agricultural implements.

Stephegyne parvifolia, Korth.; Nauclea parvifolia, Roxb.Kaim, kangai, phaldtu. Brandis, 262. This tree is gregarious, though occasionally met solitary in the open plain. It grows to a height of $50-60$ feet, though spocimens of 80 feet have been recorded and the average girth is 6-7 feet. The weight of a cubic foot of sea soned timber is $35-47 \mathrm{Hb}$., of green timber 541 H ., and the co-efficient of transverse strength is 586-683. The timber is durable if not exposed to moisture and is applied to the same purposes as the preceding. This and all other woods of the submontano forests, except sall, sissst, tuin, and síndan come under the designation ' $K$ atr ukh.'

Quercus semecarpifolia, Smith—Karshu, sauj. Brandis, 479. This species occurs at ligh elevations 8,000-10,000 feet. Madden records it at Naini Tál. It attains a height of $70-80$ feet, and a girth of 7-8 feet is not rare. It grows slowly and gives a hard, heavy timber that will not easily bear export, but on the spot is used for housebuilding, bedsteads, poles, helves and ploughs. It is said to warp on exposure and to be liable to the attacks of insects.

Quercus lanuginosa, Don.; Q. lanata, Wall.—Rianj, rai-bánj. Brandis, 481. This species occurs at Naini Tál and a fow other places in Kumaun, 6,000-7,500 feet. The word is of a greyishbrown colour, hard and very heavy, and is not easily worked. It is much liable to the attacks of a small black hymenopterous insect which often riddles it completely in a few years.

Quercus dilatata, Royle ; Q. floribunda, Lind.-Tilonj, kilonj, moru. Brandis, 482. This species is common on the outer ranges from the Jumna to the Sárda at 4,500-9,000 feet. Pearson notices the noble forests of this oak in the valleys of the Bhágirathi and Jumna rivers. It attains a height of 80-90 feet and a girth of 8-9 feet, and Madden records one 100 feet in height and $19^{\prime} 8^{\prime \prime}$ in girth. The wood is of a brownish colour, hard, durable and heavy. It is used for agricultural purposes and house-building and is considered the best of all the oaks for carpentry.

Quercus incana, Roxb.-Bánj. Brandis, 482.
This species is common on the outer hills from the Jumna to the Sárda. It generally attains a beight of $20-30$ feet, with a girth of 4--5 feet. The wood is used for house-building and agricultural purposes and ranks second to the preceding in popular estimation. Madden records $Q$. anmulata, under the names 'phatiaut' or 'phaniat,' as occurring in Naini Tal ; it is the pharonj of Eastern Garhwál.

Buxus sempervirens, Linn.; B. Wallichiana, Baillon.-BoxPápari. This tree occurs in the upper bills at $6,000-8,000$ feet and is common in the Bhágirathi, Jumna, and Tons valleys. The wood is very close-grained, hard and heavy, weighing 60-65tb. per cubic foot, and selected pieces are fitted for all the purposes to which European box is applied.

Acer oblongum, Linn.-Patangliya, kirmali. Brandis, 110. This species occurs up to 6,000 feet in the great valleys. It is nsed for agricultural implements and from its knots some of the better wooden drinking-cups exported to Tibet are made. A considerable number of these cups are made from the knots of $A$. pictum, Thunb., which is common in the hills above 7,000 feet, and is also used for agricultural purposes and house-building.

Betula acuminata, Wall.-Himálayan Birch—Puyo-udish or utis, Brandis, 458. This tree occurs in sheltcred places 6,50010,000 feet on all the outer ranges. The wood is close-grained and takes a fine satin polish. It is particularly good for panels for doors, and the examples in the Government-house at Naini Tal show that it is a valuable acquisition for ornamental work. The alder, known as 'udish,' is the Alnus nepalensis, Don., which occurs at lower elevations and is also used for house-building pur-
poses and gives a fair-sized log, from which planks may be cut for tea-boxes and the like. The wood is light and somewhat lorittle, but takes a satiny polish like the birch. The people towards the snows use the bark of the silver birch (Betula Bhojpatra, Wall.; Brandis, 457 ) for writing and packing in place of paper.

## CONIFERS.

As already noticed, the conifers constitute the most valuable section of the timber-producing trees of the upper Himalaya both for quantity and quality. In many parts of the country they occur in unbroken masses extending over many miles and present a scene of magnificent grandeur unknown clsewhere. Each species has its own peculiar beauty, but perhaps the wide-spreading cedar with its branches alnost reaching to the ground is the finest and

## Conifers.

 well deserves the epithet 'divine-tree' given to it by the old Hindu poets and still in common use to designate it from Kashmír to the Ganges. We have added Stewart's analytical key to the conifers and a list of vernacular synonyms compiled from the writings of Cleghorn, Madden, Stewart, and Brandis, which seem necessary in order to understand the very confusing local nomenclature :-Analytical key to the chief arboreous Conifers of the North-Western Fimalaya by the late J. L. Stewart, M.D.

	1.-Pinus longifolia, Roxb.	2.-P. Gerardiana, Wall.	3.-P. excelsa, Wall.	4.-Cedrus Deodara, Loud.
Crown	Yonng, ovate; older long ovate, with broadish top.	Short ovate, bushy ...	Conical, long ovate ...	Pyramidal, ovoid conical, or compressed columnar.
Branches of a tree in the ореп.	Begin high, droop somewhat, then upcurved.	Begin low, straightish, horizontal, curving ap at ends.	Begin low, sub-horizontal, ends upturned, when not fruit-Iaded.	Begin low, straight horizontal.
Colour of the foliage.	Young, light; old, darls green,	Darker green than 1, and grey branches showing through.	Bluish or grayish green ...	Lightish green, young ; very dark, old.
Bart	Rough, grey plates, and deep irregular furrows.	Large, long, greenish-grey plates, peeling off, darker under.	Dark, smoothish, furrowed into irregular, small whitish plates.	Dark, smooth, cut into long, narrow acales, by vertical fiseures.
Leaves ...	6-18" long, in 3s, atiff, erect, in persistent sheath, $6^{\prime \prime}-12^{\prime \prime}$ long.	$3^{\prime \prime}$ long, in 3s. Stiff in deciduous sheath.	6-7" long, usually in 58, thin, drooping, sheath caducous.	$1^{\prime \prime}$ or miore longs trigonons, stiff, sharp, in tufts of $30-$ 40, on short branchlets, at last. scattered.
Duration of leaves.	2-3 years ... ...	2-3 years	4 years	5 years.
Cone ...	Pendulous sub-globular or ovate, young ; old conical, $5-7^{\prime \prime}$ long, $13^{\prime \prime}$ girth at base, brown.	Erect, young sub-globular old ovate obloug, narrowed upward, 6-9" long, 14-15" girth low, bluish.	Pendulous, tight, conical, cylindrical, $6^{\prime \prime}$ long, $\left[-8 \frac{1}{1 "}\right.$ girth, resinous young bluish green.	Erect, thick cylindrical, oval or oval-oblong, obtuse, $3 \frac{1}{2}$ $4^{\prime \prime}$ long, $7 \frac{1}{2}-9^{\prime \prime}$ girth, dark brown.
Scales ...	With very thick knobby points, persistent.	Thick, spinous apex, persistent, seed edible.	Close imbricate, acute edged, terminal thickish umbo persistent.	Close imbricate, broad, thin, deciduous.
Ripe ..	(October) April-May ...	October	October ... ...	October.


	5.-Abies Smithiana, Forb.	6.-Picea Webbiana, Lind.	7.-Cupressus torulose, Don.	8.-Taxas baccata, L.
Crown ...	Tall, narrow, cylindrical ...	Very narrow, cylindrical ...	Long conical, like garden cyprese.	Broad oval, irregular.
Branches of a tree in the open.	Begin low, horizontal, or downward, with tassellike twige.	Begin low, short, declined ...	Begin lowish, of young horizontal, sub-declining; of old horizontal, with drooping, sub-divided tipg.	Trunks short or none, branches lax, irregular.
Colour of the foliage.	Like 3, but with a rather darker tinge.	Very dark ...	Young, bluish green; old, darker, like (but browner than) 6.	Darkish green.
Bark $\quad$.	Very smooth, cut into small quadrangular plates by shallow furrows.	Young, smooth silvery ; old, grey, cut into long narrow scales by anastomosing spiral clefts.	Brown, smooth, sulcate, fibrous, peeling off in long strips, often sub-twisted.	Young, silvery, old, smooth, brown, fibrous, compact, not sulcate, pecling off in layers.
Leaves ...	$1_{2}^{1 \prime \prime}$ long, compressed tetragonal, stjff, slarp, solitary. scattered all round branches.	$2^{\prime \prime}$ long, 2 pointed, a silvery band on each side under, qunsi-bifarious.	Scale-like, quadrifariously close imbricate.	Flat, falcate, entire, sharp mucronate, alternate distichous.
Duration of leares.	8-10 уears ... ...	8-10 years ... ...	$?$	$?$
Cone m	Pendulous from tips, oblong cylindrical, sub-narrowel upward $3-4 \frac{1}{2}$ " long, $4 \frac{1}{2}-1_{4}^{\prime \prime \prime}$ girth, brown or purplish.	Erect, sub-globular or oval cylindrical, narrowed above, 3-41 ${ }^{\prime \prime}$ long, 5-9" girth, dark purple.	Globular or sub-oval, $6^{\prime \prime}$ long, $1 \frac{t^{\prime \prime}}{}{ }^{\prime}$ girth, fuscous, bluish, glaucescent.	Sub-drupe, 4-5 $\frac{1_{2}^{\prime \prime}}{}$ long, $1 \frac{1}{8}-1 \frac{1}{2}{ }^{\prime \prime}$ girth, cup red, fleshy, nucule greenish olive.
Scales ...	Thin, membranous edged, persistent.	Broad, thin, dark, deciduous,	Each scale with 4-6 facets ...	
Ripe ...	October ... ...	October ... ...	October-November ...	September to January.

Local names of the Conifers of the North-West Himálaya.

	Pushtu.	Hazárá.	Kashmir.	Chamba (Chináb and Ravi).	Kulu (Biás).	Basáhir (Satlaj).	Garhwál.	Kumaun.
Cedrus Deodara (deodír or cedar).	Nakhtar ... Lmanza.	Deodír ...   Diar.   Palúdár.	$\begin{array}{ll} \text { Deodár } & \text {... } \\ \text { Diár. } & \end{array}$	Kalain Kilei.   Kelú keoli.   Kilár.   Dcodár, diár.	Kelu   Keli.   Keorí.	Kelon Kelu. Kiali, keltu. Keyúl. Kelmung (Ku- náor). Gyam (Tib).	Deodár   Diár.	Deodár   Diár.   Díwár.
Pinus excelsa (lofty pine).	Piuni   (Káfir).	Biár ...	Chíl, chír ...   Biár.   Yári, yiro.   Yur.	Chíl, chíltu ...   Chíli, tser.   Lhem, lhím. Yar.   Shomshing (Lahoul).	Kail ...	$\begin{aligned} & \text { Chíl } \\ & \text { Lím (Kunáor). } \\ & \text { Kail. } \end{aligned}$	Kail   Chile.   Darchilla.	$\begin{aligned} & \text { Lím (Byáns). } \\ & \text { Rái-salla. } \\ & \text { Lamshing(Bhot). } \end{aligned}$
Pinus longifolia (long-leaved pine).	Nakhtar ...	Chíl Chír.	Chíl	Chíl   Dráb-chír.	Chil   ...	$\begin{aligned} & \text { Chír-sthi } \\ & \text { náor). } \\ & \text { Chíl. } \end{aligned}$	Kolon   Kolain.   Kalon.   Salla, selli.   Saral (Jaunzár).   Chil.   Thansa (Tíhri).	Salla. Chír. Sapin.
Pinus Gerardiana (Gerard's pine).	Chilghoza...   Jalghoza.   Sanaubarsaghar (?).	$\cdots$	Neoza(seeds),	Chiri   Galgoja. Galboja. Mírri. Kashti(Ravi). Prita.	$\cdots$	Ri (Kunáor) ...   Rlii (ditto).   Shanti (Tib).   Kuminche (Ship-   ki).   Koniunche(ditto).	Konecha Kolecha.	Doce not orcur.


Fhies Smithians (Himálayan spruce).	Wesha Bajúr.		Kachan ... Kachal.	Kachal   Kachan.		Tos, tosh Río, re. Rág, roi. Káuli. Bang re. Krok.		Sarai   Rái.   Rewári.   Ban-lúdar.   Sangal.   Salla.   Salle.	Bhíj-rai(Shatúl),   Bang-rai(Rúpin).   Krok (Kunáor).   Raiang, re.   Roú (Kunáor).   Rau.   Kandrau.   Kudrau.	Kandre,kail,kilu, re, rhái, rho. Riálla.   Rágha (local).   Rái (Jauneír).   Téć (Bhot).   Kudrau.   Morinda.	Does not occar?
Abies Wehbiana (Webb's fir).			Yalúdar (Jhelum). Rewari (Jhelum).	Iiayal   Badar.   Bidar.   'lúng.		Dhunu Ríg, sara. Rail, salle Ye, re.	$\ldots$	'Tos ...	Krok, kalrai   Pindrow(Hattu).   Pindrai (ditto).   Thanera (Sháli).   Chilrau (Chúr).   Khatrou.   Spun, pun.	Morinda   Ráiballa.   Rao rágba.   Kúlu.	Rágha.   Wúman (Byáns)   Raubla   Raisalla.
Cupressus torulosa (Hímálayan cy press).	*		-•'	-*		Debidiar	...	Deodár ...	Shír (Kunáor)...   Gaia, galrai.   Galaín (Sháli).   Kalyán	```Leor (Tírhi) ... Leori (Jaunsúr). Surúi. Súrye.```	Saru. Súrúi. Suráí.
Taxus baccata (уew).	Saríp?   Badar	$\cdots$	$\begin{array}{ll} \text { Birmi } \\ \text { Täng. } & \text {... } \end{array}$	Sangal   Tung.   'Túni.   Postil.   Sungcha.		Dhono   Chogú.   Kautú.   Barma.		Rakhal ...	Geli   Thuna.   Kadeurú.   Hiklualung (Kunáor).   Yamial (ditto). Ikalung.	Thaner ...	Thanera.   'Thúna.   Lúet (Juhár).   Nhare (Byáns).
Juniperus excelsa (pencil cedar).	Apúrs		Charái ...   Chalai   (Jhelam.)	**		Lewar, leor Shúr. Devdár.		. ${ }^{\prime}$	Shírbíta Shúrgu. Shúkpa (Tib). Neur-sh úkpa. Shar (Kınáor).	Lewar   Dhúpri.   Chandan.	Dhúp.   Padmak (Bhot).   Súrgi.

Pinus longifolia, Roxb.-Long-leaved pine. Madden, J. Agri.Hort. Soc. Cal., VII., 75 : Brandis, 506 : Cooke, 125 : Roxb., 677.

The long-leaved pine. Chir (in Sanskrit "kshira," or "milk"), sula (Sansk. sarala, " straight") in Kumann ; kolon, kolan, kolain in Garhwál ; saral in Jaunsár; thansa above the Dún ; dhúp in Oudh. To the west of Garhwál the name chir or chil is applied to $P$. excelsa, except in Kunaor, where $P$. longifolia preserves the name chir with the indigenous affix 'sthi' or 'shthi' (M.)

The chir occurs all through the Kumaun Division, dividing the
Distribution. forest with oak, from 1,600 feet above the level of the sea at Sítakoti, eight miles above Deoprayág in Garhwál, to 7,200 feet on the Pindar river. The limits at which it is found vary much in different parts of the Himálaya between Afghánistín and the Tísta, and apparently the upper limit descends the further east we proceed from Kumaun. ${ }^{1}$ As a rule, however, 2,500 fcet is the lowest height at which it seems to flourish. The chir appears to have the power of driving out all other vegetation from the tracts it occupies, and forests of thesc trees are interpersed only with scanty underwood of the smallest shrubs. Madden and Brandis note the curious phenomenon observable in many of these pines in Kumaun. This consists in the spiral arrangement of the bark and woody fibre, the coils being sometimes as much compressed as those of an ordinary corkscrew, and in some instances the stem itself is thus distorted. Straight trees are found mixed with these contorted specimens in the same forest in Kumaun, and they do not appear to occur in Garhwál or in the higher ranges in Kumaun. The straight variety is known in Kumaun by the term sapin. The wood of the straight variety is usually of a reddish white colour, and is preferred for building purposes, as the other is liable to warp and split in working, though in the log form capable of bearing heavy strains. It is, however, rarely used excopt as fuel. Dr. Jameson thinks the crooked variety is confined to localities with a southern aspect and under 5,000 feet, but the fact remains that crooked and straight trees occur in the same forest with the same aspect, as may be observed near Ganái and Pyúra.

[^131]The forest survey of 1865 - 66 estimated the total area under chlr as 413,650 acres in Kumaun and 152,264

## Webber's survey.

 acres in Garhwál. Many acres of forest contain 20 large and 50 small trees per acre; but in a square mile the bare places bring down the average to 20 trees per acre. Firstclass trees are those having a girth at five feet from the ground of eight feet and over ; second class have a girth five to eight feet; third class, two feet to five feet, and fourth class under two feet. The first-class trees average about one-twelfth, the second about one-fifth, and the third about one-third of the total number per acre. This would give a total of about twelve million chir trees in the Kumaun Division, of which one million beiong to the first class.The forests lying along the Gúmti, western Rámganga and eastern Ránganga approximately contain the following trees:-

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Nearly all these trees grow on slopes rising from the river-beds, and near enough to repay the cost of cutting and launching. The trees on the upper western Rámganga and its tributaries are mostly twisted, though towards Búngidár they are straight and so placed as to be easily shot into the Bino river. Following the stream of the Rámganga, the north-east banks from Garoth down to Bagri have
first-class timber covering all the slopes of the Badhangarh and Gopálkot ranges, and could be easily worked into the Rámganga. The Syúni jungle near Chaun Debi is one of the finest in Kumann. The large trees have all straight boles without a knot and with much red wood. The soil is light, micaccous sand on loose beds of earth and stones, which appears to be eminently suited to the chir. In Garhwal there are extensive chir forests in the valley of the Alaknanda and along the Pindar from Chuding ( 4,800 feet) to Gwáldam ( 4,300 feet), a distance of thirteen miles. In the three upper miles the timber is small, but lower down there are fine straight trees close to the river-bank, and a flat near Chiringa suitable for a timber depôt. All along here and up the Kailganga, for two miles, the forest could easily be worked. The forests on the Mandákini and Madmahesvar rivers have been worked for railway sleepers, but in many places the timber is too remote from the river for removal. The forests along the Nayár and Chhíphalghát rivers are extensive and yield good straight timber.

In native Garhwál there are almost inexhaustible forests of chir, along the Bhagirathi between Sainsu, some twenty miles above Tihri and Bhatwári, a distance of fifty-five miles. There are numerous patehes along the head-waters of the Jumna and the Tons, and the left banks of both rivers are clothed with one immense forest capable of supplying all possible wants. Describing these forests Colonel Pearson writes:-"It would be difficult adequately to describe the enormous seas of chir forest which line its bank. In these the trees must be numbered not by thousands but by hundreds of thousands, and many of them are of huge size." The lower hills towards the Dún and the Siwáliks themselves contain large quantities of pine, and taking the entire forest area of the hills, the longleaved pine may be considered the characteristic tree for quantity, but for quality it ranks below several other conifers. The great object at present is to find some inexpensive process for preserving' it from the effects of exposure by creosoting or covering it with a permanent silicious coating. The chir grows even in the plains and: specimens can be seen at Meerat and Saháranpur. It occurs, as we shall see, in every sub-division in the hills in abundance and in places from which it can be easily removed. It is often used for boat-building, but boats made of it seldom last for more than seven
or eight years.- Where deodar can be procured for the outside and $c h l r$ for the inside the combination is excellent. Chtr is casily worked into planks and beams and does well for interior work in houses. The bark is used in the preparation of charcoal for smeltimg iron. The knotty wood is used for torches, and the charcoal of the burned leaves with rice-water makes a fair ink. The growth of this pine may be calculated from observing the number of rings contained in a transverse scetion of the trunk. Of eight trees taken ass a fair sample, Mr. W ebber considcred the largest, nine feet in girth and 200 fect high, to be 264 years old, and others, with an average girth of $5^{\prime \prime} 7^{\prime \prime}$ at five feet from the ground and a beight of 93 feet, to be 154 years old. The growth is fairly rapid, averaging four or five rings to the inch. In the Turág Tál valley a fallen tree at five feet from the groumd girthed $13^{\prime} 6^{\prime \prime}$, and at 66 feet from the ground the girth was ten feet. The extreme height was 169 feet, of which over 100 feet were clear of branches.

The following table gives the measurements of seweral trees near Ránikhet:-

Aspect.	Ringe.		$\begin{gathered} \text { Age } \\ \text { in } \\ \text { years. } \end{gathered}$	Girth at 5 feet from ground.	Girt'a at 50 fect.	Height.	Locality.
	Heart.	Sap.					
				Ft. in.	Ft. in.		
*. W.	15	50	65	33	10	75	Ránikhet.
S.	106	145	251	80	60	120	Elevation 5,000 feet.
N.	104	100	204	70	50	110	
N.	110	154	264	90	73	120	Syúni.
S.	52	23	75	38	$\cdots$	75	Mansi mica rock.
S. E.	80	46	126	${ }_{6} 6$	...	100	Ditio sandstone rock.
$\mathbb{N}$. W.	28	52	80	45	...	60	Shaitángarh.
N. W.	80	90	170	76	$\cdots$	80	Ditto.
S.	96	90	186	78	...	130	Pachrár nadi.

The following talble shows the result of experiments made in Almora in 1844 towards ascertaining the transverse strength of chir. As far as No. 10 the distance between the supports was four feet, and the bars used were two inches square. From 11 to 20 the distance between the supports was increased to eight feet, the depth of the piece used to $2 \frac{1}{2}$ inches and the breadth to $\mathbf{3}$ inches: -

$\begin{aligned} & \text { 号 } \\ & \text { 吕 } \\ & \text { 荧 } \end{aligned}$	Specific gravity．	Weight pro－ ducing deflec－ tion of	Break－ ing weight	Remarks．
		$\frac{1}{2}$ inch 15.	H．	
1	＇545	549	1，000	Broke at a knot．
2	$\cdot 570$	624	1，144	Red coloured and rather knotty．
3	－562	508	940	
4	－596	1，112	1，372	Large coarse grained．
5	－596	1，000	1，444	
6	$\cdot 670$	1，030	1，420	
7	－634	820	1，132	
8	－673	940	1，288	
9	－710	1，036	1，540	
10	－600	$1 \text { inch. } 2 \text { inch. }$	1，304	Apparently the best picce，though all were very good．
11	－665	412702	1，168	Coarse grain．
12	$\cdot 726$	680 1，394	1，763	Quite free from knote．
13	－707	6361,288	1，744	A few small knots．
14	$\cdot 615$	484976	1，756	No knots．
15	－625	568 1，332	1，420	Good wood，but broke at a small knot．
16	－691	456844	1，168	
17	－585	$400 \quad 764$	1，208	
18	－575	4901 1，036	］，648	Very evenly and fine grained．
19	$\cdot 601$	344680	1，168	
20	－662	484904	1，300	

The quality of the timber varies with the locality in which it has been raised，the slow－growing timber of the upper and colder regions being much better than that of the rapid－growing timber of the hot valleys，and from this fact may be derived an explanation of the difference in the results of experiments as to its strength and weight．

Pinus Gerardiana，Wallich．Neoza pine：Gerard＇s pine．The $r h i, r i$ of Kunáor；shangti of lower Kunáor ：newr further down the Satlaj；ruminche，roniunchi of Shipki and Hangrang；ronecha， rolecha of Juhár in Kumaun：neoza（the seeds）．

The Gerard＇s pine is found between Malári and Bampa in the Dhauli valley in Garhwál，which seems to be its castern limit，and locally in the upper valleys of the Tons and Jumna．It is generally associated with the cedar and is probably the sanaubar－saghar or ＇lesscr－pine＇of Afghánistán，its hcight seldom exceeding 50 feet． It rarely gives a larger girth than eight feet and is preserved for its＂seed，which are collected and eaten and form a part of the chilghoza of the bazars．Brandis notes that the wood is used for the hook which supports the passenger＇s seat on the single－rope swing－bridge．Baskets and rough water－buckets are made from
the bark. The cones are plucked bcfore they open and are heated to make the scales expand and to get the seed out. The seeds are about an inch long, nearly cylindrical, with little or no wing, and are very palatable with a slight and not unpleasant flavour of turpentine. Large quantitios of the seeds are stored for winter use, and they form a staple food of the Kunáoris, amongst whom the proverb is current, 'One tree, a man's life in winter.' The range varies from 5,800 feet (on the Marru river) to 12,300 feet near Sungnam. In Garhwál it occurs between 6,000 and 10,000 feet.

Pinus excelsa, Wallich, P. Peuce, Griseb.; P. pendula, Griff.Lofty pinc. ${ }^{1}$ Chil, chir, chilu, to the west of Jaunsír, wherever $P$. longifolia is known by the name salla; chila and karchilla in Garhwál ; kail and chil in Jaunsár ; dol chilla in Kumaun ; ráisalla in Central Kumaun; lim in Byáns; lamshing amongst the Bhotiyas of Dírma. Madden, Jour. Agri.-Hort. Soc., Cal., VII., 80 : Brandis, 510 : Cooke, 824.

This pine occurs in Upper Garhwál, on Rikholi Gudari (a spur from Trisúl), about Kanol near Ramni, and on Tangnáth; along the Dhauli to the Níti pass and in Byáns and generally only on spurs issuing directly from the snowy range. It seems to be absent in Central and North-Western Kumaun, but occurs near Dhákuri. The limits between which it flourishes in this portion of the Himálaya have been estimated at from 5,000 to 12,000 fect. The forest survey of 1865-66 gives the total area under this tree at 2,100 acres in Kumaun and 14,042 acres in Garhwál. The following aro the principal localities, with the size of the forest and the number and class of each tree per acre:-

Locality.	Acres.	Trees.			
		1st.	2nd.		
Kanol Shatul on the banks of the Nandákini ...	782	1	3	4	4
Above Sirku near 'litalakot on the Káli	100	1	1	2	4
On the Vishnuganga near Pandukeswar ...	1,390	0	2	3	4
On the left bank and between it and the eastern Dhauli.	3,500	1	3	4	5
On the left bank of the Dhauli	3,000	5	5	6	6
On the left bank of the Rishiganga and ncar Tapuban,	5,1150	2	4		5
Along the Kúnti river in Dárma ...	700	0	4	6	10
On its lower course ... ...	1,400	1	6	10	10

[^132]The Vishnuganga forests are inaccessible except near Pándukeswar, and those along the Rishiganga, Dhauli, and Kúnti rivers are practically excluded from the market by their distance from the plains and the difficulties of transport. There are considerable forests of this pine near Datiner on the Tons and on the right bank of the Rupin, and generally throughout the cedar tracts and above them it occurs in quantity. The grain of the wood is close and soft in working. The sapwood is whitish and the heart-wood light-brown and streaked with red. It is in some demand for house-building, though ranking below the cypress for durability. It does not stand exposure to excossive moisture. In the form of planks it is said to warp badly when exposed to the sun, and to become affected by dry-rot if placed in contact with damp earth. The highly resinous, small, knotty branches are used for torches, and the charcoal of the entire tree for smelting iron. The tree grows to a great size, the average girth of the larger trees being 13 feet. The rings average fifteen to the inch and the weight of a cubic foot is about 25 lb , with a specific gravity of 686 . A picce of this timber of average quality, 22 inches long and one inch square, broke with a pressure of 368 Ht .

Cedrus Deodara, Loudon; Pinus Deodara, Roxb-Himálayan cedar-the deodár, diyár of Kumaun and Garhwál; the kelon, kelu of Western Garhwál and Jaunsár, where the name deodár is given to the Cupressus torulosu: deva-dáru (divine tree), Sansk. Madden, Jour. Agri.-Hort. Soc., Cal., VII. : Brandis, 516: Cooke, 128: Roxb., 677.

There are no natural groves of deodár in Kumaun and only one large forest in Garhwál. There are numerous plantations around temples in Kumaun, aggregating about 800 acres. Amongst them may be mentioned those at Lodh, Bála-Jagesar, Pharka, and the groups at Súi, Rikhesar, Mankesar, Kalsia, Simalti and Ghatot near Lohughát, and Kshetrapál near Somesar. Along the western Dhauli between Kák and Malári there is a natural forest having an area of about 1,500 acres and giving one second-class, three third-class and eight fourth-class trees to the acre. At Lata on the Rishiganga there are about 70 acres of fine, healthy trees, one giving a girth of 30 feet, and at Parbati, near the Nandákini and Shatúl, there are some fine groves. The average girth of the largest trees in these provinces appears to be
about 15-20 feet. Major Garstin measured some near Malári over 20 feet in girth at six feet from the ground. The cedar yields an oleoresin similar to that of the chir ; the oil is used in medicine and the twigs and branches are also said to possess medicinal properties. The great cedar forests of these provinces occur along the Bhágirathi valley and in Jaunsár-Bíwar, and these are fully noticed in the accounts of those forests given hereafter. Dr. Brandis writes :-
"The deoddar for the first three or four years of its life grows slowly, attaining 12-20 inches in height with spreading roots that do not go deep down. In this shrubby and stunted state the young plant can maintain its existence under the shade of other trees for considerable number of years without making much progress: but when light overhead is given, then a leader is at once formed which shoots up rapidly. At a more advanced age, the rate of growth of the deodar is determined without difficulty by counting the annual rings." The existing records show that the growth is influenced very much by the climate. In the dry valley of the Bhágirathi the rate of growth is much slower than in Jaunsár, where there is a heavy rainfall, so that in the former tract a tree takes 86 years to increase from $4^{\prime} 6^{\prime \prime}$ to 6 feet, whilst in Jaunsár this is accomplished in 23 years. Within each tract also the rato of growth differs considerably. Colonel Pearson noticed in the Bhágirathi valley a stump $6^{\prime} 9^{\prime \prime}$ in diameter with only 305 rings, and in another part of the same valley a tree with a diameter of only 4 feet showed 480 rings and two having a diameter of only 18 inches had 145 and 147 rings respectively. The wood in these slow-growing tracts usually has a closer grain and a deeper colour than the timber grown on southern aspects and in a moister climate. The soil too in these tracts is generally poor and is formed from the decomposition of granite, gnciss, and clay slate, and in the rapidgrowing tracts the soil is richer and deeper. Isolated trees, such as those at Wán, often attain a great size. Dr. Stowart measured one at Kuársi in the Ravi basin, at an elevation of 7,500 feet above the level of the sea, $44^{\prime} 2^{\prime \prime}$ in girth at two feet from the ground and $36^{\prime} 4^{\prime \prime}$ in girth at six fect. Dr. Brandis records that one was measured at Parbani in Kunáor $34^{\prime} 4^{\prime \prime}$, and that the girth attained by the largest trees there is $30-36^{\prime \prime}$. Madden measured one between

Nachár and Turanda in lower Kunáor (in 1830) having a girth of $36 \frac{2}{3}$ feet at five feet from the ground. The tallest deodir measured by him was in the Nachír forest on the Satlaj, 250 feet high, 20 feet in girth at the base, and more than 550 years old, and there was a considerable number of trees in the same forests more than 200 fect high. Moorcroft measured a fallen tree on the Tugási hill in the Dhauli valley and found it 159 feet: another was 180 feet in height.

Many experiments have been made to ascertain the transverse strength of deodár taken from the Panjáh, the Garhwál, and the Kumaun forests. The weight of a cubic foot appears to vary from 25 to 40 Hb ., but in Garhwil approaches more the latter ; in one series giving an average of 37 tb . A well, seasoned piece, 22 inches long and one inch square-broke at 345 Hb . It had a specific gravity of -655 and showed eight rings to the inch. The result of eight experiments on Garhwál timber made at Rúrki (390-798) gave an average of 592 . The result of a series of experiments at Almora in October, 1844, conducted by Captain W. Jones, ten with timber cut in the preceding month and ten with seasoned timber, is shown in the following table. In the first ten experiments the distance between the supports was four feet and the pieces were two inches square : in the second ten the distance between the supports was increased to eight feet and the pieces were $2 \frac{1}{2} \times 3^{\prime \prime}$ :-

Specific gravity.	Weight producing deflection of	Brenking weight.	Remarks.
	$\frac{1}{2}$ inch f .	1 tb .	
-608	1,036	1,588	Good straight grained wood.
$\cdot 710$	1,024	1,636	Lower side split a little at 1,060.
-698	736	880	Not straight-grained and slightly flawed.
-669	1,060	1,540	Lower side aplit at 1,308.
-620	904	1,456	Ditto 904.
-585	680	976	Broke suddenly.
-574	680	708	Ditto.
-614	344	$\cdots$	Ditto No flaw perceptible
$\cdot 586$	568	1,204	Ditto.
-604	624	...	Lower side went at 694; uneren grained


Specific gravity.	Weight producing deflection of		Breaking weight.	Remarks.
	1 inch.	2 inches.	fib.	
$\cdot 641$	350	764	820	Snapped suddenly: light-coloured; said to be outside of tree.
-618	400	788	1,028	Heart of tree red and olcaginous.
-644	344	660	908	Snapped short suddenly; light-coloured.
-579	428	876	1,116	Heart of trec very good and red.
-578	344	736	064	Snapped suddenly, but was in appearance the best piece of all five.
-566	344	680	750	) Good sound wood, but knotty, coarse
-629	344	576	624	$\}$ and wavy in grain ; snapped suddenly
-619	512	963	1,188	Dark cedar-coloured, fine grained; broke at knot.
${ }^{6} \mathbf{6 3 0}$	598	1,080	1,700	Dark cedar-coloured; under-side very fine straight grained and light-coloured.
-603	484	876	1,092	Dark cedar-coloured, but rather coarse in grain.

The timber of the deodar is the most highly prized of all the conifers for house-building, granaries, chests, boat-building, and railway sleepers. It appears to be little affected by extremes of heat, cold or moisture and is easily worked. In a climate like that of Kashmir it appears to be almost imperishable. Moorcroft states that the pillars of the groat mosque erected by Aurangzeb at Srinagar showed no vestige of decay from exposure or insects at the time of his visit, and that pieces of deodar from the Zain-ulkadal bridge were found little decayed, although exposed to the action of water for four hundred years. Many of the other bridges still standing in Srinagar may perhaps claim a greater antiquity. Gerard records some timber in a house in Basáhir as being 200 years old and as sound as the day it was cut. The cedar is a sacred tree in the hills and is in much demand for the tempies, for the doors, walls, and roofs. Madden notes that he saw some beams in a Kunáor temple that were said to be 600 to 800 years old and showed no signs of decay, and though this may be an exaggeration of his informants, it indicates the popular belief. Boats built of deodár and lined with chtr last from thirty to forty years, and for railway sleepers no other wood can compete with it. White-ants eat the sap-wood and but rarely attack the heart-wood, and neither the sap-wood nor the heart-wood is liable to dry-rot. Immense numbers of sleepers of this wood have been supplicd from the

Bhágirathi and Jaunsár forests during the last fifteen ycars. The Jaunsár forcsts on the Deoban ridgo between the Jumna and the tons were estimated by Colonel Pearson in May, 1869, to contain 34,000 available first-class trees and the Bhágirathi forests (excluding the Bhilang valley) 116,700 first-class trees. If to these are added the probable contents of the valleys of the Tons and Jumna rivers, the total number of first-class trees available in 1868-69 was about 500,000 . The proportion of smaller trees may be gathered from the following estimate of those in the Bhagirathi valley :-

First-class or above $6^{\prime}$ in girth	$\ldots$	$\ldots$	116,700	
Secend-class or $4^{\prime} 6^{\prime \prime}-6^{\prime}$	...	$\ldots$	$\ldots$	53,660
Third-class or $1^{\prime} 6^{\prime \prime} \cdot 4^{\prime} 6^{\prime \prime}$	$\ldots$	$\ldots$	$\ldots$	127,536
Fourth-class, below $1^{\prime} 6^{\prime \prime}$	...	$\ldots$	...	213,281

Since 1868-69, however, there has been a great diminution of first-class trees to supply the numerous requisitions for railwaysleepers and public works.

Abies Smithiana, Forbes; A. Klutrow, Loudon; A. spinulosa, Griffith; Pinus Smithiana, Wallich; P. Khutrow, Royle; Picea Morinda, Link.-the Himalayan spruce ; Smith's spruce-the morinda and ráai of Jaunsár ; kandre, re, rhái, ráo, kudrau, ráa ála, rágha, kail, káluchilu and kiu of Garhwàl. Madden, Jour. AgriHort. Soc., VII., 87 : Powell, I., 564 : Cleghorn's analytical key to the Conifers : Brandis, 525 : Cooke, 127.

Smith's spruce, according to the survey, is found in the north of Garhwál near Joshimath and in the Dhauli and Vishnuganga valleys. The forest survey of $1865-66$ estimated the area under this tree in Garhwál at 26,908 acres. The following are the principal localities, with the size of the forest and the number of each class of tree per acre :-

Locality.	Acres,	Trees.			
		1 st .	2nd.	3rd.	4th.
Near Kanol, Peri and Shatúl on the upper Nandákini	6,328	2	3	4	4
On the slopes of Tamba Deo near the western Dhauli ...	50	1	3	3	3
Near Golábkoti on the left bank of the western Dhauli ...	2,050	5	5	5	7
On the Biriganga and Rishiganga ...	13,000	5	4	5	7
Further up the Rishiganga ... ...	4,980	2	4	6	8

Dr. Griffith describes this spruce as growing abundantly on the northern ranges of Bhután, 7,800-11,600 above the level of the sea, preferring northern aspects and occurring in masses below A. Webliana. It is rare in Sikkim and confined to valleys of the inner range at 8,000 to 9,000 feet mixed with $A$. dumosa and seldom exceeding 50 feet in height. It has not been found_in Kumaun, and Madden states that he was unable to detect a trace of it in Dínpur, Juhár, or along the snowy slopes of Nanda Devi and Nanda Kot. Nor were Bhotiyas of Milam, accustomed to traverse the mountains, able to recognise the cones or dried specimons. It is not mentioned in Webber's survey as occurring in Kumaun, but is said to be indigenous on Rikholi Gudari and occurs, as we have seen, in the valleys of the Nandákini and western Dhauli. On tho left bank of the Bhágirathi above Jhala it is found with cedar, silver fir, and birch on the slopes having a northern aspect. It occurs also in the forests of the upper Jumna and'lons and in Jaunsár.

The spruce grows to an immenso size. Webber mentions one on the Nandákini 18 feet in girth and 110 feet in height. Hodgson records the length of a fallen tree as 169 feet, and Madden gives the girth of ten trees as varying from $13 \frac{1}{2}$ to 20 feet and showing an average girth of 16 fect. Dr. Stewart has recorded one of 21 feet, but the average girth is from 8-12 feet with a height of 100-150 feet. As bas been noticed, the spruce prefers a northern aspect, and this is but one of many instances of the phenomenon which strikes every traveller in the Himálaya, that of the northern and north-western aspects being densely wooded, whilst the south and south-eastern are wholly or almost bare. Baron Hügel, as quoted by Madden, thus refers to the valley of Perhamgala in the Pir Panjal range :-"Strange to sty the south side (aspect) of the valley is everywhere wild and dreary, while fine trees grow up to the very summit of the mountain on the north face. The reason may possibly be found in the fact that on the south side the repeated action of alternate freezing and thawing destroys every kind of vegetation except a few grasses." The wood is white ; the outer part turns red and decays rapidly if exposed to moisture, so that it is seldom used except for indoor work. A very dry piece 22 inches long by one inch square broke at 288 Ib ., being the weakest in a series of experiments of all the conifers. The specifie gravity was
only 426 , though the piece in question averaged 14 rings to the inch. The bark is used for roofing purposes and to make rough water-troughs for cattle, and the young cones form a part of the drug sold as gaj-pipal in the bazars.

Abies dumosa, Loudon; Pinus dumosa, Don ; P. Brunoniana, Wallich-Hemlock spruce of Nepál—the tungsing of the Bhotiyas of Dárma in Kumaun ; changathasi dhuip of Nepál. Madden, Journ. Agri.-Hort. Soc., VII., 95 : Brandis, 527.

The forest survey in 1865-66 gives the total area in Kumann under this tree at 3,650 acres. The principal localities, with the size of the forest and the number of trees per acre according to class, are as follows :-

Locality.	Acres.	Trees.			
		18t.	2nd.	3rd.	4th.
Dola Kot and Kála Mundi, to the west of the Gori river, mixed with Abies Webbiana.	140	1	2	2	4
In Chaudáns and Byáns, to the north-west of the Dhauli.	650	2	6	5	5
Manktil danda and in the valley of the Chirkila gár, falling into the Dhauli.	1,160	1	2	3	3
At Titala Kot near the Káli ... ...	600	2	3	3	4
Spurs of Panch Chúla above Tínik	920	2	4	6	6
In Byáns near the Káli ... ... ...	1,000	2	4	4	10

It was first discovered by Captain Webb in 1810 and again by Mr. Webber in 1863. Dr. Hooker found it in Sikkim in narrow gorges on the southern flank of Kanchinjinga at an elevation of between 9,000 and 10,000 feet. In the innermost valleys the limits are 8,500 and 10,500 . The Gorkháli name there is 'thingiya' or ' tingúri-salla,' and the Bhotiya name is 'semadúng.' One specimen measured 27 feet in girth at five feet from the ground. Griffith found it in Bhután at 6,500-9,700 feet above the level of the sea, and it is said to be indigenous on Gosáinthán and Banepa. In Kumaun, it occurs in Dárma and about the Chipula range at $9,000-11,000$ feet, and here it is called 'tungsing' and attains a height of $80-100$ feet, with an average girth of $10-12$ feet. The timber is white, fine-grained and light, having a specific gravity of $\cdot 612$, but is said to warp much from exposure. The bark is used for thatching purposes.

Abies Webbiana, Lindley ; A. Pindrow, Royle; A. densa, Griffith ; Picea Webbiana, Loudon and Wallich ; Pinus spectabilis, Lambert-Himálayan silver-fir.

Madden separates the variety known as Picea Pindrow, Royle, from $A$. Welbiana, Wallich., though the names of both are the same in the vernacular; rígha and ráo rágha in Kumaun; wúman amongst the Bhotiyas of Dárma; bang, dodhma ragha, teliya or chilli rágha in South-eastern Garhwàl ; chilrao in Central Garhwál ; mor'unda in North-western Garhwál and Jaunsár ; raunsla or rái salla about the sources of the Kosi in parganahs Bárahmandal and Dánpur and on the Dúdú-ki-toli range near Lohba in Garhwál. Madden, Jour. Agri.-Hort. Soc., Cal., VII., 96 : Brandis, 528.

Madden thus describes his Picea Pindrow of Royle :-
"It flowers in April and May, when the young shoots are of the brightest green, the old leaves being nearly black. The trunk is branched nearly to the ground, but cones are produced only on its loftiest boughs. By the middle of May the cones are about 3 inches long by one in diameter and more or less cylindrical. As the season advances, they become more or less completely so, and of a rich dark purple colour. They ripen in October and November. The cones of $P$. Webbiana are less cylindrical, thicker and shorter, and the bracteoles more rounded, scarcely emarginate, and with a thicker and longer apex. The spiral arrangement of the scales seems identical, and each has the same copious supply of white resin. The cones of $P$. Pindrow are perfectly cylindrical ; the scales more prominently eared ; bracteoles oval, obtuse, eroded, emarginate, the mucro of the same length as the border of the sinus."

This variety forms dense forests on all the great spurs towards

## Localities.

 the heads of the Pindar, Sarju, eastern Rámganga and Káli rivers : near the sources of the Kosi at Bhatkot and on the Dúdú-ki-toli range, near the sources of the western Rúmganga.The other variety is thus described as the Picea Webliana of Wallich. :-
"Tree tall, very narrow and like the cypress. Branches short, thick, scrubby, and declining at the extremities. Foliage very dark green ; near its upper limit of a grayer colour. Bark somewhat
smooth, tessollated by shallow furrows into small squares; young branches silvery. Leaves three-quarters of an inch to two inches long, flat with three small points, in two rows on either side of branches and twigs. Cone erect, rather short, cylindrical, dark purple, scales broad, dark-coloured near edge, deciduous. Ripe in October. The tree flowers in May, when the strobili are of a purplish red. Remarkable for its upright columuar appearance."

It occurs at Rimni on one of the spurs of the Trisúl, between the Pindar and Alaknanda up to the glaciers, and on the summit of Dúdú-ki-toli. The forest survey, 1865-66, gave an estimated area for Kumaun of 13,110 acres, and for Garhwál of 53,280 acres. The principal localities, with the number of each class ${ }^{1}$ of trec per acre, are as follows :-

Locality.	Acres.	Trees.			
		lat.	2nd.	3rd.	4th.
On the left bank of the Nandakini in Garhwál, at Chati Bukiyál and Gúdari Bukiyál.	790	1	1	7	6
At Slíls, Kanol and Slatúl, near the same river	5,600	2	3	3	3
Above Kımoli in the Pindar valley ...	1,040	2	6	7	12
On the Kailganga and above the Pindar ...	1,230	1	6	8	9
On the Piudar from Gumra Páni to Chnding,	3,680	1	4	4	7
Between the Pindar and Sarjo and enst of the Rámganga.	1,800	2	2	3	3
About Munsyíri ... ... ...	670	2	2	4	5
In Dárma, Chaudáne, and Byáne	2,900	2	4	,	8
On the spurs of Tungnith, and in the valleys of the Nigholi and Balsúkhi rivers.	4,370	2	4	4	5
To the left bank of the Alakuanda, on the Pílkânta and Ramari rauges.	6,070	4	4	6	8
On the left bank of the western Dhauli ...	16,100	5	5	-	8
On the upper Nyair ... ... ...	3,200	2	6	8	10
Dúdú-ki-toli range ... ...	8,800	2	6	8	10
On the spurs of Yanch Chúla ... ...	3,910	5	5	7	8
Deo Thal in Agar Patti, Kumaun ..	3,200	1	2	4	4

The forests on the Pindar could easily be worked, and that river can carry the largest logs with case. Those on the Balsúkhi and on the Mandákini, near Kedarnáth, are too high up to be accessible. In the Bhágirathi valley, above Jhola, it occurs with cedar, spruce and birch, and in the upper valleys of the Jumna and Tons and their tributaries is abundant, associated with oaks. It is also found throughout Jaunsár along the ridges of the main range and of the lateral spurs and on Surkhanda near Masúri at an elevation
${ }^{1}$ Classes as in cher ; first, 8 feet in girtl and upwards; second, 5 to 8 ; third, 2 to 5 ; and fourth, under 2 fect.
of 8,200 feet. It occurs on the Dúdú-ki-toli range in Central Garhwál at $7,500-10,000$ feet and on Tungnáth up to 11,200 feet. Brandis notes the limits in Jaunsár, Garhwál, and Kumaun to be. 7,500-13,000 feet ; it nearly reaches the latter elevation in the Munsyári district and in the Nandúk valley ceases at 12,000 feet. Griffith states that it forms vast forests at 12,000 fect in Bhutín, below the belt of rhododendrons, and in Sikkim, under the Gorkháli name 'gobriya-salla' and the Bhotiya name ' dringshing,' it occurs abundantly in the zone 9,700-11,500 feet. The limits in the southerns flanks of Kanchinjinga and crests of the inner sub-Himálaya are 10,000-12,000 feet, but in the inner valleys and rearward ranges $9,000-13,000$ feet. In the north-west Himálaya, it thrives best in cold damp glens with a north or west aspect, and in such places, according to Brandis, constitutes alone or associated with the Alpine birch the upper forest belt. The silver-fir attains a height of 120-150 feet and an average girth of 9-15 feet, though specimens exceeding 20 feet in girth have been noticed. The wood is white, soft, rather coarse-grained and inodorous and is not much esteemed. It is not durable when exposed to moisture or the sun and is chicfly used for indoor work, though in dry climates where better wood is not obtainable it is split up and used for shingles. A picce 22 inches long and one inch square broke with a weight of 379 th. The specific gravity of this piece was 491 and it showed 16 rings to the inch. The following table shows the results of some oxperiments on the transverse strength of the silver-fir made by Captain W. Jones at Almora in 1844. The distance between the supports in the first five experiments was four feet and the picces used were two inches square. The distance in the last five experiments was increased to cight feet and the pieces used were $2 \frac{1}{2}$ inches in depth by 3 inches in breadth :-

Specific gravity.	Weight producing deflection of	Breaking weight.	Remarks.
	$\frac{1}{2}$ inch.	tb.	
-472	660	940	Broke at a knot one foot from thic centre.
-559	512	880	Broke suddenly; no flaws perceptible;
-546	820	1,206	deflection \% the.
-518	820	1,084	
-560	736	904	



Cupressus torulosa, Don-Himálayan cypress--Sûrúi, surái, Kumaun and Garhwál ; rái salla, Naini Tál ; leauri of Jaunsár; to the west and towards Simla it is called deoder ; and the name súrái is given to Juniperus excelsa. Madden, l.c.: Brandis, 533.

Found in Chaudans, Naini Tál, and of remarkable size near Rímni and Wín on the Kailganga in Garhwíl, and from Joshimath to Niti. The forest survey of 1864-65 estimates 1,200 acres of cypress in Kumaun and 4,938 acres in Garhwal. The principal localities, with the number of trees in each, are as follows :-

|  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

In north-eastern Kumaun, it occurs along the Kalimundi range, separating the Rámganga from the Gori, but is apparently wanting in north-western Kumaun. The older trees in a favourable climate grow up in a slender column like the A. Webbiana, and, except that the foliage is a yellowish green, considerably resemble it in its sombre colour and columnar appearance. The thick contorted boughs also give it a rough appearance. At Naini Tál the boughs
with a sonthern aspect are fuller and more regular, giving the treo a lop-sided appearance. The cypress occurs also in the Bhágirathi valley and along the head-waters of the Jumna and the Tons, and in Jaunsár-Báwar on the Lohkandi and Moila hills and below the Karama peak. In Munsyári it occurs at 7,000-9,000 feet; in Naini Tál at 6,500-8,000 feet and in the valley of the western Dhauli it abounds from 7,000-8,000 feet: " after leaving the oaks, elms, hornbeams, \&c., the wood becomes entirely cypress, and from summit to base of the mountains no other tree is seen. The larger trees not unfrequently attain an enormous size, some of them having a girth of 27 fect." Major Garstin measured one at Wán over 38 feet in girth and several were over 20 feet. Madden writes :—"The famous cypress grove at Ming, four or five miles south-east of Joshimath, stands on the northeast aspect of the mountain at 7,500 feet elevation, surrounding the temple of Chandika Devi. Most of the trees are 12-16 feet round : but there is one 27 feet, measured flush with the ground on one side, 10 or 12 feet above it on the other : it is branched nearly to the base with enormous root-bole embracing rocks and is probably not under a thousand years old." The cypress has an average height of 60-120 feet and an average girth of 6-12 feet. These measurements vary much with the position and elevation. Above Malári, in the Níti vallęy, it is so dwarfed as to appear a mere bush, and its limits as a tree in Garhwál may be set down at $4,500-9,000$ feet, but when introduced, it flourishes considerably lower, as at Háwalbágh (4,000 feet) and Diwángiri (2,000 feet). The wood is hard, tough, long-fibred and of a reddish colour, and was formerly extensively used for house-building in Naini Tál. Throughout Kumaun the timber is freely used for indoor work, and there is apparently no religious consideration prohibiting its use, but to the west of the Tons it assumes the name deodár and is solely used for incense. The timber when used is cousidered very durrable, but too flexible for any position where great weights have to be sustained, and for this purpose oak is preferred. A piece 22 inches long and one inch square broke at 4321 b ., it had a specific gravity of 695 and showed 18 rings to the inch. C. sempervirens, Linn., is occasionally cultivated in gardens in Kumaun at low elevations.

Juniperus communis, Linn. Varieties alpina, nana; ground cypress; padma and parpinja of Níti ; churpunja of the Mána valley ; lhaila of Byáns, but H . Strachey names the lhála of Byáns J. religiosa; the chichiya of Milam. Madden, Joum. Agri.-Hort. Soc., Cal., VII., 153-5 : Brandis, 535.

It is found on Chítu Bináyak ( 10,500 feet) ; at Milam and Tola ( $11,000-12,000$ feet), Bampa, Malári ( 10,500 feet); Jelan ( 9,000 feet), and Rimkim ( 14,000 feet), on the glacier-moraines of the Vishnuganga, west of Mána and in Kunáor. It is said to be used as one of the sources of incense and rarely attains a height of more than $7-8$ feet with a stem $18-24$ inches. It is used for fuel in Juhár. The aromatic berries are added to spirits distilled from barley and are also exported to the plains under the names abluil, ahưber, and are used in medicine as a stimulant and diuretic.

Juniperus recurva, Ham.-Weeping bluc juniper ; the better, lhedara, jhora, gligal, aru and agaru of Kumaun and Garhwál; the bil of Milam ; padbank and páma of Byáns. Brandis, 536. There are two varieties : one with acate sproading leaves, found at 12,000 to 13,000 fect; the other with imbricated copressiform leaves and extending to nearly 15,000 feet. It flowers MayAugust and the fruit ripens July-November.

It occars beyond Milam and Níti (to $1 \overline{5}, 000$ feet); in the valleys of the Dhauli (lower limit, 9,000 feet), Vishnuganga and Kedárganga, at Pindari and most other glaciers. Hodgson found it on the Bhágirathi at 12,914 feet, and describes it as having there the form of a large creeper, not a tree; some of the branches were 6 inches in diameter and of a considerable length ; in some places they were above the spongy soil and in others below the surface. The wood is of a red colour, has a brittle and soft grain and the characteristic odour of the pencil cedar. It is one of the sources of incense and is apparently the thalu, thelu or telu of Basáhir. It is used in the manufacture of the yeast called balma, which forms an adjunct in the preparation of spirits from rice. The yeast is made by moistening coarse barley flour, which is formed into a ball and covered all round with the leaves and twigs of juniper. The whole is then closely wrapped up in blankets kept in a warm place and allowed to ferment, which usually takes place in three or four days.

Juniperas excelsa, M. Bieb.-Himálayan pencil cedar-Shurbuta, shairgu, shúkpa of Tibet; dhúp, padmak, sárgi of N.-W. P.; padmak of Milam. Madden, Journ. Agri.-Hort. Soc., Cal., VII., 138-146: Brandis, 538.

This is another of the sources of Tibetan incense. It occurs at the upper limits of A. Webbiana (8,900-11,500 feet) beyond Milam ; at Jelam on the Dhauli ( 9,000 feet $)$ and in the valley of the Girti. In Nepál it grows to a keight of 60 to 80 feet, and is there a fine large tree with dense branches of a dark colour and close foliage. In Sikkim it falls to from 15 to 20 feet. Hooker notes that the Sikkim tree has a scaly bark ; the heart-wood is red and odorous, and the leaves are quadrifariously imbricated, and the wood is burned as incense. The juniper is often confounded with the cypress; the former, thougl the ultimate ramifications are very numerous, has them much shorter and less pendulous than the cypress, and the green is more brilliant. The leaves are closely imbricated in decussate pairs, somewhat obtuse, with a central gland or raised line on the back; four-ranked and imbricate ; or slender, acute, disposed in threes and spreading. The fruit ripens in SeptemberOctober, of a purplish blue colour, the size of a small pea, one or two-seeded, with a strong aroma when bruised. The tree does not usually attain any great height, seldom being more than 15-30 feet, with a disproportionately thick stem 2-5 feet at six feet from the ground and often 6-8 feet and in some cascs much more. One at Súngnam girthed 13 feet at 5-6 feet from the ground, and Brandis mentions another in Lahúl with a girth of $33 \frac{1}{2}$ feet and only about the same height. The pencil-cedar occurs also in the valley of the Jádh-ganga at over 11,000 feet, and was first found there by Captain Herbert. Some logs of this valuable wood have been removed and exported by the Bhágirathi river to the plains, but in the hills it is only used for fuel or incense.

Taxus baccata, Linn.; T. mocifera, Wall., T. Wallichiana, Zucc.-Yew-Thaner, Kumaun ; lúet, Sor ; nhare, Byáns. Madden, Journ. Agri.-Hort. Soc., Cal., VII., 155 : Brandis, 537.

The yew is found at Bála Jagesar, 5,900 feet; Púya-páni, on the road to Deo Dúra, 6,500 feet ; on Thákil in Sor ; Kanol on the Nandákini ; Chúla in Chaudáns; Laduli ghát on the Nayár
(7,000 feet) and near Tungnáth, but is indigenous only on the spurs from the snowy range. It occurs with box and cypress in the Bhágirathi valley between Bhatwári and Jhola and along the head-waters of the Tons and Jumna. Griffith notes its occurrence in Bhután between 7,100 and 9,800 feet, and $8,000-9,000$ feet would seem to be the limit within which it flourishes there. On the outer ranges in Sikkim it does not descend below 9,000 feet, but on the inner ranges it is found as low as 7,000 feet, and in Basáhir Madden has not seen it below 8,000 feet. In Garhwál poor scrubby specimens ascend as high as 11,200 feet at Kedárnáth and to 11,000 feet on Tungnáth. Hoffmeister records a tree near Gangotri, 15 feet in girth, and Dr. Hooker notes one of 18 feet in girth on Tonglo in Sikkim; but the average girth is not more than 5-8 freet and height 20-30 feet. The sap-wood is whitish, but the heart-wood is heavy, close-grained, and eminently fitted for turnery, taking a very high polish. The tree is held in high veneration and the wood is burned as incense and the branches are carried about in processions in Kumaun. The people of Ladáls import yew-bark from Kashmír and use the inner part dried and prepared as tea or for mixing with tea and as a dye. The tree is there called sungcha and the bark chatuing. The leaves (birmi) are exported to the plains and are used in medicine and the berries are eaten by the poorer classes. There is little export of the timber, which would seem to be well adapted for shafts and the purposes to which its European representative is applied, if it could be procured in sufficient lengths.

## OHAPTER X.

Economic Botany-(continued).

CONTENTS.
Forest history. Grazing tax. Boundary disputes. Government forests. Kumaun forest-division. Naini Tál forest-division. Ránikhet forest-division. Garlıwál forest-division. Dehra Dún forest-division. Ganges (Bhágirathi) division. Forest at the head of the Tons and the Jumna. Jaunsár forest-diviaion. Hheea cultivation. Cinchona. Tallow-tree. Ipecacuanha. Cork-oak. Sweetchestnut. Carob. Mezquit and others. Tea.

From time immemorial, the forests along the foot of the hills to which alone any fiscal value pertained as well as those within the hills were considered the property of the ruling power and as such invariably formed a source of revenue to the State. The most simple mode of realising this revenue was that actually adopted by subjecting the products of the forests to a small proprietary due in the shape of duties payable by the exporters. The products consumed within the hills by the people themselves were, as a rule, too inconsiderable to be taken into account and where exceptionally large, as in the case of fuel for smelting ores, were included in the revenue demand. These duties on ordinary forest produce were collected at stations along the foot of the hills, whilst the duty on catechu was fixed at so much per kiln and was paid by the manufacturers. For the first three years of our rule the forest dues were leased with the transit duties on merchandise, and on the abolition of the latter source of revenue, Mr. Traill was authorised to farm out the forest dues or kéth-báns and kath maháls as they were called from their principal items kath (timber), báns (bamboos) and kath (catechu), to the zamindars of the parganahs in which they were collected. ${ }^{1}$ The revenue from this source in 1818-19 for Káli Kumaun, Chaubhainsi, Chhakháta, Kota, the Pátli Dún and Udepur amounted to Rs. 3,200 , as compared with Rs. 2,841 in the previous year. The
${ }^{1}$ From Commissioncr, 14th September, 1818. To Commissioner, 25th September, 1818 .
following table shows the collections in sonat rupees for nine years under the new system :-


In 1824, the collection of these dues was intrusted to the authorities of the Muradábád and Bareilly districts in consequence of the difficulties regarding boundaries that had occurred, but in 1826 the duty of collecting them was restored to the hill-districts. In 1828, the forest dues were leased to the farmers of the churái or grazing-tax at the same rate, as it was found that the two could not be then usefully separated.

This grazing-tax was one of the many miscellaneous items of Grazing-tax. revenue that descended to the British from former Governments. From the carliest times, the landholders in the hills were all subject to a tax on their cattle known as ghikhar which with other cesses was abolished at the first settlement. ${ }^{1}$ The practice of collecting these dues, whether for the Government or for the landholders, extended to the Bhabar and Tarai and was continued there under the name gai-chwaic but the cattle of the hill-men were exempt from this tax, which was levied chiefly on the cattle of the villages in the plains that came into the forests during the hot season. During the two or three years succeeding the conquest the number of cattle proceeding from the hills to the Bhábar and Tarai was not so great as to render any cess on them an object of interest to the Government, but the security afforded by the abolition of the old rural guard (chaukidári) system and the introduction of an efficient police led

[^133]to increased resort to the plains. It was therefore resolved in 1822 to subject all cattle sent to graze in the Bhabar and Tarai to a uniform tax of three annas for each female buffalo, two annas for each cow, and one anna for each bullock a year. The farm of this tax for the year 1822-23 was given out in three leases, aggregating Rs. 2,077 per annum. The unsettled state of the boundaries between Kumaun and Rohilkhand became a fertile source of dispute between the farmers of this tax for the hill and plains portions of the submontane tract. Many of the hill-men having made their arrangements with the Rohilkhand farmers paid the duties to them and were again called upon to pay by the hill farmers, who claimed the right to levy these dues in all places in which the chaukidári cattle dues had formerly been collected. In 1823, the cattle belonging to the Kamins, Sayánas, and Thokdárs or head-men of parganahs in the hills and to Padháns or head-men of villages in the Bhábar and those belonging to permanent residents were exempted from these dues. In 1826, the boundary between the hills and Rohilkhand was finally arranged and separate farms for the grazing dues were established. The principle on which the collections were made was that the farmer within whose jurisdiction the cattle-pens were situate was entitled to collect the tax. The dues were very rarely collected per head, the plan being to count in each goth or cattle-pen the agals or donas, that is the wooden bars to which the cattle were tied at night. The customary rate was to consider each agal as containing eight buffaloes and eight cows liable to a tax of two rupees.

To make this point in the history of the management of the
Boundary disputes. forests more clear, it will be necessary to refer to these boundary disputes. In the earlier years there were no exports of any value from the portion of the lowland tract lying below the chain of custom posts established to levy the export duty, and it was thought that no difficulty could arise in regard to the collections made there, but the unsettled state of the boundary between the Bhábar and Taraii and the conflicting claims of the landholders of the frontier villages, both of the hills and of the plains, soon led to innumerable complaints in which the district authorities on both sides found themselves partizans. The records show a voluminous correspondence on
this subject extending over several years. Early in 1819, Mr. Traill reported on the encroachments made by the zamindárs of Bilhari on the forests lying along the foot of the hills now included in the Tallades Bhábar. This tract was valuable to the hill-men as affording them pasture for their cattle during the winter months when the grass in the hills dried up and became useless for fodder. During the Gorkháli rule a joint commission had been appointed by the Nepal Government and the Nawáb of Oudh to settle these disputes, and the Saniha nála was fixed upon as the boundary between the two states. The hillmen had always occupied the jungle to the north of this boundary and were anxious to undertake the cultivation of the portions lying at the foot of the hills which had recently been taken possession of by the Bilhari landholders. ${ }^{1}$ It was agreed that an attempt should be made to settle the disputed boundary on the basis of that which existed in 1802, when Rohilkhand was ceded to the British, and that advantage should be taken of this arrangement to demarcate the whole line of boundary between Rudrpur and the Nepál frontier. The difficulty was much enhanced by the clains set up by Major Hearsey, who, in 1814, had purchased the entire taluka of Bilhari at anction for arrears of revenue and now demanded possession of a portion of the Kumaun Bhábar, on the plea that it belonged to the lowland parganah. A commission was appointed to investigate these matters, and it was at length decided that the Saniha nála had always been, and should continue to be, the boundary between the hills and the low country. ${ }^{2}$ The collection of all dues was handed over to the plains authorities, but, in 1826, was again intrusted to the Commissioner of Kumaun.
${ }^{1}$ To Board, dated 5 th February, 1819.
From Board, dated 6th February, 1819. To Collector, Bareilly, dated lat March, 1819.

From Collector, Bareilly, dated 8th March, 1819.
To Collector, Bareilly, dated 20th March, 1819.
From Collector, Bareilly, dated 26th March, 1819.
To Collector, Bareilly, dated 5th April, 1819.

From Collector, Bareilly, dated loth April, 1819.
To Collector, Bareilly, dated 5 th November, 1819.

From Collector, Bareilly, dated 18th November, 1819.
To Collector, Bareilly, dated 24th November, 1819.
From Collector, Bareilly, dated lat December, 1819.
To Collector, Bareilly, dated 16th February, 1820.
From Collector, Bareilly, dated 24th February, 1819.
${ }^{2}$ From Board, dated 27th June, 1820. To Board, dated 19th July, 1890.
From Board, dated 4th August, 1820.

The first notice ${ }^{1}$ that I have been able to discover in regard to the reservation of forests for Government use alone occurs in 1820. The whole of the forests had always been recognised as belonging to Government, and any part of them could therefore be appropriated to the exclusive use of Government without the slightest infriugement of the rights or claims of a single individual. Mr. Traill recommended the reservation of the tháplas or terrace land immediately adjoining the lower range for the timber and bambus required by Government, whilst the extensive forests below it should still remain open to private individuals. A proclamation was issucd in 1826 , prohibiting the cutting of sál within the reserves, which were at once excluded from the lease of forest produce, and thus the system of Government forests commenced. In 1828, as we have seen, the lease was fixed for four years, but in 1831-32 I find the total forest revenue amounted only to R. 4,328 , of which Rs. 2,923 were realised in Kumaun and in 1832-33 it reached Rs. 4,457 , of which Rs. 2,932 were collected in Kumaun. No attempt was made to enforce any system of conservancy and the old system of leasing out the forest dues to contractors continued. In the report on the settlement of Garhwal in $1840, \mathrm{Mr}$. Batten remarks that large portions of waste lands, including whole ranges and their vast forests, were included from olden time in the boundaries of the adjacent villages, though not in their recorded area. No change in this nominal allotment of waste was then attempted, as such a division was found useful in assigning separate tracts for pasture for the cattle of different villages; but, at the same time, the inhabitants of the villages within whose area these tracts of waste land were nominally included were prohibited from levying any grazing dues unless it had been a custom of immemorial date, and even then the burden of proof rested on those claiming the dues. A similar clause was entered in the lease given to the head-man and in the several agreements signed by the sharcholders in the village. Mr. Batten further states that his report ${ }^{2}$ should be considered, in a measure, declaratory of the principles on which the settlement was formed, and adds :-"I therefore take this opportunity of asserting that the

[^134]right of Government to all the forests and waste lands not included in the assessable area of the estates remains wholly unaffected by the inclusion of certain tracts within the boundaries of villages, and no one has a right, merely on account of such inclusion, to demand payment for the use of pasture-grounds or for the permission to cut timber and firewood. Neither does guch inclusion interfere necessarily with the right of Government to accept offers for clearance (nauábad) leases. Butas ordered in the case of the Taraii forests, so in the hills (where, too, claims to proprietary rights are rare), the inhabitants of the villages most adjacent to the tract, or having it recordod within their boundary, should have the first refusal of such leases." In lis Kumaun report Mr. Batten distinctly states that these principles apply equally to Kumaun.

In his report on the Kumaun Bhábar in 1846-47 Mr. Batten gives the revonue from the káth báns and chírái máháls as fol-lows:-

Name of patti.			Forcst dues.	Pasturage ducs.	Total.
Kota ... Chhakhát: Káli Kıuman	$\ldots$$\cdots$$\cdots$Total	$\begin{gathered} * * \\ \bullet \bullet \bullet \\ \bullet=0 \end{gathered}$	Rs.	Re.	Rs.
			4,600	3,801	8,401
			1,451	2,650	4,101
			3,705	2,522	6,227
			9,750	8,973	18,729

He states that though the injury said to be done to the reserved Government forests was somewhat exaggerated in some places, the Government rights had been suspended and in others the older trees had been removed, and recommended that steps should be taken to preserve the few patches of old sal that remained and the young. sisu plantations. In the eastern Bhábar cultivators were allowed to clear the ground and sell the timber. The restriction as to cutting sál in the tháplas or plateaus of the lower hills which was issued in 1826 had been removed, when Mr. Traill saw the farms falling in one after the other owing to the scarcity of sál in the lower sites. In the Kota and Chhakáta Bhábar the farmers were allowed to cut down and sell the sál timber which is there confined to the thaplas and does not occur also in isolated patches in the plains as it does farther east. In appendix A. will be found a list of rates according to which farmers of the forest dues in Kumaun were
authorised to collect from the exporters in 1847, and we shall now proceed to describe the forests as they now exist.

The sub-Himálayan forests of the Kumaun and Garhwál districts extend from the Ganges to the Sárda, covering the lower spurs and ridges of the Himálaya and rumning down some distance into the Bhábar. The Tarái forests contain a little sál, of inferior growth, barely sufficient for the requirements of the cultivators, and are not included in the tracts under the Forest Department. With the exception of a portion of the Chíudui Chauk which belongs to the Tarái, almost all the isliunds in the Sárda below Kumaun have been given to Nepál. A cart-road roming along the foot of the hills from the Ganges to the Sarda generally forms the southern boundary of the forests in Garhwal, but further east several blocks reserved for Goverıment purposes lie to the south of the road and are includcd in the existing reserved forest arca. The western Rámganga and its tributaries, the Barsoti and Kotirao, form the boundary between the two great forest-divisions of Kumiun and Garhwíl, whilst the outer Himálaya give a well-defined boundary on the north. Except the Kumaun Iron Company's grant and a number of villages, all of whose rights have been recorded and for whom blocks of forest have been left open, the entire area described forms onc vast State forest in onocompact block perfectly marked out either by natural or artificial boundaries. Within these limits no private rights exist which can prove injurious to the best sal forests, and cattle-grazing is prohibited in all portions which aro free of villager rights, except where it is entirely harmless. The most valuable timber is sál, which grows with great vigour in many parts and covers about one-fourth of the forest area. Tưn (Cedrela Toona) and sissoo (Dalbergia Sissu) are plentiful in the low, moist valleys and flats, whilst other jungle. trees, especially the Terminalias, Lagerstroemins, Acacias, various species of Anogeissus, Adina, and Ougeinia, are found mixed with sal evorywhere, even when the last predominates. Anongst the minor forest produce the bambu takes the first rank, and next the matting and cordage materials and indigenous drugs, tans and dyes.

Weshall now proceed to give a short account of the existing forestdivisions and their origin. The contract arrangements for felling continued in Kumaun until the yeur 1858 , and as a con sequence no
system of conservancy could be introduced. The forests of the Kumaun forcst-division. present Kumaun forest-division ${ }^{1}$ were demuded of good trees in all easily accessible places, and were it not that nature has happily made the sall, sisu, khair, and dhauri largely reproductive, the new Forest Department would have had little to conserve. Between 1855 and 1857 , the demands of the railway authorities induced numerous speculators to enter into contracts for sleepers, and in order to secure a certnin favourite area for themselves, these men were allowed, unchecked, to cut down acres of old trees very far in excess of what they could possibly export, so that for some years after the regular forest operations commenced the attention of the department was chiefly directed to cutting up and bringing to the depot the dead timber left belind by the contractors. ${ }^{2}$ Major (now General) Ramsay was the first Conservator. He abolished the contract system in 1858 and gradually introduced a better arrangement, by which the cultivation of patches of land in the forests proper was discouraged and the cultivators were induced to take up lands chiefly south of the cross-road from Hardwár to Barmdeo, loaving the valuable forest land to the north untouched. This the first attempt at real conservancy would, probubly, have succeeded better had not the management of the forests been taken from the Commissioner of Kumann in 1868, for arrangements of this kind take much time and trouble to claborate. In his report for the year 1867 the Commissioner writes:-"As yet cattle have not in all cases been excluded from the tracts recently made over to the ForestDepartment, because some time mast be allowed to the villagers to make other arrangements. A great many cattle-sheds have been removed from the vicinity of the sal forests of the outer range between Haldwáni and the Sírda river and the cross-road has been declared the boundary nearly the whole way." In his report for 1868 the Commissioner writes:-"In another year or two I hope that all the Kumaun valuable sall forests will be as free from cattle as those of Garhwál." Unfortunately this is hardly true even at the present day. The same officer introduced the system of having

[^135]all trees marked by responsible officers before permission was given for felling and commenced arrangements for protecting the reserved forests from fire. Operations, however, appear to have been conducted on too large a scale or were too irkso me to the squatters, for, though successful for a time, the occurrence of an unusually dry season led to great loss by fires. But, on the whole, the administratration of the forests was a marked success. From the table given in the appendix the receipts and expenditure for the years 1859-60 to 1867-68 show an excess of receipts over charges amounting to considerably over fifteen lakhs of rupees. ${ }^{3}$ The forests not only gave a better return but were conserved for the first time, and arrangements were made for the better protection of the young plantations and planting out the denuded tracts.

Major Pcarson took clarge of the Kumaun forest-division in 1868, but made little change in the working arrangements. In 1877 the reserved forests in the Kumaun Bhábar were formally demarcated, ${ }^{2}$ and it will be convenient to adhere to the arrangements then sauctioned in the following brief description of each block :-

Block 1 comprises the Chilkiya forest, which is one of the largest and most valuable, having an area of about 126 square miles and containing much fine sal timbcr. The more accessible forests in this block were worked by contractors before 1858 , and the remainder have furnished the chief part of the timber brought to market since that year. The entire block has been worked, but there are still numbers of mature trees that have been reserved for shade and shedding seed and which may be cut down when the young stock hive been established. Fire conservancy has also been successfully enforced for somo years and the young trees bid fair to produce good timber.

Block 2, comprising the Garhi Bálchand forest, has an area of 17 square miles, all of which have been demarcated, and of this about 11 square miles have been enclosed with fence and ditch and are protected from fire. The forest is chiefly sál, but the soil does not seem suited to produce large sound trees, and its fittest use

[^136]will be to supply saplings, which can be carted from the spot and will find a ready market in the plains.

Block 3 comprises the western Kota forest, which has an area of about 55 square miles and contains much valuable sál forest. Gerreral Ramsay writes:-"There is no part of Krmann where sál thrives so well as in the Kota Dún, west of the Dhabka river." The Kota forests have been worked like block No. 1 and have supplied much timber to the market during the last twenty years. Fire conservancy has been introduced since 1877 .

Block 4, comprising the forests below the ClhakLiáta parganah, has an area of about 103.5 square miles and consists of sicl on the tháplces or plateaus and some very fine haldu below. The western portion between the Bhakra and the Gaula streams has been worked for many years by the Nawáb of Rámpur, ${ }^{1}$ and the oastorn portion from the Gaula to Chorgaliya by contractors and for canal-works and building purposes in Haldwáni. The only large tract remaining unworked in this block is the Nandhaur valley.

Block 5 is known as the Horai forest. It has an area of 14 square miles and lies below the hills. It contains some valuable sál forest, of which the eastern half has been enclosed with fence and ditch.

Block 6, or the Káli Kumaun forest, has an area of about 230.5 square miles and consists entirely of hill-forest, of which the lower slopes and more easily accessible parts lave been worked out by contractors. Still there is a larger area of unworked sál forest here than in any other block of the Kumaun Bhábar.

Block 7, or the Dhy'ninao forest, has an area of 68 square miles, of which about onc-third is sal forest and the remainder is chiefly khair and mixed jungle and open plains, on which immense numbers of cattle graze.

Block 8, known as the Chela forest, has an area of about seven square miles, of which about a quarter is sál forest and the remainder is chicfly haldu and bambu.

Block 9 comprises the Barmdeo forest, which has an area of 7.3 square miles and lies at the foot of the hills near the Sárda

[^137]river. It contains some promising young sál forests, besides khair, sisu, and bambus.

Block 10, known as the Sárda forest, comprises a number of islands in the Sarda which are covered with sisu and khair forest and have an area of about eight square miles.

Block 11 comprises a small patch of sál forest on the Sárda about three miles above Banbasa measuring 320 acres, recently transferred to the Imperial Forest Department, which has charge of all these demarcated forest blocks, and the remainder of the forest area is managed by the Commissioner of Kumaun. As a rule, the good sál forests consist chiefly of sál, but there are also patches of tún, hhair, sisu, sándan, gosam, sain, haldu, dhauri, bákli, and bambus, all of which are rising in value every year. The cart-road from Barmdeo to the Ganges is comnected with cross-roads to the different blocks and temporary roads are made when necessary.

In the young forests the trees differ materially in different localities. In some places where the soil is suitable and other circumstances have favoured the growth of the young trees, they are exceedingly fine and show straight stems, clean barks, and fine heads. In other places where the soil is poor, but more especially where the numerous cattle stations formerly existed, and where in consequence the young trees suffered continually from being lopped, barked, and otherwise injured; and where they were more exposed to repeated fires, the trees are knotted, crooked, and with poor heads. The best forests in the eastern tract are perhaps those above Barmdeo, near the junction of the Ladhiya with the Sárda, where, owing to the favourable nature of the soil, the sal has developed to a remarkable degree and, owing to the difficulty of carriage, the trecs have been left uninjured by speculators and contractors. Next in importance come those to the west and north of Chorgaliya and those on the flats and platenus above the Jaghura and Kulauniya strcams, and next the sál forests in the valleys of the Nandhaur and Saráragadh streams. The geological formation in the last tract is sandstone and massive boulders. Further west there are still valuable forests between the Kosi and the Rímganga, and there can be little doubt that in the coursc of time the forests under a careful system of conservancy will reuew their
pristine vigour and well repay the care and money expended upon them.

The only important private forest is that belonging to the Kumaun Iron Company, whose grant extends from the Manár Gadhera, about one mile Iron Company's forests. west of the Dhabka, as far as the Bhakra river, about half way between Kílidhúngi and Haldwáni. The grant is bounded on the north by the Himálaya and on the south towards the Bhabar by a line of pillars, and the area is about 350 square miles. The collections from this tract for timber and minor forest produce from 1861 to 1881 have amounted to more than two lakhs of rupees, and it now constitutes one of the most valuable forests in Kumaun. It is difficult to say what portion of their rights Government resolved to grant to the company, for the deed was never executed, but from the draft it would appear that only fuel-rights were intended, and certainly none other is expressed. The subject of these forests and the company's claim to them being now under the consideration of Goverument, it will not be necessary to allude to them any further. ${ }^{1}$

The climate in some parts of the tract below the Kumaun hills is Climate, \&rc. fair from November to Junc, but in other parts it is very fatal in November and after April. During the cold-weather the Bhabbar forests present a busy scene. They are then filled with wood and bambu cutters, labourers hauling out timber, men and women collecting lálar grass, making mats and baskets, gathering roots, leaves and plants used in medicine or the arts, or herding cattle. After April all, except those who have bccome acclimatised, leave the forests, and during the rains they remain practically closed. Ordinarily every hill stream becomes then a raging torrent often impossible to cross for several days. Elephants and tigers, though now less numerous than in former times, return to the haunts from which they had been driven during the hot weather : the prairies become a sea of grass and the undergrowth in the thick jungle presents an obstacle to moving about most difficult to surmount. To the unacclimatised these forests are deadly during the rains, and few survive the malarious fever that a night's residence within them then frequently gives rise to. There is no doubt, however, that the clearances effected ${ }^{1}$ See for a sketch of the Company's history:
loy the Bhábar cultivators have done much towards ameliorating the climate, for places where man could not formerly exist are now the centre of flourishing colonies, the inhabitants of which remain all the year round in their villages.

The forests in aud around the settlement of Naini Tál were Naini Tál forest-division. demareated in 1865 and now form the Naini Tal forest-division. ${ }^{2}$ Previous to 1845 , all the trees in the neighbourhood were considered to belong to the villages within whose boundaries they were situate, and those within the valley were alone protected. Some years later, the Commissioner took over the forests in the meighbourhood of the settlement and allowed no timber to be fellod without his permission. A small establishment was entertained to patrol the forests and a royalty was levied on each tree felled to meet the expense. In 1865, the forests were taken over by Government, and havo since then been managed chiefly with a view to supply the local wants of Naini Tál. Chir of a good quality for building purposes is abundant and the various specios of oak and the rhododendron afford materials for charcoal. In 1879, these forests were gazetted as 'protected,' and now comprise about 38 squaure miles. Deodár plantations have been made with marked success along the slopes of Luriya kínta, and bánj and tilonj and klearsu oaks, also walnuts, horse-chestnuts, and ash have been extensively sown and planted. An attempt to reproduce the cypress was thought to have failed, but the seeds have germinated after romaining a long time in the ground.

The Ránikhet forest-division is, like the preceding, intended to control and provide for the local supply of timber and fuel to the Rínikhet settlement. The Imperial Forest Department deputed an officer to take charge of the forests around the intended military station in 1867, but it was not until 1873 that the forest boundarics were finally settled and operations regularly commenced. The tracts now conserved ${ }^{2}$ are fifteen in number, of which one having an area of about seven square miles is closed and surrounded by a ring fence of thorn and is 'reserved' and clear of all private rights. It contains pinc, oak,

[^138]rhododendran, and other woods of minor value. The other forests which are 'protected' and cover an area of about 59 square miles are situated at distances varying from one to 24 miles from Ránikhet, and are held conjointly by Government and the inhabitants of the villages within whose area they occur. The latter have a right to graze their cattle and cut wood for fuel or for building or agricultural purposes, but no power to cut for sale to any one. But the great feature of this division is the nursery which, though commenced only in 1871, has done much good in distributing ${ }^{1}$ fruit and timber trees all over the province and in conducting acclimatisation experiments.

In Garhwál, as in Kumaun, the contract system remained in Garhwálforest-diviforce and, in 1839 , we find the right of collectsion. ing the forest and pasturage dues of tho Patti Dún leased to one Padam Singh for twenty years at a fixed annual rental of Rs. 2,750 , of which Rs. 1,649 were on account of the káth-bans section. The forests hero are amongst the most valuable both for timber and bambus that exist along the whole line of hills between the Jumna and the Sárda, and the loss that must accrue should this arrangement continue was brought to the notice of Government in 1853. The result of the correspondence that then took place was that Padam Singh's rights were purchased for Rs. 15,000, and the forests were taken under direct management and transferred from the Bijnor district ${ }^{3}$ to Garhwál, whilst the collection of the dues from the Khoh river westward still remained with the plains authorities. Posts were established at the outlets of the Kotri and Pátli Dúns for the collection of dues from exporters, and the surplus revenue was devoted to opening up roads and improving the forests. In 1854, Captain Reid took over the management and remained in charge until 1858. Captain Reid attempted little in the way of conservancy, but commenced folling operations on a large scale and erected a saw-mill that could not be worked owing to a

[^139]defect in the slope of the canal that was to afford the motive power. The mutiny then intervened, and in 1858 the forests came under Major Rimsay, who introduced the system of conservancy that we have noticed in the account of the Kumaun forest-division. His administration was marked by the control of felling operations, the removal of squatters from the valuable forest tracts to available land fit for cultivation below the forest boundaries, the construction of roads and the establishment of stations for the collection of revenue at convenient intervals. In 1861-62, cultivation in the Pátli Dún was put a stop to by assigning lands to the people in the Bhábar, and the cattle-stations were broken up and removed from the reserved forests. This operation occupied three years, from 1862 to 1865 , the cattle stations being removed from all the Garhwál forests, and in Kumaun from all the forests above the main line of road. In the meanwhile excellent roads were opened out, and the forcsts, especially those of Garhwál, were made accessible from all sides: at the same time a regular system was instituted of working only certain forests, the remaining ones being kept rigidly shut up, and the sclection and marking of all trees previous to felling was insisted on. The felled timber left by the old contractors and Captain Reid was exported and sold and the machinery of the saw-mill was transferred to Rárki. Colonel Baugh acted as Conservator under Major Ramsay and an establishment was entertained to prevent the felling of timber without license, to protect the forests from fire, to cut down creepers and to mark trees for felling. The management of the forests was transferred to the Imperial Forest Department in 1868, and, in 1879, the whole forest-division of Garhwál from the Rámganga to the Ganges was divided ${ }^{1}$ into five blocks, an arrangement that wo shall observe in the following brief description :-

Block 1 comprises thé Pátli Dún forest with an area of 237.5 square miles. It is bounded on the cast by the Kumaun boundary and on the west by the Paláin river to its junction with the Ramganga, and thence down by the Rámganga to the Bijnor district.

Block 2 comprises the forests of the Kotri Dún with an area of about 180 square miles, and is bounded on the cast by the Patli

[^140]Dún forests and on the west by the Khoh river to the Kotdwára mart, thence by Jamangarh and the Lálpáni ridge to the Saneh depôt on the Ganges road.

Block 3, known as the Saneh forest, has an area of 17 square miles and lies between the Khoh river on the east and the Málin river on the west as far as the Chaukighata mart.

Block 4, known as the Láldháng forest, has an area of 365 square miles' and lies between the Málin on the east and the Rawásan river on the west.

Block 5, comprising the tract between the Rawásan and the Ganges known as the Khira forest, has an area of 88 square miles.

Block 6, known as the Kartiya forest, has an area of about 800 acres. It consists chiefly of sál and is situate on the left bank of the Mandhál stream.

The northera boundary of all these blocks lies between the cultivated area of the hill villages and the forests proper, and the southern boundary is found in the road between Kotirao on the east and the Ganges on the west.

The Pátli Dún forests occupy the valleys of the Rámganga and

## Pátli Dún forests.

 its affluents and the ridges which run between their watersheds. The geological formation of this tract consists of alluvial deposits and drift in the valleys and plateaus, and massive grey sandstone interspersed with blue shale on the ridges. The whole Dán has been a noble forest of sal, the lower and more accessible portions of which have been worked out, but in which enormous tracts of virgin forest still remain, from which under judicious treatment inexhaustible stores of timber may be drawn. Excellent roads were constructed though the principal valleys by Major Ramsay, and these have been kept up by his successors. The forests of this tract may be conveniently divided into those (1) of the Paláin or Taimúriya; (2) those of the Mandhál; and (3) those of the Rámganga, south Pátli Dún and Sona river.(1) The whole basin of the Taimuriya and its affluent.s contains a noble sal forest. This tract was considerably thinned out many ycars ago for wood for the gun-carriage agency, but not to a too great extent, as the result has been satisfactory in the
improvement of the growth of second-class trees as compared with the condition of the same class of trees in those portions of the forest which have nover been overworked. Throughout this tract since conservation hats been enforced the growth of sal saplings gives hope of an mulimited supply of this valuable timber. This growth is fostered by the ground becoming thickly clothed everywhere with bambus, by which the moisture is retained in the soil and the increase of other grasses is prevented, and thus the risk of fires is materially diminished.
(2) The forests of the Mandhál owing to their remote position have never been much worked. There are here in consequence to be found a large number of first-class sál trees as woll as an abundance of trees of every age and size. The good forests may be said to extend over about fifteen miles in length through all the lower portions of the valley below Jarat, on the slopes and plateaus facing the north and on the opposite bank of the Mandhál over the last five miles. Ore the plateaus above the river the sal has attained a very large size and finc tún trees exist in the valley which seems particularly well adapted to their growth.
(3). The forests of the valley of the Rámganga, the south Pátli Dún and the Sona are all situated on the hills sloping down to the Ramganga and its affluents, the Sona and Gaujhera nala on the right bank and the Maira Sot, Patharpáni and Dharau streams on the left bank. These forests were 'felled even to desolation' years ago and many parts of them have been permanently injured. No attempts at reproduction were made, and the land where fine sál forest once stood is now too denuded by exposure to admit of efforts in this direction proving successful. There are, however, some good young plantations springing up and some mature trees, as already noticed, exist in the Mandhál valley. The exceptions are places where the old trees have been completely cut away, and here, there being no natural shade or sced-sowing, the dense grass effectually prevents all artificially sown seeds from germinating, and though measures have been taken from time to time to reproduce the forest, they have met with only very partial success. There is still, however, some sál in the highlands, some sisu along the rivers and tán in the valleys, and a fair amount of khair and good grass in the open level ground. Below the Siwáliks there are great
bambu forests on the level flats that afford a considerable revenue. The great question of fire couservancy has always engaged the attention of the establishment, and up to 1879 no great injury had been done for several years. In 1879, however, the cholerastricken pilgrims returning from the Hardwár fair spread fires in every direction, and considerable damage to the young plantations resulted. Roads have been opened to all the principal blocks in connection with the road from Kotirao to the Ganges that forms the southern boundary of the division.

The forests of the Kotri Dún lie between the Pátli Dún on the
Kotri Dún. east and the Khoh river on the west. The formation of the soil is sandstone and drift and there is little water and few good forests. Tho trees are almost entirely sál differing in value in different places according to the soil and other natural circumstances. Few tracts in this forest have not been worked more or less, but there still remains some good timber on the more inaccessible ridges. Since this forest has been rigidly protected the young trees have made considerable progross, and the keeping out of cattle and fires will in a few years do much to restore them to their original condition.

Blocks 3 and 4 lie between the Rawásan and the Khoh rivers,

## Blocks 3 and 4.

 a distance of about sixteen miles. The soil is a dry sandy loam with outcrops of gravel and blue clayey slate in the hills. The entire tract appears to have been extensively cultivated in former times, but there is a great want of water through all the lower forests. There are here three large sál patches. The first along the Rawásan has been extensively worked and little valuable timber remains; the second along the Chaukigháta stream contains some mature sál trees and in the valleys tưn; and the third is a young sál forest in the south-cast corner of the division, about three square miles in extent. Bahera, sain, and haldu are also found on the lower plains along the southern boundary, but bambus, which grow luxuriantly everywhere, form the main article of export from both blocks.The early history of the forests of Dehra Dún has much in comDelura Dún foreste. mon with that of the eastern forests in Kumaun and Garhwál. Both the Garhwal

Rajas and the Gorkháli Government derived a considerable revenuc from the various items of forest produce grown in the Dún and adjacent hills. This was usually levied as a transit duty and was collected with the export and import duties on every article of commerce cutering or leaving the Dún. The aggregate amount of these duties in 1809-10 was Rs. 16,000, and in the following year was Rs. 15,200 , of which over one-third was absorbed in paying the collecting establishment. The transit duties wore abolished at the conquest, and with them the duty on the export of forest produce, which, though a legitimate source of income, was lostsight of until Mr. Moore took it under his management in 1819. For three years the duties on exports yiclded a revenue averaging Rs. 4,000 per annum, and in 1822 were leased to one Surjan Negi for four years at Rs. 5,000 a year. In 1825, Mr. Shore gave new leases for five years to various persons for all the collecting stations, cxcept that at the Kheri pass, at an aggregate demand of Rs. 8,500. In making these arrangements it was distinctly laid down that these dues were not to be regarded as transit duties, but as rent for the use of the forests and as a royalty on their products, and on this principle all subscquent settlements were made. ${ }^{1}$ Curious to say, Mr . Shore ${ }^{y}$ was averse to preserving sál and devoted all his attention to the propagation of sisu, going so far as to import seed for this purpose from Fatehgarb. It does not appear that any attempt was ever made to conserve the forests on any system or to control felling operations, and in 1829 the revenue had fallen off so much that balances amounting to Rs. 6,000 had to be written off on account of the leases granted in 1825. Major Young then took charge of the forests and offered the right of levying the forest duties to public competition by auction. The experiment was fully justified by the results, giving a revenue of Rs. 6,425 for the gháts on the Jumna and Ganges and of Rs. 9,595 for the passes to the plains, or a total of Rs. 16,020 . The duties were farmed at these rates for the years 1830-31 to 1832-33, when another auction sale gave an income for three years longer of Rs. 25,345 a year. From 1839 to 1844 the farm was leased to Atmagír, a Mahant of Hardwár, for Rs. 35, 000 a year, and at the conclusion of his lease the forests were taken

[^141] A.2. will be found a list of the 1 ates nuthorised for collection by Mr. Share.
under direct management by Mr. Vansittart and so remained until 1855 , when a forestestablishment was formed. A súl $\log$ which would then fetch at Meernt between forty and fifty rupees and could be carried on a four-bullock cart paid an export duty of only eight annas. Five of these carts could carry out one hundred maunds of good lime worth over Rs. 100 , the duty on which was only twenty annas. A four-bullock cart of catcchu sold for Rs. 200 in the plains, and a similar load of bambus (about 400) was worth eighteen rupees. It can therefore be readily understood how eager speculators were to enter into this profitable business, especially as no control whatever was exercised over their operations either as to the quantity of timber cut down or the localities to be worked. Mr. Williams writes:-" Every one continued to hack and hew away at the trees as he pleased, only paying certain dues to the farmer in the event of the wood being exported. The latter made his own arrangements to secure the collections at the different passes. Reckless wastc was inevitable and the fine sál forests began to disappear rapidly. The absence of conservancy was absolute. The district still abounded in fine trees from one hundred to two hundred years old and upwards. All these fell before the axe, and probably the rest would have gone with them had the roads been a little better. The consequences of this bad system are most perceptible in the western Lún ;" whilst in the eastern Dán large numbers of klacir trees were cut down to burn lime for the Rúrki workshops and the camal head at Mayapur.

With the introduction of a regular forest establishment in 1855 the revenue rose enormously, but unfortunately even then no system of conservancy was attempted. The mutiny intervened and in 1860 the revenue began to fall, and in 1867-78 reached the low figure of Rs. 23,332. In 1864, regular forest operations commenced under Mr. F. Williams, C.S.I., Commissioner of the Meerut division, within which the Dehra district is situate. His juriscliction extended over the whole of the Dán forests, the Siwaliks and a portion of the Saharanpur district, besides certain forests of the outer range leased from the Rija of Tirhi. The story of the sub-Siwálik forests in the Saháranpur district has been noticed in the Memoir of of that district. No attempt of any kind was made to preserve the forests there; on the other hand efforts were directed to induce
squatters to take up the land and clear it for agricultural purposes, and grants of so-called waste land were made to any one that could be prevailed on to accept them. Up to 1839 the forests were left entirely in the hands of the Rajpút zamindars within whose boundaries they were nominally included, but in that year some 142,420 acres were demarcated as forest under the names Kheri, Kánsrao, and Pathari Nadi. Within these boundaries the grants were made and the tracts unlet were handed over to the new Forest Department in 1864. Mr. Williams devoted his attention to a survey of the forests, to making roads and securing and defining the rights of Government and individuals. This was no easy task owing to the neglect of former years which permitted the growth of prescriptive rights by lapse of time. It was not until 1877 that the forests were properly demarcated, ${ }^{1}$ and we shall follow the arrangements then made in our brief description of the existing forest sub-divisions.

Block 1, called the Siwatik range, is bounded on the west by the Existing forest-di- Jumna and on all other sides by a forest line visions. marked by pillars. It has an area of $449 \cdot 12$ square miles and contains sál, sain, and chir. The two former are the prevailing trees, but are all young, and the last occurs along the slopes of the hills and on the higher peaks. There is a considerable export of bambus and the range affords pasturage for numerous herds of cattle. Block 2, known as Majhera, lies in the Rúrki parganah and consists of islands in the Ganges well stocked with sisu and khair. The area is only 6.74 square miles. In the western Dún we have block 3, known as Rámpur Mandi on the Jumna, devoid of trees and only yielding a revenue from grazing dues and grass. It has an area of only 1.54 square miles. East of this comes block 4, comprising the sál forest of Ambári and having an area of 6.4 square miles. The sall here is immature and is mixed with sain, bákli, and inferior forest trees.

Block 5, or Clíndpur, has an area of $3 \cdot 38$ square miles and contains sál mixed with a few tún, sain, and bákli trecs.

[^142]Block 6, or Dholkot, has an area of $7.9 t$ square miles and consists of sál with an admixture of sain, dhaura, and a few tún trees, but none are mature.

Block 7 comprises the sál forest of Thino in the eastern Dún and has an area of 9.96 square miles. There are no mature trees, but there is a very promising crop of sal interspersed with bákli, haldu, semla, sisu, and khair. Bahawaila and Tháno have been closed since 1877.

Block 8, or Nágsidh, has an area of $25 \cdot 38$ square miles consisting of sál, sain, bíkli, and haldu.

Block 9, or Tirsill, is sitnate near Riklikes and hats an area of $28 \cdot 22$ square miles. All the mature trees have disappeared and only young sál remains, intermixed with cháman, haldu, sain, jáman, and lihair.

Block 12, or Saora Saroli, comprises a small patch of semlá, búkli and dháman near Raipur, with au area of only 1.82 square miles.

Block 13, or the Song forest, consists mainly of khair trees and grass.

Block 14 comprises the Patri or Pathari forests in pargana Jawálapur of the Saháranpur district and contains mainly dhúk and grass appropriated for the use of the Rurki workshops. Attempts are, however, being made to introduce timber trees, with what succcss is not yet apparent.

The Bhágirathi or as it is now called the Ganges division comGanges (Bhágira- prises the forests on either bank of the river thi) division. of that mame in the Raja of Tihri's territories. These were leased by Mr. Wilson from the Raja of Tihri in 1859, and in 1864 the lease was trausferred to Government for twenty years. About one-third of the drainage area of the Bhígirathi and its feeders is covered with forest and cultivation, of which the forest occupies about onc-tenth, or on a rough estimate 600 square miles. ${ }^{1}$ From the village of Jhala, close to the point where the Bhágirathi cut its way throngh the snowy range, to Gangotri, the valley lies nearly due cast and west for a length of about seventeen miles and is filled with deodur. For a few miles above Gangotri deodár is

[^143]also found, bat stunted and of little value. The excelsa pine also extends eight miles up the valley above Gangotri, and the birch is found in patches to within half a mile of the glacier. The forest on both sides of the river is divided into blocks, each of which has been roughly surveyed, giving some 12,500 acres of deodár and a fair average of second class, third class and fourth class trees. Before taking over the forests they had been much neglected and injured. "The ravages committed by the cultivators in the westorn portion of the valley, where thousands of dead trees, all killed loy fire, disfigured the hill-side in every direction, were only equalled by the destruction committed by avalanches higher up the valley." The former practice has been stopped, but the latter influence continues, and the damage wrought by the cyclone of 1880 will be visible for many years to come.

Great forests of Quercus dilatata occupy the ridges between Masúri and the Bhágirathi, and noble forests of chir extend from Sainsa, some twenty miles above Tihri, as far as Bhatwári, a distance of about fifty-five miles along the valley. The latter tree clothes the momitains on both sides of the river and its affluents up to $3-5,000$ above their beds, filling every ravine and occupying every plateau. Above Blatwíri the forests of box, yew, and cypress commence and cover the hills on both sides of the river as far as Shala, a distance of about thirty miles, and from Jhala to Gangotri, as we have seen, the deodir is the principal forest tree. On the right bank of the river above Jhala, where it has a southern aspect, the forest is nearly pure deodar , but on the left bank, with a northern aspect, there is a large admixture of silver-fir, spruce, and birch. $\mathrm{U}_{\mathrm{p}}$ to Daráli the deodár extends to about a thousand feet above the river's banks, but further north it rises to fully two thousand feet, where it meets the vast forests of spruce and silver-fir already mentioned. The valley of the Jádli-ganga is also full of deodár, and towards its head the valuable pencil-cedar occurs in appreciable quantities. As a rule the growth of the deodár, except in very favourable localitios, is much slower here than in the comparatively warmer valleys of Jaunsarr. From an examination of the stumps of many trees it was found that a diameter of 16 inches was attained in 64 years, of 24 inches in 105 years, and of 30 inches in 230 years; the nearer the northern limit, the slower the
growth. To recapitulate, the forests in the lower parts consist chiefly of pine. Higher up we have the yew, box, birch, three species of oak, two of juniper, cypress, silver-fir, spruce, deodár, and excelsa pine, and in small quantities the sycamore, horse-chestnut, and walnut. Only those useful timbers found in the more accessible valleys bordering on the Ganges below Deoprayág and betwoen the Hiunalgadh and the Dún have hitherto been exported, and the revenue collected has chiefly been from deodar sleepers and small logs for building purposes and bambus.

The lease from the Raja of Tihri includes the forests in the remaining portion of his territories about the heads of the Tons and Jumna rivers. ${ }^{1}$ These lie to the south and west of the Bhágirathi

Forests at the head of the Jumna and 'Tons. sub-division and may be noticed in order the remains of a considerable forest of deodár above Bárahát near Salda and Uparikot in the Bhágirathi valley, and above it a splendid strip of moru oak ( $Q$. dilatata). Crossing the water-parting into the Jumaa valley, there is a small deoddr forest above Shalna and small patches of the same tree about the Bonk and Nágtiba peaks, whence there is water carriage by the Jumnir to the Dún. Crossing the Jumua to the Kedár-kánta ridge which separates the Jumna from the Tons, there are the remains of what was once a very fine deorlar forest in the valley of the Banall, a tributary of the Jumna that joins it just above Barkot. There are also small patches of deodár in the Rámasera valley to the south of the Banal, but of no great value. The chief glory of the Jumna is, however, the immense fo ests of the long-leaved pine (chir ) that line its banks and in which there are numbers of magnificent trees fit for any purpose. Unfortwately, sleepers of pine are not esteemed by railway contractors, being liable to dry-rot and requiring frequent renewal, and no means for effectually preserving them have yet been discovered. The left bank of the Tons is also covered with immense forests of chir. On the upper part of this river near Datmer, the chil ( $P$.excelsa) takes the place of the chir (P. longifolia). When the range that separates the Tons from the Pabar is crossed, we come again into a tract of which the characteristic forest tree is deodár. The deodór commences on the north of the Tons ncar Gangor, and is scattered all

$$
\text { 1 Sel. Kec., N.-W. P., III. (2nd Ser.,) } 129 .
$$

over the ridge that separates the Tons proper from the Panch-ganga river which joins the Tons opposite Shankuri. The hills here are rocky and precipitous, and the deodír is chicfly confined to the small ravines and streams that run down from them to the river. The more important forest lies between Gangor and Datmer and on the further side of the ridge above Lyor and opposite Kahsol and Raksha.

Following the course of the Tons southwards, we find a considerable amount of deodar on the spur that comes down to the river a little above the village of Koarbo, also in the valley of the stream next to it on the west. The Rupin joins the Tons on its right lank at Naintwári, and on both its own banks and on those of its feeders are large and valuable forests, the lower part of which consists of deodár and the upper part of excelsa pine and silver fir. The valley of the next tributary of the Tons on its right bank also contains a very large proportion of deodár forest interspersed in places with silver fir, spruce, and oak. If we take the country from the junction of the Rupin and the Tons as far as the junction of the Tons and the Pábar, some of the finest cleodar forests in the hills may be met with; and here the Forest Department found a valuable addition to their resources for meeting the demands for sleepers. In 1869, the forests of the upper Tons were estimated to contain 50,000 deodár trees fit for felling and to be able to supply a lakh of sleepers per annum, but no such great demand has yet been made on their resources. It is the Jaunsár-Báwar and Bhágirathi divisions that have had to provide the largest number of sleepers in recent years. In the year 1879, the forests on the upper Tons with those in khats Deogarh and Báwar of Jaunsír-Báwar were formed into a new division known as the Tons division.

The forests of the Jaunsár division now comprise the whole of Jaunsár-Báwar except khats Deogarh and Báwar to the north of the Dharmigádh and Banál, Shalna and Jaunpur in Tihri. They

[^144] had little or no practical value in the earlier days of British rule, owing to their distance from the plains. With the denudation of the Dún, however, their real value became known, and some rough attempts at management were undertaken. Up to the year 1868, the Commissioner of the Meerut division was ex officio Conservator of the Jaunsár-Báwar forests, and when the latter came into the hands of the Forest

Department, everything connected with conservancy had to be taken in hand. Here, as in the eastern hills, the people, though nominally in possession of immense tracts of forest land, were never considered proprietors, but occupiers entitled to the usufruct and whose rights were sufficient to prevent people from other khats-as the local subdivisions of the district are here called-from entering upon or using the nominal waste in their possession. They could pasture their cattle in every part of this nominal area aud cut down trees for fuel or for building or other agricultural purposes, but could not alienate these rights to others. The Dún forests were being worked out whilst the demand for sleepers for the railways was increasing every year, so that it became necessary for the authorities to examine closely their timber resources, so as to meet the wants of both the Government and privato persons, present and prospective. It had been shown that permission to graze cattle in a forest was absolutcly incompatible with forest conservancy. Provision had also to be made for stopping the destructive fires that, hitherto, regularly swept away every year the young trees that a suitable soil and climate had raised to fill up tho graps catsed by felling. The people were accustomed to obtain carly grass in the hot weather by setting on fire the old grass, provided rain fell at the right time. This is the chief reason given for their adherence to this practice, but it has been shown that the rank crop of glass that occurs after firing is much coarser and less motritious than if mature had been allowed to deal with the reproduction of the plant in its own way. Each one, too, imagined that he had a preseriptive right to hack and hew when and where he desired. The weak establishment hitherto kept up was insufficient to control the felling of timber, and it was not uncommon for a Jaunsári, who wanted one tree to repair his homestead, to cut down eight or ten and sell the surplus. To remedy these evils, the forests had to be demarcated, then grazing and the felling of timber in unauthorised places had to be restricted, and, again, fire conservancy had to be introduced. To prevent unlawful felling in the demarcated tracts an officer was usually deputed to inspect the work before a pass was given to fell trees. The people objected to this, as it gave them trouble, caused delay, and cut off one source of their irregular gains; so that in a short time a great cry was raised against the demarcation of the waste lands as

Government property. As already noticed, at the former settlement, the right of each khat in the lands within its own boundary was declared absolute as against all other khats; the use of the wood and jungle prolucts was allowed to them, but it was held that they had no right as against Govermment-i.e., Govermment could at any time step in and appropriate any portion required for its own use or for settlement with others, so long as sufficient lands were left lor grazing purposes to each village. Since that time circmmstances have greatly changed and almost every considerable tract containing forest useful for timber or fuel has been appropriated and marked off as first or second class forest. A large area has been taken possession of at Chakráta, sufficient for all the requirements, present and prospective, of the cantomment there. What remains is good for grazing or for grass and jungle produce or possibly for some extension of cultivation. It is good for little clse, and there is no prospect of its being turned to any other account. There is probably no portion of this land that can be used cither for tea cultivation or for any kind of plantation, Under these circumstances the question arose whether the restriction as to proprietary right being acknowledged in anything more than the cultivated and occupied spols should be maintained. Sir W. Muir resolved ${ }^{1}$ that only such waste lands in excess of the requirements of a khat showld be marked off as "Government waste" that were in excess of one thousand acres. That within the khat proprictary right should be exercised over all third-class forest land to such extent as cach khat might require, with the provision that had always existed that there should be no power to alienate the lands. The restrictions as to grazing and collecting firewood were coufined to first-class reseved forests. Such concossions as were then granted and such restrictions as were then enforced were entered in the wajib-ul-arz or 'record-of-rights' of cach village, so as to preventany disputes in future.

The Jaunsír division is entirely surrounded by Native States, except on its southern boundary, where it adjoins the Dehra Dún. The main physical feature is the great central ridge that forms the water-parting between the Jumma and the Tons. Commencing at Maripur-Biás near Kálsi, it runs west of Chakráta to Deoban, and

[^145]then in a north-easterly direction to the Karámba peak. It next turns round the head-waters of the Dháragádh and proceeds eastwards into Tihri. It is along this ridge and its numerous spurs that the chief forests are found. The rocks are principally limestones, shales and slates. The first-class forests within this tract measure 8,795 acres, and the second-class forests cover 88,282 acres. The first-class forests are entirely within the control of the Forest Department with the exception of some 575 acres, within which grazing rights are permitted. Of the scoond-class forests some 13,917 acres are temporarily closed and are preserved from fire to allow of reproduction. The division forms a section of the outer Himálaya and the forest vegetation varics accordingly. At Kalsi on the south we have such trees as sál, bdkli, dhaora, kúsam, haldu, khuir, and sisu, some of which ran a long way up in the hot and confined valleys of the Tons and Jumna to an elevation of nearly 4,000 feet. We have next the grey oak, rhododendron, and Andromeda between 5,000 and 7,500 feet. At the lower limit we have the chir pinc and at the upper the blue-pine and the deodir. Above these, $7,500-10,000$ feet, come the deodir, moru and karshu oaks, four species of maple, horse-chestnut, walnut, cypress, spruce and silver fir, yew and several species of Pyrus and the willow. Of all these, the deodur is the most valuable, and it is now found in the Lohkandi and Kotikanásar forests in khat Misín : the Konain forest in khat Lakhan ; the Tutwa, Maura and Lakhan forests on the Dháragádl; the Chijál or Kathiyán forest in khat Phanyár, and the Koti forest in Bawar. Of these the Lakhan forest is the finest, but it is doubtful whether the Dháragadh can be utilized for the transport of timber. The revenue and exports of timber will be found in the appendix.

The forests of the Upper Himálaya in Kumaun and British Garhwál contain very little deodúr and are composed principally of chir pine, spruce, silver-fir, oaks, horse-chestnut, and other trees of small economical value, and consequently, except those on the upper feeders of the Alaknanda, ${ }^{1}$ have hitherto been little

[^146]worked. From these latfer a large number of chir sleepers has been supplied to the East Indian Railway. There are several fine forests of Abies Smithiana, A. Webbiana and Pinus excelsa along the left bank of the Alaknanda from Joshimath to Pipalkoti, but they

> Northern Garlwál. occupy the tops of the ridges at some digtance from the river: The long-leaved pire covers the slopes of the Nagoli valley opposite Nundprayag, the Naigpur hills opposite Chhatwapipal, and the valley up to Pokhri. The forests on the upper part of the Mandékini and in the valley of the Madmaheshwar rivers are too distant to be of economical value. Similarly, the fine chir on the slopes of Tungnath are too far from the river to bear the expense of export, though, perhaps, the boxwood, of which there are some good examples, may prove of use. The cypress and excelsa forest on the Bishunganga near Badrináth is also too far removed from the means of carriage to be suitable for working. The pine forests near Tapuban on the Dhauli are the most extensive in Garhwál. They stretch in one unbroken block from the western spurs of the Pilkhanta range to above Rindi, a distance of sixteen miles with a breadth of from one to three miles. All this is a mixed forest of Abies Webliana, A. Smithiana, $P$. excelsa, cypress and a few deodär, with box, yew, and Quercus semecarpifolia. The sycamore (Acer pictum, Thunb.), from which the Tibetan bowls known as lakauri-doba are made, is found in the valley of the Riniganga with horse-chestnut (AEsculus indica) and silver fir. Higher up the Dhauli as far as Malári similar forests occur, and leere also is the only natural deoddr forest in British Garbwál, but unfortumately so placed as to be useless for export.

In Southern Garhwal, there are chir forests on the Nayár at Sonthern Garkwál. Kainúr, Sungarkhál, and Juniyagarh, and on the Dúdúkatoli range, great forests of silver fir and spruce cover all the summits up to 8,000 feet. The western slopes of the same and adjoining ranges are clothed with dense forests of oak and other trees of some value to the extent of about fifty square miles, of which the silver fir occupies eleven square miles. Below Kainúr, the Nayár might be used for transporting small timber during the floods, but the Chhiphalghatitiver is too shallow for this purpose and too much obitructed by boulders,
though fine chir trees are to be found on both its banks and at Saimkhet and Tál. The Dhanpur hills have been cleared of jungle for the mineral works. The eastern slopes of the Dúdúkatoli range are corered with oaks and some seven square miles of silver fir and they drain down to the Rámganga. A fine chír forest nearly fifty square miles in extent occupies the valleys leading to the Rámganga between Loliba and Ganái, and the pine-clad slopes of Badhángarh and Bhatkot have a similar direction. The Ramganga appears to be large enough for floating down sleepers during the time of flood, and these forests may prove a useful rescrve hercafter. All the hills below Ganaii are covered with stunted and twisted chir. Extensive chir forests of good quality exist at Ránikhet and Syúni, and have already been noticed: also along the Gágar range and in the Malwa Tál, Rámgarh, Saimkhet, and Khairna valleys, and at Badhándluira on the Kosi. The Kosi appears to be unfit for rafting except in the floods, when small timber might be sent down it to Rámnagar.

The pine forests on the Pindar from Betuwa to Kulsíri adjoin
North eeastern Garlwál. the river where it is $3-600$ feet wide. From
May to October, the floods are incessant and sufficient to float the largest timber to the Alaknanda at Karnprayág, and thence to the Ganges at Hardwír. There are no rocks, rapids or obstructions the whole way, and the fall is about fifty feet to the mile. The cost of felling is about two annas per tree, and the cost of carrying and shooting down large trunks would be from two to five rupees each according to the distance or, if previously cut into sleepers, about one anna per sleeper per mile of land carriage. Sawing can easily be arranged for by imported labour. For three or four miles above its junction with the Pindar, the Kailganga might be used for sending down small scantlings of the pine which grows abundantly along its banks, but the cypress appears to be too far up to admit of working. The Nandákini, for the first fifteen miles from its junction with the Alaknanda, possesses sufficient volume in times of flood for the transport of sleepers from the magnificent forests along its banks. The extent and variety of the pines here are nowhere surpassed. They grow over the entire valley, six different species being indigenous and a diameter of five feet is a usual size. The spruce forest above Kanali is the most
important, but cypress and deodár also occur with yew, hazel, box, and all the other pines except Abies dumosa.

The upper valleys of the Sarju and its tributaries contain over a hundred square miles of fine pine forest. About and above Kapkot there is nothing but pine; much of it, however, is practically inaccessible, and as the Sarju is not a snow-fed stream, rafting can only take place in time of occasional floods in therains. The valley of the eastern Rámganga down to its junction with the Sarju has a considerable extent of chir and silver-fir forest along its banks, but the river itself presents some obstacles to rafting. Sul also occurs in the valleys of the Sarju and Rámganga, but of little value as timber. There is a considerable amount of pine forest near enough to the Kali, and about Askot and Balwakot some very fine timber. Indeed, almost all the valleys leading down to the Kili between Askot and Barmdeo contain an abundance of chir of very fair quality. The Gori has a volume in time of flood nearly equal to the Pindar, and there is no obstacle in its course from the pine districts to the Káli. The chir forest along its banks, especially near Mastoli, are inferior to none in quality or quantity. The banks also are well-adapted to shooting down $\log$ s into the river, and labor is cheap and abundant. A mixed forest of silver fir and $A$. dumosa with box occurs on Húm Dhíra, but apparently too high up to be available for timber. The forests around Chipula abound with horse chestnut, sycamore, birch, yew, poplar, and wild fruits which grow up to 11,000 feet, above which is bare grass and rocks covered with snow till June. These are all too remote from the river to be available for timber for export. In the upper valley of the Kali there are numbers of chip along the precipices close to the river, scattered patches of the hemlock-spruce ( $A$. dumosa) intermixed with the excelsa pine and considerable blocks of the silver fir, here called uraman, which occurs also in the Dárma valley, too far from the river for export. Box is found in the Gori valley near Milam, and in the Byáns patti under the name pappri. The grain of the wood appears to be coarser than that of the European species. The yew is as good as the European species for turnery and all purposes. The holly is close and even grained, and fit for turnery, and the species of birch known as payautis yields a wood for doors and panels that bears a very high
polish and is one of the best that we have. Besides these, maple, hazel, birch, wild apples, wild cherries and pears abound, all of which have their value as timber for turnery and other purposes. It can not be denied that, as in the case of mines, much of the valuable timber trecs of the inmer Himálaya are in such a position as to render them practically useless for export ; but should the necessity arise, some mechanical contrivance will doabtless be invented for the better and more easy removal of the logs to a stream that can carry them to the plains. The shoots that have been in use in Jaunsár for some years have materially assisted manaal labour, and when advisable, the same principle can be applied to the removal of valuable timber from the fores ts of British Garhwál and Kumaun.

We have now briefly sketched the character and position of each

## Forest Department.

 of the great State forests, and shall proceed to describe the system under which they are managed. The expenditure under 'forests' is divided broadly into that incurred on account of 'conservancy' and that for 'establishment.' The establishment protects the forests from trespassers, prevents unauthorised felling of timber, cuts down creepers and noxious undergrowth, marks trees for felling, repairs the fire lines, and superinteads felling operations, both those undertaken on behalf of Government and those carried on by private individuals. The forest officer himself decides when felling operations may be undertaken, the principle observed being to work out distinct blocks as well for the sake of more easy supervision as to enable the department to open or close distinct areas at the same time. It is also the duty of the forest officer to superintend the felling, sawing, collecting and carriage to the depôt of the timber collected for Government; the counting, stacking, and classification of the logs in the depôt and the settlement of the accounts of contractors; the repair of old roads and the construction of new ones. The forest officer has charge of the collection of tolls at the forest stations. These are situate along the main lines of forest road, and in each there is a clerk and several peons. On the arrival of produce of any kind liable to toll, the clerk examines it, and the quantity and the duty received are entered in a book arranged in the form of a receipt and counterfoil. The clerk hands the receipt over to the exporter, and forwards a copy of the counterfoil to the head-office of theforest-division. The exporter proceeds with his load until he is stopped at a secoud line of posts established where the forest roads converge on the main public roads. Here he gives up his pass, and the goods are again checked and any deficient duty is collected. These passes are also sent to the head-office and compared with the copies of the counterfoils previously forwarded by the clerks in charge of the first line of posts. Deputy overscers inspect each post, and rangers patrol the intermediate spaces to prevent smaggling; and in addition the smallness of the tax makes it hardly worth the trouble and risk necessary to successfully evade the payment on petty ventures. It is only when the exporter bribes the whole establishment and removes valuable timber wholesale that any profitable result can be expected, and this may be considered a very remote contingency. The revenue collected is forwarded day by day from post to post to the nearest treasury, and the official in charge reports the amount received from each post to the headoffice of the division, and this is again compared with the total entered in the passes and counterfoils.

The principal timber depots in the Kumaun forest-division are Timber marts. those at Rámnagar and Moradabad, and the markets for minor forest produce are at Chorgaliya, Haldwáni, Káladhúngi, Chilkiya, and Rámnagar. The Naíni Tál forest-division finds its market in the settlement itself. It has a special local conse rvancy staff, who superintend the felling of trees for timber, fuel and charcoal, the dues on which are collected according to a special table of rates. The Ránikhet forestdivision is purely conservative and supplies only the local demand in the Ránikhet settlement. Khohdwára or Kotdwára, as it is more commonly called, is the great mart for the exchange of minor forest produce in Garhwál, and, for the sale of timber, depôts have been established in this division, both on the Rámganga and on the Ganges. Hardwár on the Ganges and Rájghát on the Jumna are the two great timber depôts for the whole Himálayan tract between the Ganges and the Tons, including the Dehra Dún, Jaunsár, and Bhágirathi forest-divisions. A considerable amount of timber and minor forest produce, however, finds a way to the plains through the passes in the Siwáliks to Saháranpur, Dehli, and Meerut. Good roads connect all these marts with the different lines of
railway, and with the extension of the existing line from Barcilly to Yilibhit and Naini Tál, the communication, so far as Kumaun is concerned, will be complete and the value of the minor forest produce will be enhanced considerably. In appendix A. will be found a table showing the rates now levied on timber of all kinds and minor forest produce in the Kumaun forest-division. It has not been considered necessary to give these tables for every forest-division, though they vary slightly in details in each tract. Enough has been given to furnish a fairly accurate idea of the extent and character of the State impost on forest produce. Perhaps the most curious fact elicited is the number and variety of the articles coming under the head 'minor forest produce.' Here we have the drugs, tans, dyes, gums, reeds, fibres and grasses of the preceding pages, with the toll that is levied on them by Government, and the average annual export from the forest-division based on the returns of four years. It has been found impracticable to give a correct selling price for these articles : so much depends upon the locality and circumstances. The greater part is collected and exported by the poorer classes who exchange their goods for grain or clothes and earn but a scanty subsistence. Still confining our remarks to the Kumaun forestdivision, some idea of the extent of the folling operations will be g:thered from the fact that, between 1859 -f 00 and 1879-80, the timber cut and and sold by Government agency amounted in this division alone to $3,040,241$ cubic feet and the quantity cut and exported by private agency amounted to $2,620,607$ cubic feet between $1865-$ 66 and 1879-80. The greater portion of this timber was sál of good quality, though of late years second-class timber has come into considerable repute. In addition to this, great quantities of dry timber were exported by merchants at lower rates, and in the Kumaun Bhábar, many thousand acres of sál, haldu, dhami, and other trees were cut down and exported to make room for cultivation. No detailed account of the quantity can be given as the duty was usually levied by cart or bullock load. If we remember that similar operations are going on in each of the other forest-divisions bordering on the plains, some idea may be formed of the extensive nature of the forest operations. In Jaunsár and the Bhágirathi valley the principal export is timber for railway sleepers cut and exported by Government agency. Appendix A. gives the revenue and
expnnditure of all forests for as far back as the records appear accurate enough for reproduction.

## Rheea.

Bœhmeria nivea, Hook. et Arn. ; Urtica nivea, Linn.; U. tenacissima, Roxb.-China grass, rhea, rheea, ramic (Malay). Brandis, 402.

The rheea is indigenous in China, Japan, the Phillipine Islands, Java, Sumatra, the Indian Arehipelago, Sium, Burma, Singapur, Penang, Asám, and Rangpur and Dinajpur in Eastern Bengal. It is cultivated in China, Japan, and the Indian Archipelago, where it is stated to like a moist soil, and flomishes best in alluvial deposits along the banks of rivers and generally in the fertile flats such as are found in its native haunts in China and Sumatra. The cultivation of the rheea in these provinces dates from the year 1863, and in 1865 there were several small plantations in the Dehra Dún. The Government plantations were begun in 1867 by devoting a small portion of the Chandwala garden in the Dún to the propagation of the plant for distribution to those who desired to embark in its cultivation. In 1870 , the regular cycle of inquiries as to the value of the economic prolucts of India brought rheea prominently to notice, and orders were issued for the extension of the existing Government plantations both in the Dún and at Saháranpur. In 1871, a prize of $£ 5,000$ was offered to the inventor of the best machine or process for the preparation of the fibre, and in the same year, instructions were issued for the supply of stems for a trial between competitors for the prize and for distribution for preliminary experiments to all who were likely to make use of them both in this country and in England. During the year 1871-72, the area under rheoa in the Dán and at Saháranpur exceeded 37 acres, and upwards of nine tons of stems werc forwarded to England for the use of intending competitors.

The first trial for the prize took place at Saháranpur in August,

> First competition. 1872, when a machine, the property of Mr. J. Greig of Edinburgh, was entered for competition. The following extract from the official report of the trial will show what degree of success was oltained :-

[^147]It is calculated to wear well, and deserves commendation so far as being a good substantial piece of work. 'The machine, however, as must always be the case with machines of this kind, i. e., contrived to do a work of which there is little or no experience available and without means of obtaining the natural material to work upon, is far from matured. Few, if any, of such machines are ever constructed at once able to do the work for which they arc intended; most are generally perfected by degrees throngh numerous partial failures; experience gained in the process of working alone enabling many defects to be seen and remedied and a perfect machine to be produced, and such appears to be the case with this mill; for, independent of whether it is or is not the best description of machine for preparing the flbre, it is, on the one hand, in many points very deficient in the work the exhibitor sets it forward to perform, while, on the other hand, it is certain that it can be improved in much that is faulty."

Mr. Greig was awarded $£ 1,500$ for his machine, in consideration of the skill, labour, and expense incurred in its construction, and in recognition of its being a real attempt to meet the wants of Government.

In 1873-74 and 1874-75, the area under rhea was maintained at
Second competition. 37 acres, and in 1875-76 further instructions were received to continue the supply of stems for experimental purposes. In August, 1877, the ofter of a prize of $£ 5,000$ was renewed, and the following specification of the machine required was published for general information in India, Europe, and America :-
"What is required is a machine or process capable of producing, by animal, water, or steam power, a ton of dressed fibre of a quality which shall average in value got leas than $£ 45$ per ton in the English market, at a total cost, including all processes of preparation and all needful allowance for wear and tear, of not more than $£ 15$ per ton, laid down at any port of shipment in India, aud $£ 30$ in England, after payment of all the charges usua! in trade before goods reach the hands of the manufacturer. 'The processes of preparation are to be understood to include all the operations required subsequent to the cutting of the stems from the plants in the field, until the fibre is in a condition fit to be packed for conveyance to the market. 'I'he machinery employed must be simple, stroag, durable, and inexpensive, and should be suited for erection in the plantations where the rhea is grown. It must be adapted for treatment of the fresh atems as cut from the plant. The treatment of dried stems offers certain difficulties, and the fibre prepared from them must, moreover, always be much more costly than the fibre produced from green stems. Except during the hot, dry, weather preceding the rains in Upper India (where rhea grows best), it, is very difficult so to dry the stems that no fermentation or mildew shall occur. But during this season the stems are comparatively short and the crop poor and stunted, unless it is artificially irrigated, and such greatly increases the cost of cultivation. In the rainy season the plant is in fine condition, but at this season it is almost impossible lo dry the stems in quantit
without injuring the fibre, unless recourse is had to artificial means of desiccacion, which greatly increase the cost of the material. It is therefore obvious that the attention of infentors should be given to the digcovery of a process for the treatment of the green stems."

The trials commenced in September, 1879, at Saháranpur, and Result. ten competitors entered machines of different kinds, of which three were withdxawn. The following is an abstract of the results :-

Competitor.			Green stems worked up.	Total fibre obtained.	Percentage of fibre.	Cost per tun.
			Tons. qre. cwt. it.	\%		Re. a. p.
M. Z. P. Vander	Ploeg	...	11400	1181	311	33788
Dr. Collyer	...	...	1000	147	$6 \cdot 60$	11200
Paris machine	-0.	$\ldots$	- $\quad$ -	104		483140
M. Nagona	...	$\ldots$	3 lllll	337\%	4.44	38144
Mr. Cameron	...	...	$1 \begin{array}{llll}1 & 2 & 3 & 0\end{array}$	92 淮	3.61	270120
Mr. Amery	.."	$\cdots$	$1 \begin{array}{llll}10 & 0 & 0\end{array}$	$\underline{107} \frac{16}{16}$	3.21	4180
Mr. Blechynden		...	$0 \quad 1110$	$58 \frac{1}{2}$	$4 \cdot 68$	25146

The judging committee consider that the limit of $£ 15$ per ton for the cost of preparation and laying down the fibre at a port of shipment in India would render competition practically impossible from a place so distant from the sea-board as Saháranpur. Further, that the plant grown at Saharaupur is not calculated to give such good results as that grown in more suitable localities, but that, on the whole, the experiments made during the trials, though not decisive, have gone far towards establishing the conditions under which a fair verdict can be awarded and have advanced aun important step in the progress made towards the solution of the problem. The awards have not yet been published, as they depended on the valuation of the fibre in the English market. The advance made in this competition shows that the invention of a snccessful machine is merely a question of time and justifies the resolution of Government to continue the supply of rheea stems for experimental purposes.

The Dutch botanist Blume, in his report on the cultivation Cultivation and prospects. of rheea in Java and Sumatra, states that " the plant thrives best in shade, in a moist and fertilo soil : conditions such as are usually found in abandoned
coffee plantations. * * The plant thrives best in the hilly parts of the country in which rain is frequent. In the plains it would require irrigation." The conditions under which the plant flourishes in the countries best adapted to its growth are a moist tropical atmosphere, a shady situation and a low-lying alluvial soil. These conditions do not exist in Saháranpur. In the cold season, so soon as the temperature falls to about $40^{\circ} \mathrm{F}$., the whole crop, leaves and stems, become black and fall to the ground. The roots then remain dormant until January, when the fields become green again with the young shoots. As the weather becomes warmer, the plauts require irrigation at regular intervals of time, and weeds must be removed until the plants are strong enough to keep them down. The stems also are very short, owing to the effect of the hot dry winds which prevail in these provinces, and they ripen irregularly from the same cause, the tops being often green and soft, whilst the lower portions are ripe and hard. Until the meeting of the competitors in 1879 it was not known how inferior the Saháranpur atems were when compared with those raised in more suitable climates. During this trial, stems grown in Dehra and Calcutta were found to give better results than the local produce, presumably owing to their having been raised in a moister climate. A healthy atem is described as an evenly shaped flexible wand of a length varying from $\overline{5}-7$ feet with the same colour throughout and ripening in all parts simultaneously. The Saháraupur stem was generally an irregularly shaped stick, 3-5 feet high, of uneven growth, with irregular distances between the joints. Many of the stems were stuuted and imperfectly nourished and unequally ripened. The conclusion arrived at by the committee was that either the cultivation was insufficient or the climate is unsuitable. Experiments are now being made to ascertain whether trenching and heavy manuring will correct the defects observed, but it is believed that, as with most plants, climate is the first consideration, and therefore rheea cultivation in the drier parts of these provinces can never be more than partially successful. There is no difficulty in raising the plant from seed or in propagating it by cuttings. Dr. Jameson has estimated that an acre will yield four crops in the year, aggregating ten tons of green stems. Taking the yield of fibre at onetwentieth of the green slem, the return of marketable fibre per acre
will be half a ton. The value of rheeanfibre in the English market at present is from $£ 40$ to $£ 60$ per ton, according to quality, a price that should always leave a fair margin of profit to the cultivator of the plant and the preparer of the fibre.

## CINCHONA.

For several consecutive years previous to 1872, experiments were undertaken in the valleys and hills of these provinces for the cultivation of the cinchona plant. It was tried at Chandwála and other localities in the Dehra Dún at 2,500 feet, at Chhajauri in Garhwal at an altitude of 4,500 feet, and at Mussooree at an altitude of 6,500 feet. In Kumaun, experiments were made in the Bhábar at 2,000 feet, at Háwalbágh at 4,500 feet, at Ayár-Toli and Ránikhet at 6,000 feet, and at Arkalli at $6-7,000$ feet. In all these places, except the Bhabbar, the plants progressed during the hot weather and rains. It was considered necessary to protect the young trees from the frost during the cold weather, and this was done for three years and until many of the plants had attained a height of 4-6 feet. These, with many others ranging 2-3 feet, were then left uncovered during the cold weather, with the result that every one of them perished in all the localities mentioned. Similar attempts proved unsuccessful in the Kangra Valley and Panjáb Himálaya. In Kangra, where many of the plants had reached 4-5 feet in height, a single winter's frost was found enough to destroy them, and at Ránikhet, plants of C. succirubra, 4-5 feet in height, were cut down by the frost, though partially protected. Dr. Jameson closes his account ${ }^{1}$ of these operations with the following remarks :-" To continue the growth of the plant as an experiment in view to the cultivation for economic purposes would be a mistake, and the time therefore has come to close the experiment which has been carried on with the utmost labour, care, and attention, and to declare that the valleys and hills of the Himálaya of the NorthWestern Provinces and the Panjáb are not fitted for the cultivation of the cinchona plant."

## TALLOW TREE.

Stillingia sebifera, Michx.-Tallow-tree.
A tree belonging to the natural order Euphorbiacece, introduced from China. This tree fruits abundantly in all climates in India

[^148]from Calcutta to the Himálaya. There are large plantations in Saháranpur, the Dún, and on the several tea-plantations in Kumaun. The seeds were sown in the Saháranpur gardens in 1858, and so rapid was their growth that, in 1866, they measured 6 feet in circumference 3 feet from the ground. Plantations were established in the Dehra Dún, at 4-5,000 feet in the hills at Hawalbágh, Ayar Toli, and Pari, and in all these places there was an abundant yield of fruit. The seeds lis within a capsule and are enveloped in a fatty matter which yieids a tallow. Animal tallow consists of stearine and elaine, both of which are found in nearly a pure state in these sceds. The mode of extracting ${ }^{1}$ the talliow is very simple. It is merely nevessary to boii the seeds and strain through cloth into water; and to purify the tallow, boil again in water and strain through a cloth as before. For burning purposes the tallow is excellent, as it gives a clear, bright, inodorous flame without smoke. It has also been tried with some success as a lubricator for railway wagons. The wood is close-grained and yields a timber well fitted for printing-blocks, and the leaves afford a dye. It was thought, at one time, that the cultivation of this tree in Kumaun would yield results second only to tea, butactanl experiment has shown that the labour and expense involved in collecting the seeds and extracting the tallow are far in excess of the value of the product; and in Calcutta, where it was introduced over thirty years ago, the result has been the same.

## IPECACUANHA.

Cephœlis Ipecacuanha.-In 1870, Dr, Jameson procured two plants at the Kew Gardens and brought them out to India, where they arrived safely and were planted in the gardens at Chandwála in the Dehra Dún, but ultimately perished from frost.

## CORK OAK.

Quercus suber, Linn.-Cork oak. Brandis, 485.
At various times seeds of the Italian and Spanish cork oak have been planted in Dehra Dún and have germinated freely. The young trees thrive well and may, hereafter, prove of value, but the ultimate success of the experiment has yet to be seen.
${ }^{1}$ For Dr. Macgownn's description $f$ the process of manafacture in China, see J. Agri.-Hort., Ben., VII., 164.

## SWEET CHESTNUT.

Castanea vulgaris, Linn.; C. vesca, Gærtn.-Sweet chestnut, Spanish chestnut, chátaignier. Brandis, 491.

The seeds of this tree were introduced by Sir John Strachey, and subsequently consignments were received by the Superintendent of the Botanical Gardens, Saháranpur, by whom they were planted and tho young trees distributed all over the Dún and Kumaun. The chestnut yields freely in the Dúns and Lower Himálaya, and now forms an appreciable addition to the fruit resources of the Dehra bazar. In Italy, Greece, Central France, Spain, and Corsica, it forms an important article of food for the inhabitants of the mountainous regions of those countries, and from the success of the experiments tried here, it appears that the establishment of the chestnut in suitable localities in these hills presents no difficultios that cannot be easily surmounted.

## CAROB.

Ceratonia Siliqua, Linn.-Carob or St. John's bread-fruit tree : the Algaroba beans of commerce (fruit). Brandis, 166.

The carob was introduced by Dr. Jameson from Malta in 1861, and by 1863 it was extensively propagated and distributed in the Dún. The trees, though they flourish well, do not seem to give pods in such quantities as they yield in Malta and Italy. In 1866, the same report was received, arid in 1880 , it has been decided to try to improve the quality of the seeds by grafting, which, in Italy, not only produces better fruit, but gives a yield in a much shorter space of time. The trees appear to be unaffected by any extremes of temperature or excessive moisture. The sweet nutritious pulp of the pods is ground and mixed with grain and then baked and eaten by the poorer classes in Italy, the Levant, and Malta. The pods are also given to draught cattle in the proportion of one measure of carob beans to two measures of barley, and on this food they both work and thrive well. This tree is indigenous in Spain, Algeria, the eastern part of the Mediterranean region, and Syria.

## MEZQUIT.

Prosopis glandulosa-The Mezquit bean.
This plant, a native of Texas, was introduced in 1878, and has been successfully propagated in Kumaun. It produces pods freely
during the rains, not all at once, but in succession, and scems to stand the extromes of heat, cold, and moisture very well. The beans are used as fodder for cattle. Acacia tortuosa, a native of Jamaica, has recently been introduced. It yields a fodder pod and might be cultivated as a hedge as well. It thrives well at Saháraupur. The Euchlena (Reana) luxurians, which yields a good fodder grass, is also under trial in the Govermment gardens, as well as a series of Australian grasses. The Pilhecolobium Saman, or 'rain tree,' has been found a failure, not being able to withstand the frosts in the cold weather. Several experimental sowings of fibre plants have also been made. Dr. Jameson recommended the cultivation of Agace Cantala and americana, Aloe angustifolia and intermedia, Sanseveria zeylanica and Tacca stricta. A recent report on Mulachra capitata shows that it grows to a fair height and seeds frecly, producing a fibre, however, in no way superior to the indigenous patsan (IIibiscus cannabinus), but useful for mixing with jute in the manufacture of bags. Some forty species of Eucalyptus have been cultivated. All seem to thrive fairly, and some of them remarkably well in Saháranpur and the hills. Catalpa speciosa, Engel., a tree indigenous to North America, yields a timber especially adapted for underground work, such as posts, sleepers, and the like, and is now under cultivation in Saháranpur, and will also be tried in Mussooree. Olives have been received from Florence and are now planted out at Chajauri, where they appear to thrive well, the climate and soil being very suitable. They are of the same species as that from which the famous Lucca oil is extracted. A considerable number of seedlings of the oil-plant, Lallemantic iberica, raised in Saháranpur have been planted at Mussooree, but it will take some time before a correct estimate of its value can be obtained. Madden records that hops were raised with some success in Hawalbágh in Kumaun over thirty years ago, and experiments in the Dún in 1862-63 showed that they grow well there also. In the plains, however, the flowers do not scem ever likely to be useful for brewing purposes. Hops grow well at Saháraupur, and during the rains become most luxuriant ; but it also happens that the flowers are produced at that time and the heavy rain prevents their proper development. This would appear to be a matter that should affect the culture of the hop plant in this country wherever the periodical rains are felt, and
would apply to the whole of the Himálaya of these provinces equally with the plains. In conclusion, mention may be made that fruit trees of all kinds, vegetables, flowers, and ornamental shrubs, have been introduced and propagated and distributed all over the hills from the Tons to the Sárda, and that for this purpose the gardens at Mussooree, Chajauri and Rínikhet have well fulfilled the object for which they were established.

## TEA. ${ }^{1}$

The history of the cultivation and manufacture of tea in the hill Tea. districts of the North-Western provinces having originated simultancously with the introduction of the plant in Iudia generally, and with its discovery as an indigenous plant in Asám, it will be advisable to commence with a brief sketch of the circumstances which have led to the undoubted success of tea culture in these provinces.

The claim of first originating the idea of cultivating the tea
Historg. plant in India is variously attributed. As carly as 1788 it appears that Sir Joseph Banks, at the request of the East India House, wrote a memoir on the sulject, ${ }^{2}$ recommending the introduction of plants from China to Behar, Rungpur, and Kuch Behar. Some years afterwards considerable interest was aroused by the reported discoveries of indigenous tea plants in Burma, Asám, Nepál, Kumaun, and Basahr. It was in Asim only, however, that the discovery of the truly indigenous plant was confirmed. Mr. Burrell is inclined to believe that the discoverer of the wild tea plant in Asam was Mr. David Scott, an Indian civilian, who, when Asám was ceded to us, took charge of tho settlement of that province. It appears that some time between 1819 and 1821 he sent a specimen of the Asám wild tea plant to Calcutta to his friend Mr. James Kyd, whose father, Colonel Kyd, corresponded with Sir Joseph Banks about tea cultivation in India amongst other matters. This specimen was handed over to Dr. Wallich, and Mr. Burrell has succeeded in identifying it in the Wallichian herbarium now

[^149]belonging to the Linnean Society. Attached to the specimen he found a portion of Mr. Scott's letter, but without any indication as to the date. The conclusions arrived at by Mr. Burrell are fully borne out by Mr. Thiselton Dyer, who, being the author of a monograph on the Indian Ternstrcemiacece, must have made a special study of this subject ; also by the late Dr. Anderson and Dr. McClelland. In a letter from the latter to Mr. Clerk Marsham the following passage occurs :-
"The circumstances brought to light by Mr. Burrell coincide exactly with what I have always understood to be the fact, that specimens of the plant and sceds of the indigenous ten plant had been sent by Mr. Scott through Mr. Kyd to Dr. Wallich as early at least as 1821. "

And further on he remark :-
" Had Mr. Scott's discowery in. 1891 been taken up in an active and enlightened spirit, several years might have been gained, but public spirit was not prepared at that period for much enterprise, and we were content to receive our teas from China. Besides, Mr. Scott had not at that time reduced the tribes on the frontier to subjection, and their troublesome character was kept alive by our war with Burma, and, above all, we wauted Lord William Bentiuck, without whom the second discovery of the tea plant might have shared the fate of the first. What we have most to regret is that Mr. Scott's discovery was not properly recorded, when steps might have been taken, with his assistance, for the transmission of seeds and plants to the Botanic Garden in Calcutta, where the tea plant could have been propagated twelve years before its subsequent discovery in Asám." Other writers on the early history of Indian tea have mentioned Mr. Bruce as having first discovered the true tea plant in Asám, but as his discovery was only made in 1823 , his claim must give way to that of Scott.

Tho Kumaun plant noticed by Bishop Heber on his visit to Alnora in December, 1824, as well as that of Basáhr, described by Moorcroft in 1821, must be referred to an evergreen shrub called Osyris nepalensis and belonging to the sandal-wood family. Bishop Heber thus writes concerning this plant. "The tea plant grows wild all through Kumaun, but cannot be made use of, from an emetic quality it possesses. This might, perhaps, be removed by cultiFation, but the experiment has never been tried. For the cultivation of tea I apprehend both the soil, hilly surface, and climate of Kumaun, in all which it resembles the tea provinces of China, are

[^150]extremoly favourable." The plant observed in Nepíl was a true tea plant in cultivation, and which Dr. Wallich afterwards ascertained to have been brought from Pckin on the occasion of one of the triennial embassies sent to China by the Gorkhili government.

The idea of cultivating tea in the hill districts of Northern India

> Tea cultivation in the Himálaya. was first originated by Dr. Royle in 1827, who was at that time in charge of the East India Company's Garden at Saháranpur. In a report to the Government of India, at the close of that year, he pointed out tho resemblance of the Himálayan vegetation with that of tea-producing districts of China, as well as the suitability of the soil, especially in Kumaun. Four years later he again expressed these opinions ${ }^{\boldsymbol{1}}$ to the Governor-General, Lord W. Bentinck, during the visit of the latter to Saháranpur. The representations of Dr. Royle from Saháranpur, and of Dr. Wallich at Calcutta, and of other writers, eventually led in 1834 to the formation by Lord W. Bentinck of the Tea Committec. The chief object of this committee was to ascertain the best mode of introducing the Chinese tea plant into India, and of its cultivation in carefully selected localities. One of the first acts of the committee was the deputation of Mr. G. J. Gordon to China in order to arrange as to the best modes of obtaining both the genuine plant as well as Chinese cultivators. In the meantime, arrangements: were being made to select the best localities in India for sowing the seeds which were expected to arrive before the end of the year (1834). At the same time a set of queries was circulated by the committee for the purpose of obtaining the opinions of those who were most competent to give their advice on this matter. Two important communications were received in reply-one from Captain Jonkins, Agent to the GovernorGeneral in Asím ; and the second from Dr. Hugh Falconer, who had recently succeeded Dr. Royle as Superintendent of the Sahíwrupur garden. After describing the conditions under which the tea plant was being cultivated in China, and the attempts which had been made to introduce the plant to other countrics, he observes :-
"There is, perhaps, no part of the Company's territories in India which supplies all the conditions of tea districts in Clina in rcspect of cfmate; but there are situations which approach it so nearly as strongly to bear out the

[^151]conclusion that tea may be so successfully produced in this country as to be arr, object of high commercial importance * * * * *
It has been scen that the annual heat of the sonthern limit of the tea cultivation in China, assumed to extend to Canton, is $73^{\circ} \mathrm{F}$. At'Saháranpur, which may be considered as at the northern limitt nearly of the plains of Hindustan, $3^{\circ}$ of lalitude higher, and 1,000 fect above the sea, the mean temperature of the year is $73^{\circ} \mathrm{F}$. ; the temperature of June is $90^{\circ}$, and of January, $59^{\circ}$.
"In the Ilimálaya mountains this cose is widely different, excepting periodical rains; here all the conditions of the temperate clinate are foumd, and heres above all parts of Iudia, we may looiz for successful cultivation of tea."

After describing the geological featares of these mountains, having made a special study of the subject, he summarizes his opinions as follows :-

1. "That the tea plant may be successfully cultivated in Indiz.
2. "That this can be expected nowhere in the plains from $30^{\circ}$ north down to Calcutta.
3. "That in the Himálaya monntains near tho parallel of $30^{\circ} \mathrm{N}$., notwithstanding some circumstances of soil and moisture of climate, the tea plant may be cultivated with great prospect of success ; that a climate here may be found similar in respect of temperature to the tea countries in China; that in the direction and great slope of the hills, the absence of table-Iand or elevated valleys, and the contracted figure of the existing valleys, are the chief difficulties in the way of cultivation, which may prevent tea from being produced in great quantity on any one spot.
4. "That the most favourable ground for a trial is a tract on the outer ridges, extending from 3,000 feet alove the sea, or the point where the hot wind ceases, up to the limit of winter snow.
5. "That in the valley of the Dhoon, if not the better, the inferior sorts of tea might be produced."

The opinions expressed by Dr. Falconer in the above letter are remarkably similar to those of Dr. Royle sulbmitted from England about the same time ; and, as the latter declared, " without any communication of ideas, for the two essays must have crossed each other at sea." Among the localities recommended by Dr. Royle were Bhín Tál, Háwalbágh, Dehra, and Pinjor in valleys from 2-2,500 feet in elevation above the sea; also Almora, Jerrapani, Nahan, and Subáthu at elevations of 4 to $\overline{5}, 000$ feet; also Mussoorie at 6,500 feet.

Shortly after this Dr. Falconer received orders to examine the

Dr. Falconer. hill country situated between the Jumna and the Ganges for the purpose of selecting suitable sites for tea nurseries. In view also of the experiments that were to be undertaken in Kumaun, a letter was addressed to Mr. G. W. Traill, Commissioner of that province, by Dr. Wallich, Officiating Secretary to the Tea Committee, dated 28th June, 1834, requesting him to render what assistance he could in order to carry into effect the object in question. In Mr. Traill the Government found an officer well qualified to undertake this work. He was assisted by Mr. R. Blinkworth, who was then at Almora acting as plant-collector under Dr. Wallich for the Calcutta Botanical Garden. Two sites were chosen for nurseries in which to sow the seeds that were shortly expected from China. They were-Lachhmesar near Almora and Bhartpur near Bhím Tál. They are thus described by Mr. J. H. Batten, B.C.S., who was afterwards Commissioner of this province, - "the former occupying three acres of old and easily acquired crown land on the north-west slope of the hill below the capital town at 5,000 feet above the sea, the latter occupying four acres at 4,500 feet above the sea in the near neighbourhood of the Bhim Tál lake, which is situated on the first step of the mountains above the Bhamauri Pass." It was in this same year (1834) that through the encrgetic researches of Captain Jenkins and Licutenant Charlêon some specimens of the true tea plant of Asám were obtained, and thus confirmation was secured as to its being really wild in that country.

The question of selecting sites gave rise to much discussion; some, such as McClelland, Griffith, \&c., being in favour of restricting cultivation to Asám, or to countries with a similar climate, on the assumption that a damp and equable climate was necessary for its proper growth. $\Lambda$ s far as the $\Lambda$ súm plant was concerned, this has been proved to be good advice, and results have shown that though the Asám tea plant is botanically the same species as that of China, ${ }^{2}$ it is not sufficiently hardy to bear the extremes of temperature to which the Chinese varicty is exposed in the tea gardens of North-

[^152]Western India. In China itself, where the area of tea cultivation extends over nearly twenty degrees of latitade, there mast be mavy degrees of hardiness in the plants which are grown throughout this wide extent of country.

Previous to the rediscovery of the tea-plant in Astim, the sites

## Tea-plant discovered in Arám.

 recommended for cultivation in India had reference solely to the Chinese plant, as far as was known about it at that time. In most cases these sites have proved successful so long as cultivation was restricted to the Chinese variety, or with bybrids ouly slightly crossed with that of Asám. The pure Asám plant, on the other hand, requires a hot and moist climate; in fact the more unhealthy the locality may be from the above cause, the greater the clances of success. The discovery of the true tea-plant in Asám naturally gave rise to a considerable amount of partiality in favour of restricting the cultivation of tea entirely to that country or its neighbourhood; and consequently attention was diverted from the more distant nurseries in Kumaun and Garhwál. These nurseries, however, were in good hands, and, in spite of all drawbacks, the success of the experiments soon became evident. At this point, it will be advisable to confine attention to matters more immediately connected with the subject of this notice, riz., the progress of tea cultivation in Kumaun and Garhwal.The first batch of plants numbering about 20,000 were despatchCultivation in Ku - ed from Calcutta in 1855, but very few of maun. these arrived at thair destinations alive ; and of the seeds sent to Dr. Falconer nut one germinated, a fact not to be much wondered at, considering the length of the journey they had to undergo, and the short-lived nature of the seed. The plants flourished in the two Kumaun nurseries and produced abundant crops of seed. In the Saháranpur garden plants were also to be seen, the offspring of seed produced at Koth in Tihri-Garhwát. In 1841, Dr. Falconcr, who was then in charge of all the tea plantations in Northern India, visited the two Kumaun gardens. At the Bhartpur mursery he found 1,344 plants. Of these, 291 were original plants introduced in 1835 ; 153 were seedlings of 1840, and the remainder were from layers made in this and the two preceding years. At Lachhmesar there were 3,840 plants ; viz., 250 of the original plants of $1835,2,072$ seedlings of 1839 and

1840, and the rest layers. The greater success of the latter garden he attributed partly to its better site, but in a great measure to Mr . Blinkworth, who happened to be residing in the neighbourhood. On the whole, he considered the results up to this time as most encouraging. Shortly after this he paid a visit to the Garhwál nurseries and reported similar progress. As far, therefore, as the plants were concerned, everything looked promising; but nothing was known as to the quality of the leaves for the manufacture of good tea. At that time there was very little practical knowledge in India regarding the various processes of tea manufacture, and in order to avoid unfavourable opinions at the outset through the attempts of unskilled workmen, Dr. Falconer strongly recommended that two complete sets of Chinese tea manufacturers should be supplied for the nurseries in Kumaun and Garhwál, especial care being taken that these men should be of the best description.

> A small manufacturing establishment was accordingly sanctionChinese labour imported. ed by Government. Some men who wore selected for this work by the Commissioner of Asám declined to go to Kumaun. Dr. Wallich, however, succeeded in engaging the scrvices of a party of Chinese artizans in Calcutta. These were accordingly sent up to Kumaum, together with a set of implements all under the charge of Mr. Milner, who happened to be on his way to Saháranpur to take up his duties there as Head Gardener. Whey arrived at their destination in April, 1842. The Chinamen, as soon as they saw the Kumaun tea bushes, all declared that it was the genuine China plant; and, in their opinion, far superior to that of Asiun. They recommended that the plants should be pruned down close to the ground, so as to encourage the production of a fine crop of young leaves in the succeeding spring. They managed to make a small quantity of tea with the leaves of that year, a sample of which was taken to England by Dr. Falconer a few months afterwards. This sample was submitted to the celebrated tea-brokers Mcssrs. Ewart, Maccaughly, and Delafosse in London in September, 184.3, and they reported as follows :-" The tea brought by Dr. Falconer as a specimen of the growth of the China plant in the Himálaya mountains resembles most nearly the description occasionally imported from China under
the name of Oolong. This resemblance is observable in the appearance of the leaf before and after infusion. The colour of the liquor is also similar, being paler, and more of the straw colour than the general description of black tea. It is not so high flavoured as the fine Oolong tea, with which we have compared it, and it has been too highly burnt in the preparation, but it is of a delicate, fine flavour, and would command a ready sale here."

After the departure of Dr. Falconer, the Saháranpur garden was

Dr. Jameson. put under the charge of Dr. W. Jameson, whose energy and indomitable perseverance contributed mainly to the success of tea cultivation in Northern India. He was also an active witness of the progress of tea cultivation from its experimental stage to the period when its profitable cultivation justified the Government in handing it over to private enterprise. A sample of probably the same tea as that of Dr. Falconer above referred to was sent by Dr. Jameson to the Calcutta Chamber of Commerce, where it was pronounced to be a tea of very good marketable value, and worth in London about $2 s .6 d$. per pound. Another portion of this sample sent to London was reported on by Messrs. Thomson of Mincing Lane, and pronounced to be of "tire Oolong Souchong kind, fine-flavoured and strong. This is equal to the superior black tea generally sent as presents, and better, for the most part, than the China tea imported for mercantile purposes." Dr. Jameson visited the Kumaun plantations in April, 1843, and found them in a very satisfactory state. The Chinamen were manufacturing a different kind of tea which appeared to be far superior in quality. Some samples of the above contained in sixteen small canisters were despatched in August to the India House. The flavour of this tea was somewhat spoilt by the wax-cloth in which the canisters were wrapped. In other respects, however, the reports were most satisfactory.

The history of the progress of the various tea plantations in

## 1844.

Nortl-Western India from this period, i.e., from tho year 1844 until a few years ago, when the last of the Government gardens passed into private hands, is chiefly to be gathered from Dr. Jameson's annual roports to Government, some of which have been published in the Journal of the

Agri-Horticultural Society of India. ${ }^{1}$ In his report, dated 28th February, 1844, he gives a full account of the Kumaun nurseries, their number and extent, as well as the number of plants contained in each; he also enters into some particulars regarding the mode of manufacturing the tea. There were at this time five separate nurseries scattered over four districts ; their total area amounted to 55 acres, and they contained 4,306 tea-bearing plants. More land being required, new nurseries were marked out by Dr. Jameson, and some of the old ones were extended, making in all an addition of 66 acres. Dr. Jamesou's intimate knowledge of geology enabled him to select these new sites with great advantage. The total quantity of tea manufactured in 1843 was 191 lb . In discussing the future prospects of tea, Dr. Jameson clearly shows the success of the experiment so far, and urges the necessity of greatly extending the cultivation of tea in the provinces of Kumaun and Garhwál. He says:-
"The plants now amount to 150,000 , and these will be doubled, I trust, or trebled annually; and were there only seed in sufficient numbers, as they germinate most freely, provided they are fresh, the aspect of the nurseries in an infinitely short space of time would be changed; for instead of patches there would soon be districts covcred with tea plants * * * * * The nursery at Kaulagir in the Dehra Dún contains abont 4,500, and here the plants are"thriving as well as in any other of the nurseries. It is, however, to be proved whether the leaves yielded by the plants in this locality are fitted for making tea of a superior quality, as it has been ascertained that all the tea grown in China at low elevations is of an inferior description. If, however, it does prove to be a marketable article, and equal to that produced in the neighbourhood of Canton, $\boldsymbol{a}$ vast field for enterprise will be opened up, whether Government considered it worthy of their own attention, or it be brought about by private capital. Water carriage will soon, it is hoped, be within two or three marches of this valley, Which will also be a strong inducement, in addition to the above, to make capitalists invest their capital in this channel, and thus we trust ere long to sce the hill provinces, which at present yield but a trifling sum to the revenues of the State, become asimportant, in an economical point of view, as any of those in the plains of Hindustan."

In a letter to Dr. Royle dated 1st July, 1844, Dr. Jameson after having made an inspection of all the nurseries writes:-"At Koth, Ráma Serai, and Gadoli in the Garhwál Hills, the tea plants are thriving admirably, many of them being nearly six feet high." In

[^153]a later letter he informs Dr. Royle that the Chinese manufacturers denied that green and black tea were made from diffcrent plants, and that it was only a difference in the mode of manufacture. In another letter he mentioned that 4361b. of tea had been made, and that three acres yiclded 162 ft . of tea; that he had then 120 acres under cultivation, and hoped soon to have double this area.

In Dr. Jameson's next report, published in 1845, he gave a 1845. detailed account of the progress made during the preceding year at the several gardens in Kumaun and Garhwál. Seventy-six acres of land were added and 94,100 plants were put into them. In September and November upward of four lacs of seeds had been sown, of which 167,000 germinated and were still germinating. Three hundred and seventyfive pounds of tea were manufactured, showing an increase of 185 tb . on the preceding year ; and as the plants were still young, Dr. Jameson was confident of a steadily increasing quantity per acre every year. In this report he entered into the subject of cost and profit, and shows by the following estimate the amount of profit that might be realized from 6,000 acres of tea, on the assumption that an acre was capable of yielding one maund of tea :-


Regarding the Garhwal nurscries, Dr. Jameson reports that Garhwál. that of Kaulagir in the Dehra Diun consisted of six acres and contained 8,000 plants. At Koth in the Bhaddri valley, elevation 5,000 feet, there were 729 plants ; and in the Rama Serai nursery, elevation about the same, 728 plants. About a quarter of the total number in the two latter nurseries were a portion of the plants which came originally from Calcutta. Another nursery at Gadoli near Páori, established by

Dr. Jameson in 1843, contained 5,000 plants. Shortly after this Dr. Jameson sent a sample of Dehra Dún tea to Dr. Royle for an opinion, which was favoured by Mr. R. Twining, who reported as follows:-"I have carefully tasted your sample of Himálayan tea, and I really think it a promising specimen. The flavour is not strong. but it is delicate and pleasant, and a little, methought, of the Orange Pekoe character. The complexion of the leaf is rather good, and pains scem to have been taken in the manipulation." This favourable account was very gratifying to Dr. Jameson, who at once foresaw the profit that would result by extending tea cultivation throughout the Dún. Other samples were submitted through the Court of Directors for professional examination in London, and the reports, on the whole, were most satisfactory. Dr. Jameson received about this time from the Court of Directors grateful acknowledgment for the good work already done by him. The sales of tea at Almora, two of which had lately been held, showed an increasing appreciation of Indian tea by natives as well as by Europeans. The average price offered for black tea was seven rupees per seer. In 1847, Dr. Jameson wrote to Dr. Royle :-" The tea this year will, I think, be very superior to anything yet made, as it has been manufactured and packed under advantages which were not procurable until now; that is, there is now a sheet-lead maker attached to the manufactory." Another sale was held this year at Páori. The amount realized for green toa varied from Rs. 10-8-0 to Rs. 9-4-0, and black from Rs. $7-8-0$ to Rs. 4 per seer. About this time, Dr. Jameson received orders to select sites for new plantations in the hilly districts between the Satlaj and the Ravi, which resulted in the establishment of the Kangra valley nurseries.

Dr. Jameson's third report' gives further details regarding the Third report. condition of the different nurseries. His observations as to soil were to the effect that the tea plant thrives well both in stiff and free soils, but, apparently better in the latter, or in a mixture of the two ; with regard to elevation, that it thrives equally well at heights ranging from 2,200 feet above the sea to 6,000 feet. The area under cultivation at this time was $162 \frac{1}{2}$ acres, and the minimum yield of tea per acre

$$
{ }^{2} \text { J., Agri-LIor., Cal., VI., gt. ii. }
$$

was 80 Hb . It is also stated in this report that about half the quantity of the ' Pouchong' (black tea) was bought up by natives at an average price of Rs. 6-8-8 per seer. The coarse Bohea tea was sold to the Bhotiyas at from Rs. 2 to Rs. 2-4-0 per seer for export to Tibet, where it successfully competed with the tea imported to that country from China. Other interesting matters are discussed by Dr. Jameson in this report, but space will not permit to give more than the headings of these subjects :-

1. On the method of preparing ground prior to forming a plantation, viz., fencing, draining, ploughing, trenching, \&c.
2. On seeds when ripe, the season of ripening, and the methods to be adopted to ascertain it.
3. On the method of sowing sceds and season, and on the treatment of the young tea plants after they have germinated.
4. Method of rearing plantations, by sowing seeds, by layers, and by cuttinge.
5. On the method of transplanting, and the season.
6. On pruning, best season and mode.
7. On irrigation.
8. On the tea plant; season of flowering ; its character and species; and on the advantages to be derived from importing seeds from China.
9. Method and season for plucking and gathering leares.
10. On the method of manufacturing black tea.
11. On the method of manufacturing green tea.
12. Packing tea.
13. Manufacture of sheet-lead.

14: T'ea manufacture.
15. Implements required in manufacturing tea.

In a letter to Dr. Royle, dated 25 th January, 1849 , Dr. Jameson states that $2,656 \mathrm{Ht}$. of tea had been manufactured in the previous season, of which 600 tb . (black and green) had been sent to England, that there would be 400 acres under cultivation at Kaulagir by the end of the season, and at Parori he expected to have $2-3,000$ acres. One hundred thonsand plants were sent to the Kangra valley, and he hoped in the course of eight or ten years to have a sufficient number of plants in the Kaulagir plantation to plant the whole of the Dún.

In 1848, the services of Mr. Robert Fortune, already well known as a horticulturist, were engaged by the Court of Directors to make an expedition to the northern part of China in order to obtain plants of hardier varieties, as well as to investigate the mode of manafacture
in that part of China. In all this he was completely successful. Aboat 8,000 plants and several packets of socds were dospatched by him to India from localities celebrated for the good quality of their tea. He returned in 1851 , bringing with him 12,000 more plants, together with a large quantity of seed in a germinating state. With these ho proceeded at once to the Himálayan nurseries, which he afterwards inspected officially by request of Government. In his report on the condition of the nurseries he mentions eight as being at this time under Govermment control, viz., one in Dehra Dún, onc in Garhwál, and six in Kumaun. Their names are :-Kaulagir (Dehra Dún) : Gadoli (Garhwál) : Hawalbágh, Lachhmesar, Kapena, Anu, Kuasar, Bhartpur, and Rasiya (Kumaun).

Some remarks of his on each of the above may be briefly given here :-

1. Kaulagir plantation.-The soil is composed of clay, sand, and vegetable matter, on a gravelly subsoil of rocks similar to the surrounding mountains. The plants appoared less lealthy than in good Chinese plantations owing (according to Mr. Fortunc) to-
(a) The flatness of the land: (b), the system of irrigation: ( $c$ ), too early plucking: ( $d$ ), hot drying winds.
2. Gadoli.-Soil composed of loam, sand, and vegetable matter, very suitable for tea. Very like a Chinese plantation; plants healthy and prospects good.
3. Láwalbágh.-Land undulating similar to Chinese tea country; soil a sandy lom mixed with vegetable matter ; land terraced and sloped. Terrace cultivation is not adopted in China.
4. Lachhmesar and Kapena.-Situation steep ; soil light and sandy, rarely irrigated ; plants in good order.
5. Bhdm Tál.-(a) Anu and Kuasar : land low and flat, area 46 acres ; bad situation : (l) Bhartpur : $4 \frac{1}{2}$ acres of terraced land ; soil, light loam mixed with clay, slate, and trap rock and a small amount of vegetable matter; well adapted for tea: (c) Rasiya, 75 acres of sloping land, plants most healthy, which are not irrigated.

Mr. Fortune also visited two plantations belonging to zamindars, the first called Lohba in Eastern Garhwál, 50 miles west of Almora, and at 5,000 feet altitude ; excellent land. In 1844, 4,000 plants from the Government plantations were pat here, bat failed owing either to want of knowledge or intentional carelessness. The other plantation called Katyúr was sitaated near Baijnáth in Western Kumaun ; the ground was undulating; there were nomerous streams, and the soil was fertile. Captain (now General Sir H.) Ramsay's two plantations each of four acres were planted in 1850. Good management produced good results. The labour and manure of the two neighbouring villages were secured in lieu of taxes. At the close of his report Mr. Fortune gives some advice on certain points connected with tea cultivation in this part of India: (1) The land best suited for tea, he considered, should be undulating and well drained, and such as would produce good crops of mandua or wheat, moist but not stagnant. (2) Irrigation he declared to be generally injurious and should be resorted to only on emergencies. (3) Plucking in China was never carried on until the third or fourth year after planting, and was only necessary up to this time for forming good bushes; sickly plants should not be placked. (4) The most suitable climate was to be found in Eastern Garhwál and Kumaon. At Háwalbágh, the thermometric readings showed a great similarity of climate with that of China. The rainy season in China is earlier, and the hottest time is in July and August, whereas in India the hottest month is June.

In appendix $B$. the annual yield of mannfactured tea for each Onttura. garden (between 1848 and 1868-69) is given as far as could be ascertained from scattered reports and office records. With the exception of the deductions from these figures, there is little to add regarding the later history of tea culture in these provinces beyond the general conclusion as to the altimate success of the part which Government undertook with the able assistance of Dr. Jameson in order to bring about the complete establishment of the tea trade in North-West India. As early as 1864 Dr . Jameson was of opinion that, owing to the increase of private enterprise and the production of seed in private gardens, Government would be justified in handing over the tea plantations to private capitalists. "Government," he says, "has done its work
in proving that tea can be profitably cultivated in North India. Seeds and seedlings have been distributed and skilled workmen supplied to planters in various parts of India." The extraordinary progress which occurred within a few years may be understood from the following facts :-In the year 1847, and up to 1859, tea cultivation was confined entirely to Government plantations, the total area being 166 acres. In 1859 the land under tea in Dehra Dún did not exceed 700 acres, and in Kumaon there was only one small private estate besides the Government plantations. In 1880 the area was as follows :-

			Number of gardens.	Arca.		
			33	Acres	Roods.	olcs.
Gurhwál	...	$\ldots$	10	-63	3	10
Dehra Dún	...	...	20	6,96	0	0
	Total	...	63	10,93	2	10

On the occasion of the recent International Exhibition at Mel-

Indian teas in the Anstralian markets. bourne the opportunity was taken of bringing merits of Indian-grown teas. The undertaking was entirely successful, and the prospects of Indian tea-planters have thereby received a great impulse. They will now have a better chance of satisfying a demand for Indian tea on its own merits, and the prejudice in favour of Chinese tea which went so far as to encourage the doubtful practice of selling Indian tea as that of China will undoubtedly lose ground. The planters in Asám and Bengal will be more directly benefited by these imports to Australia. For the teas of North-West India a market closer at hand is required. Efforts are now being made to renew and extend the Indian tea trade beyond the borders of the North-Western frontier where the demand is practically unlimited. Mr. J. B. Fuller in his report on the foreign trade of the North-Western Provinces and Oudh makes the following remarks as to the advantages of opening up a trade between Kumaun and Tibet :-

[^154]might afford for the inferior clasees of Kumann tea, which will not bear the cost of carriage to the sea-board. At present the markete of Tibet are closed by the united inHuence of the Clinese Govermment and the Tibetan Lamas, who, having the monopoly of the wholesale and retail tea supply of the country, are naturally averse to the competition of a traffic in Indian tea, which might be more dificult to engross. The strict monopoly to which the tea trade between China and Tibet is subject is fully deacribed in a recent report by Mr. Colbourn Baker, H. B. M.'s Consul at Chung Ching : his remarks, which specially relate to the prospects of a tea trade betw' cen Assam and 'ribet, apply no less pertinently in the case of Kumam, and the result of the system which he describes is that during the year under report not only was no tea exported to Tibet from these Provinces, but Chinese tea was actually imported into native Garhwál by the Nilang pass. 'Tea', Mr. Baker writes, 'is to the Tibetan more than a luxary: it is an absolute neccssity.' Yet the Tibetans ou our frontier are compelled to purchase tea of atrocious quality, the price of which has been swelled by a long and difficult transport from the eastern extremity of the country; while immediately across the frontier there are tea gardens whence they could be supplied with a better article, at a cheaper price, and with profit to the Kumann teaplanters as well as to the itincrant traders (Bhotins) throngh whose hands it would pass. The price of brick tea per ith. on the Kumaun-Tibet frontier is not known with accuracy, but aince Mr. Baker shows that its price is increased from 41 annas to 8 annas per th., by transjort from Bathang to Thassa, which is not one-third of the way, its price on the Knmaun frontice must be very considerable and inuch in excess of what Kumam planters could supply it for. Were the trade opened therefore the Tibetans would get cheaper as well as far better tea than what they at present consume, which in the words of Mr. Baker is 'the merest refuse,' consisting of little else than the twigs and brushwood of the tea plant, and vastly inferior to the vory sweepinge of Indian tea golowas. The tea-planting industry of Kunnaun would benefit largely by the opening out of a trade, which would enable it to diepose of its coarser produce easily and cheaply. So heavily is Kumaun tea handicapped by the expense of transport to Calcutta that the most profitable portion of the trade even now is that transacted in green teas with merchants from Central Asia who purchase the ten at the factory and carry it away themselves, saving the planters the expense and trouble of packing. Kumaun planters are well aware of the advantages which a trade with Tibet would give them, and a former manager of the Kousani Tea Company actually manufactured brick tea and endeavoured, but unsuccessfully, to get it into Tibet. Lastly, the Bhotias, in whose hands the Tibet Irade lies, would derive great bencfit from the substitution of a new article of commerce for borax, the price of which has fallen under American competition too low to afford substantial profits on its import."

The great success which has attended the cultivation of tea in Dehra Dún was hardly anticipated by Dr. Royle, who appeared to be decidedly in favour of a higher elevation. The locality which he recommendod as being the most suitable for experiments in this district was a
place called Jarrapani half way between Rájpur and Mnssoorie and about 5,000 feet abovo the sea. The flatness of the ground in the Dún however was probably the chicf cause of its being rejected in the first instance; for it had been observed that in China the finest tea plantations were situated for the most part on sloping ground. ${ }^{1}$ Dr. Falconer, who succeeded Dr. Royle at Saháranpur, on finding that the tea plant would grow even at Sahirraupur, was naturally led to a different conclusion, and it was at length decided to commence operations in the Dún. The first tea plants were introduced in 1842, and two years later the Kaulagir plantation was started under the superintendence of Dr. Jameson, who is still living to witness the successful results of his energy and perseverance.

In 1847 this piece of ground covered about eight acres. The

## Kaulagir.

It was visited in 1850 by Mr. Fortune, who was deputed by Government to inspect the tea plantations in India and to submit a report on their condition. The result of his visit led him to condemn the Dún as altogether unsuited for the cultivation of tea. The Kaula gir plantation happened just at this time to be in an unsatisfactory condition, but for reasons depending on the mode of cultivation, and not, as time has shown, on account of any radical defect in the locality. At any rate the defects, such as they were, were soon remedied by Dr. Jameson, and the good prospects of tea cultivation in tho Dún were ensured. At a lecture given by Dr. Royle at the Royal Asiatic Society a letter from Captain Cautley was read in which he gavo the following description of the Dehra Dún plantations :-" I saw the Government garden near Kaulagir, in which there were 4,000 plants growing most luxuriantly, the whole in full blossom. I believe that the whole of these, with the exception of a few brought from the hill plantations, are seedlings; and certainly, as far as luxuriance of vegetation goes, I never saw anything so promising in my life. There cannot be a doubt of the tea growing luxuriantly in all this part of the Dún." Dr. Falconer was also present at this meeting and spoke strongly in favour of extending cultivation in the Dehra Dún, not only on account of the suitable

[^155]climate and soil, but also because of the large amount of cleared land that was available in that locality; labour too, he maintained, was cheap as well as carriage.

The yicld of tea and seeds from Kaulagir plantation during the years 1861 to 1865 is given below:-


This plantation after having remained for upwards of 23 years under Government management was sold in 1867 to the Raja of Sirmor for two lacs of rupees. In 1868 the receipts amounted only to Rs. 1,401 , but the garden now promises to become a valuablo source of income to the purchaser. In 1866 the road over the Mohan pass was constructed and a much more direct route was thus established for the carriage of tea from the Dún.

Shortly after the formation of the Government plantation several other gardens were started in the Dún, including Harbanswala and Arcadia, both now belonging to the Dehra Dún Tea Company, the largest and at the present time the most successful concern in the Dún. Many of the other gardens however failed, either from want of capital to start with, or because the managers were totally ignorant as to how the plant should be cultivated or the tea prepared. Since the year 1850 however the prospects of tea-cultivation have gone on improving and every year sees an increase in outturn and a finer quality of tea. In 1857 Dr. Jameson estimated regarding the teabearing capabilities of the Dín as follows : area 100,000 acres; yield $10,000,000 \mathrm{Hb}$; average per acre 100 Hb Although the additional laud brought under tea cultivation is annually considerable, it seems improbable that such a large area as calculated by Dr. Jameson will
ever be utilized for this purpose. On the other hand his estimate of outturn per acre was far too small, as will be seen by some detailed statements which follow. In 1863-64 only 1,700 acres were under tea cultivation.

The question as to the effect of canal irrigation on tea plants

## Irrigation.

 secms to be finally disposed of. Fine healthy plants are now to be seen where formerly, when artificial irrigation was practised, the plants were sickly and sterile patches of soil were frequent. These patches were caused, it is supposed, by the excess of lime contained in the water; the low temperature of the water no doubt contributed to bring about tho injurious conditions as described above. Artificial irrigation has therefore been altogether given up by most of the tea-planters in the Dún, and a marked improvement in the healthiness of the plants has been taken place in consequence. Other causes have also combined to bring about better results. Greater attention for instance is being given to the advantages of manuring. Firewood, an equally indispensable article, is yearly becoming more scarce, and is likely to prove a cause of anxiety for the future. Until recently a large quantity of tea used to be bought up by merchants from Kábul and Central Asia, who took it away with them in their own bags. Tea of very average quality was thus sold at from 13 annas to one rupee per 17 . The trade with Kábul will in all probability be renewed now that hostilities with that country have ceased. The quality of the Dún teas as regards flavour and aroma has a close resemblance to that of the other kinds produced on the Mimálaya in Kumaon and Kangra. Two varieties of the plant are cultivated, viz., the China and a hybrid between it and the Asám plant, the latter being more closely related to the China than to the Asím varicty. The Asím and Asám hybrid are found to be too delicate for cultivation in this part of India. There are at present twenty plantations in the Dún, making up a total area of 6,960 acres. The Dehra Dún Tea Company have lately introduced at their factorics sets of rolling machinery which have proved to be a great saving of labour. The outturn of tea from the Dehra Dún Tea ('ompany's plantations in 1879 was $313,058 \mathrm{tb}$., an average thist is of 439 tt . per acre. The cost per acre amounted to Rs. 133-10-7.
## APPENDIX B．

Tea Statistics．

Name of plantation．	1848.		1849.			1850.			1851.			1852.		1858.		1854.		1855.	
		$\begin{aligned} & \text { d } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { id } \\ & \text { ig } \\ & \text { Hen } \end{aligned}$	$\begin{aligned} & \text { : } \\ & \text { © } \\ & \text { D } \end{aligned}$			$\begin{aligned} & \text { 苞 } \\ & \text { e } \end{aligned}$		$\begin{aligned} & \text { 弟 } \\ & \text { 品 } \end{aligned}$	发	\％	莒	$\begin{aligned} & \text { ⿷匚 } \\ & \text { 茼 } \end{aligned}$	畋		－	¢		－
	tb．			ib．	15.		f．	Ib．	1 tb ．	17．	\＃．	tb．	\＃．		th．	1b．	fb．	tb．	17．
Kaulagir ．．．	37	32	167	114	44	58	385	247	219	107	132	1，103	178	3，583	534	5，383	874	2，882	2，681

In 1856，the production of black ten at Kanlagir reached $9,596 \mathrm{ft}$ ，of green tea， $\mathbf{1 , 6 5 3} \mathrm{tb}$ ．and of bohea，4，774 tb ．In 1857 the outturn was 4,501 th．of biack tea， 896 to．of green tea and 922 th ．of bohea．The Páari garden fielded $2,251 \mathrm{tb}$ ．of black tea in 1853,707 ith．int 1855， 1,844 而．in 1856 ，only 32 lb ．in 1857 ， $9,492 \mathrm{fb}$ ．in $1859-60,10,247 \mathrm{tb}$ ．in $1860-61$ and $12,964 \mathrm{tb}$ ．in $1861-62$ ．The returas from Háwal－
 in $1862-69,4,948 \mathrm{Hb}$ ．in $1863-64$ and $9,720 \mathrm{fb}$ ．in 1864－65．The remaining fgares are as follows－

a The decrease in yield was owing to drought during the cold season and in April and May. There was, however, an abundant sapply of seed this ycar, viz., 2,220 maunds, which was nevertheless unequal to meet the demand. Of the manafactured this year 16,000 lb . were sent to England and the rest was sold by auction.
$\dagger$ The $d r y$ weather during April and May affected allthe plantations in North-Western India; hence the decrease in pield thilg year,

Receipts and Expenditure of the Government plantations, 1862-1869.

|  |  |  |  |  |  |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |

\footnotetext{

- This does not include credit for 700,000 plants distributed gratis; also seeds for which Rs. $\mathbf{1 4 , 0 6 0}$ might have been realized by selling to planters in Kangra. The records are too imperfect to give the full details for each year.

Actual outturn of tea from plantations of Kumaon, Dehra Dún, and Kangra Valley for the last ten years :-

1871	619.07\%		1878	..'	1,635,300	b.
1872	741,769	"	1877	...	1,398,785	"
1873	... 981,854	"	1878	-0¢	1,632,054	"
1874	... 1,217,975	"	1879	.."	1,800,000	"
1875	... 1,289,532	"	1680	' ${ }^{\prime}$	1,945,181	"
Estimated crop for 1881 ...			.'.	...	1,868,900	"

Distribution of Tea Seeds.
From the Kumaon, Garhwál and Dehra Dín Nurseries, 1860-67.

1860-61.	1861-62.	1862-63.	1863.64.	1864-65.	1865-66.	1866-67.
Mds. srs.	Mds. srs.	Mds, srs.	Mds. srs.	MIs. srs.	Mds. srs.	Mds. srs.
2,220 0	No record found.	2,859 32	2,361 0	2,842 0	2,103 0	1,643 0

The records for 1861-62 are not procurable.

Tho following refcrences are to some works bearing on the Botany, Scientiflo and Economic, of the Elmallayan districts of these provinces:-

REFERENCES.
Scientific Botany.

1. Hortus Indicus Malabaricus continens Regni Malabarici omnis generis' plantus variores, by W. Van Rhcede Van Drakenstein and J. Casearium. Amsterdam, 1678-36. This work contains many plates with uames in the Persian and Hindi characters.
2. Herbarium Aulboineuse, by G. E. Rumph, edited by Burmann. Amsterdam, 1741-5. The descriptions are in Latin and 1)atch, and refer to many Indian planta.
3. Flora lndica, by N. J. Burmann. Amsterdam, 1768. It contains a number of good plates of rare Iniadn plants.
4. Indian Cyperacer, by Professor Rottler. Copenhagen, 1773.
5. Flora Cochin chinensis, by J. de Loureiro, ed. Willdenow. Berlin., 1793.
6. Plauts of the coast of Coromandel, by Dr. W. Roxburgh. London, 17951819.
7. Flora Indica: or description of Indian plants, by the same, edition Carey. Scrampur, 1832. The same, edition C. B. Clarke. Calcutta, 1874; this is the edition referred to in the preceding pages.
8. Flora of British India, by J. D. Hooker and others. Loudon, 1875-81. This work is constantly referred to in the preceding pages.
9. Gencra plantarum ad exemplaria imprimis in Herbariis Kewensibus eervata definita, by G. Bentham and J. D. Hooker. London, 1862-67. Contains Ranunculacee-Cornaceœ.
10. Descriptions of the genera and species of plants of the order Labiata, by G. Bentham. London, 1832-36.
11. Le jardin fruitier du Musenm, ou iconographiedes toutes les espèces et varietés d’arbres fruitiers cultîvés dans cet établisscment, par J. Decaisue. Paris, 1858-60.
12. Prodromus sive enumeratio contracta ordinum, gencrum, specierumque plantarum hujusque cognitarum, by A. P. De Candolle. Paris, 1894-73.
13. Genera Plantarum secundum ordines naturales disposita, by Endlicher. Vindobonœ. 1836-40. Supplementa to the preceding. 1842-47.
Cumpositze India Cex by C. B. Clarke. Cnlcutta, 1876,
Commelynacex and Cyrtandracea by the same. Calcutta.
Flens.
14. The Ferns of Southern India, by Captain R. H. Beddome. Madras, 1863-64.
15. Ferns of British India, being figures and deseriptions of the ferns of British India, exclusive of those figured in the preceding work, by the same. Madras, 1866-70.
16. Species Filicum: or description of the known ferns, by the same. London, 1846-64.
17. Icones Filicum : or figures and descriptions of ferns, by the name and Greville. London, 1831.
Century of ferns and a second century of ferns, by the same. London, 1854-64.
18. Filices Exotice: or coloured flgures and descriptions of exatic ferns, by the same. 1859.
19. Synopsis Filicum, by the saume: London, 1868.
20. Genera Filicum: or illustrations of the ferns and other allied genera; by F. Baner and Sir W. J. Hooker. London, If42.
21. Index Filicum: A.-Gon., by 'l': Moore. London, 1857-63.
22. Ferns, Britich and Exotic, by E. J. Lowe. London, 187.2.
23. Natural listory of new and rare ferns, being a supplement to the preceding, by the same. London, 1868.
Ferns of northern India, by C. B. Clarke. London, 1880.
Mosses.
24. Musci exotici : containing flyures and descriptions of new or little known foreign mosses and other cryptogamic specieb, by W. J. Hooker. London, 1818-20.
25. Historia muscorum in qua 600 species describuntur cum appendice et indice synonymyorum, J. J. Dilleuii. Edinburgh, 1911.
26 Synopsis muscorum frondosorum, by C. Müller. Berlin, 1849-51. Mosses of norchern India, by Mitten. London.

## Lichens.

27. Introducion to Cryptogamic Botany, by Revd. M. J. Berkeley. London, 1857.
28. Selecta Fungorum earpologia, by L. R. and C. Tulasnc. Paris, 1801-65.
29. Lichens: J. A. S. Ben., X. 828.
30. Syatema Mycolagicum, sistens Fungorum genera et species, by Fries. Lundæ, 1821-28.

Pineg.
31. Synopsia Coniferarum, by Dndlicher. St. Gall, 1847.
32. Pinetum : being a synopsis of all the coniferous flants as yet known, by G. Gordon. London, 1875.
33. Description of the genus Pius, illustrated with figures, directions as to cultivation, and remarks on the several species of the family Coniferm; by R. K. Lambert. London, 1828-37.

Others.
34. Melastomacearum in Museo Parisiensi monographico descriptionis tertamen, by C. Naudin. Paris, 1849-53.
35. Rumphia sive commentatio botanica imprimis de plantis Indiæ orientalis, by Blume. Leyden, 1836-48.
36. Flora orientalis sive enumeratio plantarum in oriente a Gracia et Agypto ad Indiæ fines observatarum. Basil, 1867-72.
37. Illu-irations of the genus Carex (Cyperaceœ), by F. Boot. London, 185867.
38. Orchids and how to grow them in India, by S. Jennings. London, 1875.
39. Genera and species of orchidaceous plante, by J. Lindley. Landan, 183038.
30. Sertum orchidaceum, by the same. London, 1838.
41. Flora Indica, being a systematic account of the plants of Britiah India, by J. D. Hooker and T'. Themson. London, 1855. 'Though superseded by the 'Flora of British India,' this volame is valuable for its introduction, giving a history of Indian Botany and the geographical distribution of plants.
12. Exotic Flora: or figures and descriptions of new, rare or interesting exotic plants, by Sir W. J. Hooker. Edinburgh, 1823-27.
49. Historia naturalis Palmarnm, by C. F. de Martius. Munich, 1823-50.
44. Palms of the British Cast Indies. by W. Griffth. Calcutta, 1850.
45. Rhododendrons of the Sikkim-Wimâlaya, by J. D. Hooker. London, 1849-51.
46. Panjúb plants, comprising betanical and vernacular names, and the uses of most of the trces, shrnbs, and herbs of economical value, growing within the province; intended as a hand-book for officers and residents in the Panjub, by J. L. Stewart, M.D. Luhore, 1869.
47. A catalogue of the plants of the Panjáb and Sindh, to which are added some others that from their present geographical proximity may be found hereafter to occur in the Panjáb, by J. E. 'I. Aitchison, M.D. London, 1.869.
4. Illustrations of the Botany and other branches of the Natural Fistory of the Himálayan Mountains and of the Flora of Cashmere, by Dr. J. F. Royle. London, 1839-40.
49. Plaute Asiatica Varieres: ar descriptions and figures of a select number of unpublished East India plants, by Dr. Wallich. London, 1830-32.
50. List of dried specimens of plants in the East Iudia Company's Museum, by the same. (Calcutta? 1840-48).
51. Icones Plantarum Indiœ orientalis, by R. Wight. Madras, 1898-56.
52. Prodromus Floræ Peninsulæ Indiæ orientalis, by R. Wight and G. A. Walker-Arnott. Lundon, 1834.
53. Hlustrations of Indian Botany : or figures illustrative of each of the natural orders of Indian plants described in the preceding works, but not confined to them, by R. Wight. Madras, 1888-50.
64. Illustrations of Indian Botany, principally of the southern parts of the Peninsula, by R. Wight. Glasgow, 1831.
55. The Indian Botanical works of W. Griffith, arranged by J. MacClelland. London, 1848-54. Containing notes on, and plates of, many species.
56. A hand-book to the Indian Flora, by Major H. Drury. Travancore and Madras, 1864-69.

## Economic Botany.

My main authorities on the economic botany of Kumaon are Madden, Stewart, and Brandis.

Madden's articles will be found in the Journal of the Asiatic Society of Bengal, XV., 79 (1845) ; XVI., 226, 696 ; XVII. (I ), 349, and XVIII., 603. Also in the Journal of the Agri-Horticultural Society of Calcutta, IV. (184õ); 229: VII., 75, 129; and VIII., 99; and An. Mag. N. H. on Nepálesc flora.
Notes upon the pines of the N. W. Himálaya by Dr. Cleghorn. J. Agri-Hort. Cal., XIV. (1866).

Report on the deodár forcsts of Basíhir, by Dre. Brandis and Stewart and Captain E. Wood. Calcutta, 1865.
Leport on the food of the inhabitants of the district of Bijnor, by Dr. J. L. Stewart. Sel Rec., North-Western Provinces, XXXVIII., 25 ; II., N. S., 463. The same writer's article on 'The Sub-Siwalik Tract, with especial reference to the Bijnor forest and its trees, and an account of their useful products,' appeared in the J. Agri-Hort., XIII., 2G5, in 1864.
Statistics of Kumaon, p. 344, Ayra, 185 I , gives a list of the principal agricultural products based on Madden. The Garhwall Settlement Report, Allahabad, 1866, give日 a sinilar list (app. 13) based on the same anthority.
Forests of Kumaun. In. Rec. Supp., VIII.5-15. Records, North-Western Provinces, Pt. XVIII, 374. on the Bhábar and Tarai
On the cultívation of Imphee, by N. A. Dalzell, J. R. A. S., XIX., 39.

## Forests.

Timber trees, timber and fancy woods, as also the forests of India and of Fastern anl Southern Asia, by E. Balfour. Madras, 1862.
Colling' Report on the caoutchouc of commerce. London, 1872.
The useful plonts of India, by Major H. Drury. Marras, 1858.
English index of the plants of India, by H. l'iddingtou. Calcutta, 1832.
Cyclopedia of India and of Easteru and Southern Asia, commercial, industrial, and scientific, by E. Balfour. Madras, 1873.
The Forest Flora of North-West and Central India; a hand-book of the indigenous trees and shrubs of those countries, commenced by the late J L. Stewart, M.D., continned and completed by D. Brandis, P'h. D, London, 1874. By far the most valuable of all the preceding for its accuracy and its practical application of science to cconomic purposes.
Report on insects destructive to woods and forest:, by R. Thompson. Scl. Rec., North-Western l’rovinces (2nd ser.), I., 377.
On the seasoning of wood for practical purposes, by G. Paton. Ibid., V., 444.
Experiments on the strength of Sal timber, by C.B Thornhill. Ibir., V., 454.
Report on the present state of the Sub-Himálayan forests below Kumaon and Garhwál (1861). by Major H. Ramsay, Guz., North-Western Provinces, Suppt., December, 19th, 1861 and Webber's forest survey.
Report on the forests in the Bhágirathi Valley, by Major G. Pearson, Scl Rec., North-Western Provinces (2nd ser.), II., 117 ; III., 106.
Report on the Sub-Himálayan forests of Kumaun and Garhwál, by the same. Ibid., II., 125.
Report on the Deodár forests of Jannaár-Báwar by the same. Ibid., II., 373 ; III., 129.

## Tobacco.

Report on the production of tobncco in India, by J. E. O'Connor. Ca'cutta, 1873. This work gives a summary of all the information available up to the date of its publication.
Synopsis of our knowledge of tobacco cultivation nud manufacture, by $P$. Robinson, Cir. II. II. HI of Board of Revenne, North-Western Profinecs, dated 6th Scptember, 1872. Contains anwers to some filty-five questions, compiled from 1 -ports and works, a list of which is given.

Papers regarding the tolacco monopoly in the Presidency of Fort St. George, and the proposed levy of a tax on tobacco in the other presidencles. Calcutta, 1870 .

## Sils.

Some account of Silk in Indin, especially of the varions attempte to encourage and extend sericulture in that country, by J. Geoghegan. Calcutta.
Annual Reports on sericulture in Dehra Dún in the Proceedinge of Government, 1878-81.
Notes on the Bo:nbycides as at present known to us, by Captain T. Huttom, Suppt., Gaz. of India, for September 2nd, 1871.

Cutton.
Cotton : an account of its culture in the Bombay Presidency, by W. R. Cassels. Bombay, 1862.
The Cotton Hend-book of Bengal, by J. G. Medicott. Calcutta, 1862. This work gives from official sources a digest of all the information available on the subject of the production of catton in these provinces to the date of its publication (pp. 165-217.)
Parliamentary papers on 'Cotton Cultivation in Bengal.' 1857.
Culture of cotton in India, by J. F. Royle. London, 1851.
Review of measures for the improved cultivation of cotton in India, by the same. 1859.
Cotton in India, by Dr. Forber Wataon. London, 1859.
Experimenta in cotton cultivation in the North-Western Providces, Sel. Rec., North-Western Provinces, I.N S., 114. Ibid., III., S. S., 91. Thomason despatches, II., 38.
Area and outturn of cotton crop, North-Western Provinces, 1869-70-1874-75, la Sel. Rec., North-Western Provinces, IV.-VI.
Cotton in India, Cal. Rev., XXXVII., 1.
Cotton soils, J., A. S., Ben., V., 314.
Reports of the Cetton Commissioner with the Government of India.
Reports of the Manchester Cotton Supply Association from 1858.
Hand-book of the Cotton Trade, by Ellison. London, 1858.
Administration of the East India Company, by Kaye. App. (c.), 689.
Annual Reports of the Board of Revenue, North-Western Provinces, on the culture and outturn of cotton in these provinces.
Notices of experiments in the Sahéranpur Botanical Gardens. Reports passim.
Cotton trade in India, J. R. A. S., XVII, 346.
Cottun in Dharwár by Marshman. Jbid., XIX., 351.
Fibres, \&c.
Fibrous plants of India fitted for cordage, clothing, and paper, with an account of the cultivation and preparation of flax, hemp, and their substitutes, by J. F. Royle, M.D. London, 1855. This valuable work gives a summary of nearly all that was known up to its publication regarding the fibres of grasecs, sedges, liliaccous plants, plantains, palme, flax, jute, bemp, and nettles.

The cultiration and manufacture of flax in the North-Western Provlaces, by Dr. Janeson. Sel. Rec., North-Western Provinces, Pt, XXXV., 4, and III., N. S., 332.

Notes on the snbject of paper-making in India, by W. S. Stiven, M.D. Sel. Rec., North-Western Provinces, III., N. S., 249.
Report on the process of tanning observed in the Gov ernment tannery, Cawnpore. 1bid. (2nd ser.), III., 201.
Note on the Chú-ma or grass-cloth plant of China. J., Agri-Hort. Calcutta, VI., 219 ; VII. Part 1, 18 ; Part II., 36.
Notice of the Rheeas or nettle-grasses and other textile flbres of Assam. Ibid., VII., Part I., 215 ; Part II., 52.

Report on the trial of Greig's machine for extracting Rheea-fibre at Saháranpur in 1872, by Lieutenant-Colonel Hyde. Calcutta, 1872.
Report on the preparation and uses of Rheea-fibre, by Dr. J. Forbes Watson. London, 1875.
Preliminary report of the Committee appointed by Goverament to teat Rheea-flbre-extracting nachines in the competitive trial held at Saháranpur in Septembr-October, 1879. Allahabad, 1879.
Nore.-The works marked with an asterisk have been consulted by Mr. F. Duthie in his notice of Tea;cultivation to these provinces.

## Tea.

Report on the tea-plant of Upper Assam, by W. Grifflh. Calcutta, 1836.
Account of Assam, by W. Robinson. Calcutta, 1841.
Notes on the cultivation of tea in Absam by J. C. Marshman, J. R. A. S., XIX., 316.

* Tea cultivation in Kumaon, by J. H. Batten, Ibid., X., n. a., 131, and J. Agti.Hort., Col. V., Pt. IV. (1878).
- Report on the culture and manufacture of Ten in Kumaon and Garhwál, by Dr. W. Jameson. Calcutta, 1843-45 (J., Agri -Hort., Beri., Vols. II. and IV.)
* Report on the progress of the culture of the China Tea plantin the Himálayas from 1835 to 1847, by J. Forbes Royle. London, 1849.
* Report on the Tea plantations in the North-Weatern Provinces, by R. Fortune. Agra, 1851 : and Sel. Rec., N.-W. P. (2nd ser.), V., 401.
Journey to the Tea-countries of China, bs the same. London, 1852.
Suggestions for the importation of Tea-makers, implements, and seeds from China to the Nortl-W csteru Provinces, by Dr. W. Jameson. Agra, 1852.
Report showing the present condition and progress of the Government Tea plantations, by the same. Gaz., N -W. F., Suppt., 26th March, 1861.
Government Tea plantations: the yield of the factories and the support given to private capitalists, by the same (1862). Sel. Rec.,N.-W. P. (2nd ser.), V., 422.
- See also the annual reports on the working of the Government Tea plantations: that for 1862-63 is given in Sel. Kec., N.-W. P., V. (2nd ser.), 430; for 1863-64 in 1bid., Pt. XLIII., 1; for 1864-65 in Ibid, Pt. XLIV., 1 ; for 1860̆-66 in Lbid., Pt. XLVI., 1 ; for 1866-67, Ibid., 82; for 1867-68 in Ibid., I., 1 ; for 1868-69 in Ibid., II., 433, \&c.
* Indian Agriculturist, passim.
* Indlan Tea Culture, by A. Burrell. J. Soc. Arts, xxv. (1877).
* Kumaon Tea. Saundere' Montlı. Mag., March, 1851, p. 389.
* Tea Conmittee Reports, including letters from Wallich, Falconer and otherf, 1834-38.
* Tropical Agriculture, by P. S. Simmonds, 1877.


## Drogr.

Materia Indica, or articles employed by the Hindoos and others in medicine, arts, and arriculture, by Dr. Ainslic. London, 1826.
The Bengal Dispensatory, chiefly compiled from the works of Roxburgl, Wallich, Ainslie, Wight, Arnott, Royle, Pereira, Lindley, Richard, and Fée, by W. 13. O'Shaughnessy. Calcutta, 1842.

The Pharmacopaia of India, by E. J. Waring, M.D. London, 1868.
Remarks on the uses of some of the bazaar medicines and common medical plants of Indis, by E. J. Waring. London, 1874.
The Indigenous Drugs of India: or short descriptive notices of the medicines, both vegetable and mineral, in common use amongst the natives of India, by K. L. Dey. Calcutta, 1867.
Supplement to the Pharmacopceia of India, or a catalogue of Indian synonyms of the medicinal plants, products, inorganic and organic substances contained in that work, with explanatory and descriptive remarks, \&cc., in fourteen languages, by Moodeen Sherriff. Madras, 1869.

APPENDIX A. 1.
Table of rates according to which farmers of the forest dues in Kumaon were authorised to collect in 1847.

Each cart-load of wood		A. p.			Each cart-load of burnt lime				A.   12		
	" of sál loge (latias)	$\ldots$		0			kunku			6	0
"	wooden sugar-mill	$\ldots$		0		pony-load of	f lime		...	0	
"	cart-load of rafters (har	s),		0		ass-load	ditto		..	0	3
"	" of ebony	-.		0		pony-load of	$f$ lac			4	0
"	' 9 of bambus	...	6	0		head-load of	f ditto			2	0
	pony-load of ditto	...	0	6		pony-load of	of piparn			4	0
	head-load of ditto		0	3		head-load of	f ditto			2	0
	bhangy-lond of ditto	...	1	0		cart-load of	charco			4	0
	cart-load of bhabar gr		6	0		bhangy-load	of bask	kets		1	0
"	pony-load ditto	...		6		ditto of	rooden	uter	,	1	0
	head-load ditto	...	0	3		head-load of				0	
	cart-load of tát reeds	...	-	0		pony-load of	f ruina			4	0
	pony-load of ditto	...	0	${ }^{6}$		head-load of	ditto			2	0
	head-load of ditto	...	0	3		Catec	hu fur				
"	cart-load of gramem	...	4	0							
	bullock-load ditto	...	0	${ }^{0}$		u Kota   , Chanbhain	nsi....			7	$\begin{aligned} & 8 \\ & 0 \end{aligned}$
"	head-load ditto	...	0	3		", Tallades			...	2	8
"	gún of catcehu	."	8	0		Chhakháta	,			5	8

The grazing dues were three annas for cach buffalo and one anna for each cow or bullock pasturing in the Bhábar during the year, with the following exemp-tions:-Calves of all kinds up to two years of age, all cattle actually employed in carriage, all cattle bona fide the property of a hill head-man possessing a lense, all cattle passing through and not stay ng more than five days, all cattle belonging to the head-men of the Bhábar villagen, and all belonging to cultivate! actually residing in the Bhábar all the jcar rolmd.

APPENDIX A． 2.
The following table shows the duties which the farmers were permitted to levy by Mr．Shore ${ }^{1}$ in Dehra Dún in 1826：－

Table of duties levied in the Durn forests in 1826.

Article．							
	Rs．a．	Rs．a．p．	Re．a．p．	Rs．a．p．	A．p．	A．p．	．P．
Sisu，tún and ebony of any size．	万 0	$3120$	2880	10	120	60	
Each wooden sugar－mill，	0120	0120	0120				
Bambus ．．．	060	0 － 6	$\begin{array}{llll}0 & 3 & 0\end{array}$	010	0	06	03
Beam for sugar－mill	$1 \begin{array}{lll}1 & 0 & 0\end{array}$	0120	$\begin{array}{llll}0 & 8 & 0\end{array}$	030	20	10	0 O
Sal of any size ．．．	0880	$0 \quad 6 \quad 0$	0 O 40	010	10	06	0
Fire－wood and timber not expresely specified．	0 G 0	0 4 4	$\begin{array}{llll}0 & 3 & 0\end{array}$	010	09	06	03
Bábar and mizinj grass	$\begin{array}{lll}0 & 8 & 6\end{array}$	0 O 60	0	016	10	0 6	0 3
Ringâls for hukka stems，	300	$2 \quad 40$	180	0100	76	40	20
Nal reed for matting ．．．	140	0	010	040	30	16	09
Khat or catechu	510	$\begin{array}{lll}4 & 3 & 0\end{array}$	2130	120	140	70	36
Eac	1120	$] 50$	$\begin{array}{llll}0 & 14 & 0\end{array}$	056	40	20	10
Lime	$0 \cdot 40$	0	$\begin{array}{lll}0 & 2 & 0\end{array}$	0	06	0	02
Charcoal	080	060	0 0 4 1 0	01	10		0 \％

APPENDIX A． 3.

## Revenue of each Forest Division．

Year．		Kumaon．	Naini Tál．	Ráni－ khet．	Garl－ wál．	Dehra Dún．	Bhagi－ rathi．	Jauneár Báwar．
		Re．	Rs．	R曰．	Re ．	IRs．	Rs．	Re．
1865－66	．－＇	2，59，544	．．．	．．．	2，48，305	40，431	．．．	
1866－67	．．．	1，61，369	$\cdots$	．．．	2，28，357	43，729		
1867－68	－	1，78，469		．＂	1，77，359	41，156	．．．	．．．
1868－69	．．．	1，72，601	．．．	．．．	1，88，733	41， 333		
1869－70	．．．	2，55，333	．．．	．．．	1，48，972	84，25：	4，508	
1870－71	．．．	1，05，601			1，11，745	31，943	15，401	36，589
1071－72	．．．	1，10，152		1，295	1，30，380	96， 819 ．	5，36，924	1，28，891
1872－73	．．．	2，67，339；	1，016	1，981	2，08，700	90，233	6，94，013	3，23，834
1873－74	．．．	3，65，687	1，346	3，292	1，53，796	78，270	4，66，0̄91	5，12，33E
1874－75	．．．	2，76，372	1，729	6，000	1，16，94t	81.800	2，84，376	2，62，017
1875－76	．．．	2，97，334	5，124	15，097	2，00，946	67，621	1，00，480	2，22，247
1ヶ76－77	．．．	2，18，166	18，010	11，885	1，40，322	67，033	87，964	2，03，628
1877－78	．．．	1，79，364	15，985	12，073	1，73，348	77，221	1，21，129	2，07，098
1478－79	．．＇	1，70，856	17，155	53，364	1，31，875	48，490	1，02，822	2，62，436
1879－80	．．．	1，65，574	21，426	7，165	1，11，794	41，482	60，970	2，14，456

Note－－In 1879－80 the Tons division was separated from Jaunsár－Báwar，and for that year the aldjusted accounts show Re．43，870 for Jaunsár－Báwar amd Ke． $1,70,581$ for the＇Ions division．
${ }^{1}$ Mr．Shore to Commissioner，Linmaon，15tli September， 1826.

## APPENDIX A 4.

## Expenditure of each Forest Division.

A-Conservancy and Working: B.-Establishment.

Year.	Kumaun.		Naini Tál.		Ránikhet.		Garhwál.		Delıra Dún.		Bhagirathi.		Jaungár-Báwar.	
	A.	B.	A.	B.	A.	B.	A.	B.	$A$.	B.	$\Lambda$.	B.	A.	B.
	Re.	Ra,	Fe.	Re.	Re.	Re.	Re.	Re.	Rs.	Re.	Rs.	Rs.	Rs.	Rs.
1865-66 ..			...	...	$\ldots$	...	81,717	11,641	25,639	28,780	...	00	.*-	...
1866-67...	86,024	28,431	...	...	...	...	95,265	10,156	23,429	28,988	m	0	...	...
1867-68...	83,067	26,613	...	...	...	$\cdots$	40,433	12,055	11,976	22,629	...	...	...	$\cdots$
1868-69...	49,481	18,172	...	$\ldots$	...	...	54,104	19,566	22,111	23,980			...	-..
1869-70...	47,574	26,644	...	...	...	...	68,720	12,241	25,571	24,937	77,242	13,008		
1870-71.	1,03,198	26,138	...	...			46,694	11,462	23,104	22,459	2,18,393	12,544	1,63	
1871-72...	54,867	21,114		$\cdots$	4,034	3,070	48,098	14,946	39,054	10,321	3,49,030	18,436	2,57	
1872-73 ..	69,755	21,606	476	731	3,224	6,509	43,540	18,023	22,590	23,695	4,12,035	13,393	3,37	
1873-74.0.	54,974	25,414	578	807	2,569	7,459	57,787	17,479	28,326	20,805	4,10,643	13,459	2,47,668	23,873
1874-75...	57,641	25,389	348	710	2,029	10,751	45,016	16,173	25,451	22,504	3,80,079	14,307	1,76,170	16,741
1875-76...	80,599	26,833	1,602	1,298	4,351	11,321	64,677	20,515	10,786	14,085	69,940	14,660	1,44,564	22,952
1876-77...	66,754	17,144	6,329	2,164	7,301	8,661	63,825	20,157	19,108	19,086	1,29,862	13,357	1,97,491	19,179
1877-78...	54,055	21,150	7,233	2,415	5,277	13,053	37,970	19,480	21,189	28,431	48,397	9,011	2,00,637	20,827
1878-79..	47,534	23,328	8,743	2,549	22,812	12,991	34880	21,669	15,420	23.513	82,176	4658	1,89,252	27,156
1879-80...	50,036	23,613	19,126	1,880	6,457	10,900	44,051	24,204	9,855	18,703	14,312	7,148	1,15,400	24,374

Note.-In 1879-80 the Tons division was separated from Jaunsár-Báwar, and of the expenditure recorded against the former Rs. 68,318 (Rs. 66,282 A. and Re. 2,036 B.) belongs to the latter.
APPENDIX A.s.


No.	English and botanichl or vernacular mames.	Measuremeat.	Royalty.	Average annuml export.
			IRs. a p.	
18	Acneia Catechu (churan)	Length up to $10^{\prime}$ girth to $3 \mathrm{v}^{\prime \prime}$.	Per score 1400	
19	D. $\mathrm{H}^{\text {a }}$ (múmla) ...		" $\quad 6 \begin{array}{llll}6 & 4 & 0 \\ & 4 & 1 & 0\end{array}$	
20	Do. (balli) ...	Length as it may be $12^{\prime \prime}$.	" $\quad 4 \quad 4 \quad 10$	Scores. $\mathbf{2 , 0 0 0}$
21	Do. (músal) ...	Length up to $8^{\prime}$ girth $8^{\prime \prime}$.	Per each 0	
22	D). (parts of carts)		\% $\quad 0 \quad 0 \quad 100$	
23	bo. (ditto)		$\cdots \quad 0$$\prime \prime$ 0 1	1
24	Lurge bedsteads made of sál, sisn, sandan.	Girth of legs, hends above 17"	, 0120	1
25	Do. of other woods	Ditto of $\quad .$.	17005	
26	[o. as 24	Girth of legs, heads up to $16^{\prime \prime}$	" 08	
27	Do. as 25 ..	Ditto $\quad .$.	" $\quad 0 \quad 0 \begin{array}{lll}3 & 0\end{array}$	
28	Legs of bedsteads as 24.	Girth of leads above $17^{\prime \prime}$	1100	Pieces.
29	Do. as 25	Ditto	\% 00	+ 4,800
30	Do. as 24.	Girth of head up to $16^{\prime \prime}$	1, 010	
31	Do. es 25 ...	Ditto -	" 00	
32	Small bedsteads as 24 .	Leugth up to $7^{\prime}$ girth to $10^{\prime \prime}$	$\cdots \quad 0 \quad 1$	
33	Do. 2325	Dito	$\cdots \quad 0 \quad 0$	
34	Do. ns 24	Length up to $4^{\prime \prime}$ girth to 10 "	" 00	
35	Do. as 25 .	Ditto $\quad \ldots$	, 00	J
96	Boxes as 24	Length uj) to $3^{\prime}$ girth above $60^{\prime \prime}$	$\cdots \quad 140$	
37	Do. as 25	Ditto $\quad \cdots$		
38 89	Do, as 24 .	D) girth $31 /$ to $60^{\prime \prime}$	11000	
89 40	Do. as 25 Do. as 24	Ditto	" $\quad 0 \quad 0$0 0    10 4 0	
41	Do. as 25 Do. 25	Ditto gith up to 30	", 0	
42	Bainbus saraincha bahga.	Di. ...	Per 100 scores.	37,800 scores.
4.4	Kanderu $\quad .$.	. 0	1) 90	96,000
44	Chhaneju and chhari.	**	" 70	190,000
45	Paina		$\cdots 40$	23,000
46	Balli...	Long up to 24 feet	Each 006	3,000 $n$
47 48	Doli ... ${ }_{\text {Blabari }}$	" ${ }^{25}$ ' or over.	" 00010	2,000 ${ }^{\prime \prime}$
48	Bhábari	m	$\begin{array}{llll} \text { Per100 } \\ \text { scores. } \end{array} \text { l } 000$	with 44.
49	Chiralu", for utensils.	**	Per head- $0 \quad 40$ load.	...
50	Large bambu box,	-••	Each 010	
61	Small ditto and basket.	-	$00$	$\left\{\begin{array}{c} \text { Picces. } \\ 16,000 \end{array}\right.$
62	Ditto basket ...   ricks and fishing	."	$\begin{array}{llll}\prime \prime & 0 & 0 & 3 \\ " & 0 & 0 & 2\end{array}$	13,000


$\stackrel{0}{4}$	Euglish and botanical or vernacular names.	Hoyalty.	A verage annual export.
		Re. $\mathrm{a}^{\text {a }}$	
54	Scale plates	Ench 00	4,000
55	Matting (chatai) ...	Per yard 00	3,400
66	Box made of cane, large $\quad .$.	Each 01	-..
57	Do, small ...	" 00	...
58	Skin of Bárasingha $\quad . .$.	") 0	7
59	1)o. cow, buffalo, camel, large ...	$\because 0$	1 Pieces
60	[)o. do. deer, middling mos	" 0	> Pleces
61	Do. do., small ... ...	" $0 \quad 0$	1 86,000
H2	Do. sheep and goats ... ...	1100	$J$
63	Shoes ... ... ...	$\cdots \quad 0 \quad 0$	
64	Horns of stag, deer, \&c...	$\because 00$	In 17.
65	Fontstools (mora) ...	" 01	
66	Ropes of máljan and bodaila ...	" 000	)
67	Each gold-washing sieve ...	" 50	0
68	Cart wheels, large ... ...	" 112	
69	Ditto, small, ...	$\cdots \quad 14$	-
70	Parts of carts ...	$\cdots 0$	0
71	Stools (pira) ....	$\cdots 001$	6 -
72	Wooden platters and pots, large	11000	0
73	Ditto, small $\ldots$	") 00	
74 75	Ditto, large of $B$. malabaricum,	* 00	45,600 pieces
75	Jitto, middle ...	$\cdots \quad 0 \quad 0$	6 )
76	Ditto, small	" 00	3 )
77	Wooden shoes $\quad . .$.	1100	3
78	Scalá beams, spoons, and sieves $\quad .$.	$\cdots \quad 00$	1 ...
79	Nigali (dewat and takhti)	" 00	3 - ${ }^{-9}$
80	Spinning wheels ... ...	170	0
81	Drums ... ... ...	" 0	6
82	Netive musical instruments (dutara),	$\cdots \quad 00$	3
83	Gun stocks ... ... ...	" 0	$\cdots$
84	Various seeds dry and gums ...	Per seer 00	650 maunds
85	Disto green ...	$\cdots \quad 00$	460 "
86	Ditto do. and resins,	$\cdots 0$	150 "
87	Ditto roots and fibres ...	$\cdots 0$	40.
88	Bark of the pomegranate	" 0	6,800
89 90	Powder of Mallotus phillipinensis ...	") 0	175 "
90 91	Various drugs	$\cdots \quad 0$	170 "
91	Piper lonyum $\quad$ \#...	$\because 0$	550 "
92	Piper Rubia, cordifolia, honey, \&c. ...	$\cdots 0$	0 000
93	Bánslochan ...	", 110	5 "
94 95	Lac ... ...	, 01	$3 \quad 713$
95	Catechu	Per maund 90	3,000
96	Seeds of Prinsepia utilis ( $t$ túwa) ...	, 14	5
97	Dried root of Datisca cannabina ...	, 10	4
98	Myrica sapida, khas-khas, and gum...	\% 0 O 8	0 1,800 "
99 100	Cinnamomum Tumala, \&c. ...	11004	848
100	Woodfordia floribunda, foc. ...	$\because \quad 0 \quad 4$	0 2,200
102	Drugs of sorts ...t ..	$1) \quad 0 \quad 4$	$0 \quad 100$
102 103	Rtha \&c., ... ...	04	600
104	Drugs of sorts	\% 002	$0 \quad 100$
105	Ditto	$\because 0$	150
105	Bark of Cinnamonum Tamala	") 012	616
106	Drugs of sorts ...	", 0	80
107	String and rope of múnj and bábar ...	$\cdots 0$	75
108	Wax	", 100	173
109 110	Resin of Pinus longifolia (Virja) ...	$\cdots \begin{array}{lll}11 & 1 & 4\end{array}$	86
110	Ditto bükhar-birja ...	08	50
111	Rlubarb (dolu) ....	") 012	11 "
112	Acorus calumus (bach) ... ...	11004	0 \% 646

## Notes on the adove hist.

1. Includes-
(a)-Babar, the grass of E. comosum, S. angustifolius, and others referred to at, p. B08.
(b)-Bind, the leaves of $S$. munja, used for thatehing.
(c)-Bindu, the leaves of other reeds used for the same purpose.
(d)-Mínj and sirki, parts of S. munja.
(e) -Tát, the culms of S. fuscum and C. laniger.
( $f$ ) -Sinh, the culme of Anatheriam muricatum.
2. Includes amall reeds of the patera (T. Elephantina), the reeds of the motha
(Cyperus tegetiformis) and the leaves of the khajür (Phanix sylvestris).
3. Iucludes the reeds of the nal-tura (Phragmites nepalensis).
4. Includes the leaves of the sirálu (Andropogon species) and bambu used for fodder.
5. Sec page 810.
6. These are ropes made from the máljan (Bauhinia Vahlii), page 793, and bodála (Sterculia colorata), page 792.
7. A royalty is levied on each sieve or rocker used by the gold-washers.
8. Under this head comes the following: -

Dry aonla, the fruit of P. Emblica known as Emblic myrobalans, page 777. Dry haraira, the fruit of T. Chebula known as Chebulic myrobalans, page 779.
Mocharas, the gum of the Bombax malabaricum (page 784) and Moringa pterygosperma (page 784), Mochkand, the root of Eclipta erecta, paga 735. Roli-ki-dâna, the seeds of Mallotus phillipinensis (page 776).
86. Under this head we have the green fruit of the aonla and haruira.

Dry bahera, the fruit of T. belerica, known as Beleric myrobalans, page 777. Amaltâs, the pods of Cassia fistuls, page 779.
Tülsi, the leaves of Ocimum sanctum, and the flowers of the dhák or Butea frondosa, page 778.
87. Under this eome:-

The resin of the sell (page 785) and the galls of Pistacia integerrima known as kakrastngi, page 746.
88. Under this head are included the following fruits, roote and fibres:-

Green pipla, the fruit of Piper silvaticum, page 705.
Kala-j ra, the fruit of Carum Carui, page 705.
Bildi-kund, the tubers of Pueraria tuberosa, page 748.
The fibre of the pods of the cotton-tree, Bombux malaburicum, page 791.
91. Under this head we have the following:-

Radüi.
Kûthi, plants of the genus Ophelia used for bitters, page 744-46.
Bélchar, root of Nardostachys Jatamansi, page 743.
93. Under this head the following are included:-

Piplamor, the Piper silvaticum, page 70 .
Manjtt-ka-jar, root of Rubia cordifolia, page 773.
Ratif, seeds of Abrus precatorius, page 724, and sahat, honey.
94. Is the silicious secretion from the joints of the bambu, also known. as tabashir.
98. See page 742.
99. See pages 705.
100. See page 705 for $C$. Tamala. This head also includes:-

Roats of various kinds exported as hand and Kinjora-ki-jar, the roots of the different species of Berberis, page 728.
The seeds of Pharlitis Nil (hála-dara), page 745 ; and the roots of Hedychium spicatum (hapur-hachri), page 738.
101. This head inclades the following :-

Dhäi-he-phùl, the flowers of Woodfordia foribunda, page 778, Chhalars oak-bark. Pahhán-bed, the root of Saxifraga ligulata, page 749. Nisot, the root of Iponcea turpethum, and the bark of Symplocos cratagioides (lodh), page 776.
102. Under this head come the following :-

Tüng, the bark of Rhus Cotinus, flowers and bark of Cedrela Toona, page 778. Nagarmotha, routs of Cyperus juncifolius, page 774. Pit papra, sceds and leares of Fumaria parvifora, page 737, fruit of Elcaagnus umbellata, page 736, and socds of $A$. Catechu.
103. Includes Ritha, the seeds of Sapindus detergens, page 749 ; Selhhari, a white clay and manjit,
104. Comprises giloi, the roots of Tinospora cordifolia, page 752, medicinal herbs of sorts and phindaru (Colocasia himalensis?)
105. Inclades Farious mincral druge.
107. Includes Rhus vernici/era, page 785, and maki.

## APPENDIX A.6.

List of rates for the sale of timber at Rámnagar anel Moradabad Government Forest Depots.


List of rates for the sale of timber at Ramnagar and Moradabad Government Forest Depots- (concluded).

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Name of timber.} \& \multirow{2}{*}{Messurement.} \& \multirow{2}{*}{Class} \& \multicolumn{2}{|l|}{Rate per cubic foot at} \\
\hline \& \& \& Rámnngar. \& Morad abad. \\
\hline \& \& \& Re. a. p. \& Rs.a. p. \\
\hline Sál karis. ... ... ... \& \(8 \times 4 \times 4\) \& III \& \(\begin{array}{lll}0 \& 6 \& 0\end{array}\) \& ". \\
\hline Ditto ... \& \(6 \times 4 \times 4\) \& II \& 0140 \& ... \\
\hline Ditto ... \& Ditto . \& III \& 040 \& -0 \\
\hline Jáman karis \& \(10 \times 5 \times 4\) \& II \& \(\begin{array}{llll}0 \& 4 \& 0\end{array}\) \& ... \\
\hline Ditto \& Ditto \(\ldots\) \& III \& 020 \& \(\cdots\) \\
\hline Haldu karis \& \(12 \times 5 \times 4\) \& \(\underline{1}\) \& \(\begin{array}{lll}0 \& 6 \& 0\end{array}\) \& \(\ldots\) \\
\hline Ditto ... \& Ditto ... \& II \& \(\begin{array}{lll}0 \& 4 \& 0\end{array}\) \& \(\cdots\) \\
\hline Chír karis ... \& Ditto ... \& I \& 080 \& ... \\
\hline Ditto ... \& Ditto ... \& II \& 0 O \(\quad 0\) \& ... \\
\hline Ditto ... \& \(10 \times 5 \times 4\) \& I \& 080 \& ... \\
\hline Disto ... ... ... \& Ditto ... \& 11 \& 060 \& \(\cdots\) \\
\hline Sál slecper ... ... ... \& \(10^{\prime} \times 32^{\prime \prime}\) \& II \& \(\begin{array}{lll}0 \& 8 \& 0\end{array}\) \& \(\cdots\) \\
\hline Sál karis ... ... ... \& \(15 \times 5 \times 4\) \& II \& ... \& 140 \\
\hline Sál loge squared with axe if purchised unselected from one end of the line five loge or over. \& ..' \& . \({ }^{\text {c }}\) \& 1100 \& ... \\
\hline Ditto ditto selected ... \& ." \& ... \& 1140 \& \\
\hline \begin{tabular}{l}
Ditto round, cluss I., if purchased unsclected from one end of the line 10 loge or over. \\
ditto selected
\end{tabular} \& ..

..1 \& ."

. .0 \& $\begin{array}{lll}1 & 8 & 0 \\ 1 & 12 & 0\end{array}$ \& $\begin{array}{lll}1 & 14 & 0 \\ 2 & 0 & 0\end{array}$ <br>
\hline Ditto round mixed class if purchased unselected from one end of: the line 10 loge or over. \& $\cdots$ \& ... \& 160 \& ... <br>
\hline Ditto ditto selected ... \& ... \& $\ldots$ \& 1120 \& ... <br>
\hline Ditto round, clase II., if parchased unselected from one end of the line 10 loge or over. \& ... \& $\ldots$ \& 140 \& $\cdots$ <br>
\hline Ditto ditto selected ... \& - \& - + \& 1120 \& <br>
\hline Sâl kolhus selected ... ... \& ... \& ... \& 1100 \& 200 <br>
\hline
\end{tabular}

## INDEXI.

GENERAL.


Page.	Page.
Cinchona 882, unsuitabilty of the Hi mailaya of the North-Western	Forest divisions: Sub-IIimálayan
	851, Kumnon 859, Kumaon Iron
Provinces for the cultivation	
of ... ... ... 882	Rainikhet 8.57, Garhwál 858, P'átli
Corianler . ... 705, 733	Dún 860, Kotri 862. Dehra Dún
Corn, Indian ... ... 687	862, Ganges o: Blágiratha beg,
Cotton ... ... ... 738	Jamsár 867, Upper Himulayan in Kumaon and Bititish Garhwál ... 876
. tree... ... ... 791	
Cowhage ... ... ... 742	Frankiacense, Indian ... ... 729
Crab, Siberian ... 713	Fruits, wild and caltivaied ... 709
Creas ... ... 702, 708,740	Furnace, figure an I construction of
Croton ... ... ... 78	sme'ting l29, improved app'i-
Cucumber ... ... ... 701	ances recommended 279, Chili
Cumin .. ... ... 705	furnace ... ... ... 272
Carrant, black ... ... 714	G.
" black anl rell ... ... 714	
Customs, clothing and food of $\dddot{\text { red }}$ (15	Gadlis ... ... ... 31
people of the plaing $\quad$... 19	Galchha States 35, people of $\quad .36,40$
Cypress, ground ... ... 849	Gauges Lusiu and suburdinate sye-
" Himálayan ... ... 840	tems ... ... 66, 67
	Garlic ... ... ... 707
D.	Garos ... ... 22, 27
	Gean ... ... ... 712
Darile ... ... ...32, 34	Geology 111, its ea ly pioneers in
Dehra Dún... ... 96, 111,300	India 112; llerbert, his division
Dhimals. ... ... 24, 27, 28	Falconer 1i4, Strachey
Díns 85, 96, 99, Kayarda 97, Pinjor	Ginger ... ... 706, 754
98, 121, Pı́tli 98, Katri 93, Kota, 98	Glaciers 107, 180, Pindari 107, 182,
	wotion of 188, Kuphini on 186
Druge 720, list of, showing their	Gold ... 276
nature accorling to mative itleas	Gold mince of Tibet 277, of Thok
and their real use in European	Jalang ... ... ... 278
medicines $\quad .$.	Gooscberry ... ... 714
Dyes and tans ... ... 773	Goosefoot an ... ... 696
	Gorkhitis . ... 26, 27
E.	Gourd lwittle ... ... 700
	", co'ocynth ... ... 701
Enstern depresrion of p'ar ts, defini-	" common snake ... $\begin{aligned} & \text { melon, white }\end{aligned}$
tions and examples of ... 394	
Egg-p'unt ... ... ... 70:	Gourd,     white ... ...   702
	Gourds ... ... ... 699
F.	Grau ... ... 693, 732
	(iraphite ... ... .. 992
Fennel, Indian ... ... 705	
Fenugreek..	Grechs ... ... ... 707
Fever eniler ... ... 753	Guava ${ }^{\text {Gume, pseudo }}$ Gums
Fibres ... ... ... 790	
Field pea ... ... ... 694	" resin $\quad . . \quad$... 784
Fir, llimálayan silver $\quad \ldots 887$	
	$\begin{aligned} & \text { Curungs } \\ & \text { Gypsum }\end{aligned} \ldots \quad \ldots$.
Food of the people 19, 693, of the hill population   678. 679	Gypsum ... ... ... 294
Food grains, analyees of 675 , cultivated ... ... ... 683	H. ${ }^{\text {256 }}$
Forest history ... ... 846	Hail ... ... $\quad$256   10
" boundary diaputes ... 848	$\begin{array}{lllll}\text { Hayus } & . . & \ldots & \quad . . & 26 \\ 716\end{array}$
", govermment 849, manage-   " mient of ... ... 876	Hazel ${ }_{\text {lleup }} 760, \ddot{799}$, cultivation of $\quad$... 800


Page,	Page.
Hill-paper usually called Nepalcse,	Lettuce ... ... ... 703
mode of making ... ... 795	Lhoba Daplias ... 20, 21, 42
Himáayangeditu ... . 737	Lichen .. ... ... 745
Ilimilaya, necount of the physical characteristics of d-13, derivation	\% rose $\quad .$.
	Lignite ... ... ... 291
	Limbus .
7, 9, 10, 11, 62, 115, 11f, 166, its	Lime, bour ... ... 710
river basina 61,62 , its geological	, swect ... ... 710
	Limestone ... ... ... 295
yonnger formation than the hills	Liquorice, Indian ... ... 724
of the Deccan and Central India	Lub-Nor basin and ita system 74, 87
102, .. ... 141	Lutus ... ... ... 743
Hindustin. application of the name	Lovage ... 705. 730
of 18, boundiries and area of 77, 78	Love lies bleeding . ... 697
Hog plum ... ... ... 751	Lower llimálayan sections 120,
Hop ... ... ... 707	Simla regiou 130, Sirmar series
Horse gram ... ... 690	131, 133, Kumann ecction 139,
Ilorse-radish tree ... ... 742	Nepál section 14.0, sikkim sec-
Humi ity in theLimálayan   regions ...$\quad \ldots \quad 240,245,247$	tion. ... ${ }^{\text {M.. }}$ M. ... 141
I.	
	Malder ... ... ... 773
Ice-wedges ... ... 106	Mail lin lair fern ... ... 725
Indimn eocene times ... ... 102	Matrar
Inlian desert ... ... 78	Mango ... ... 711, 741
	Manipur, its dialects, population
Indu-G:ngretic plain ... $\quad$, $8,79,85$	and religon ... ... 22
Indus basin 63, subordinate systems, 64	Maize ... ... ... 687
Indus plain ... ... 77	Mechis ... ... ... 28
Ipecacuanha $\quad . .888$	Me:on, musk ... ... 709
Iron mines 287, in Kumaon 288, in Giwar 288, in Garhwál ... 289	,. water ... ... 701
	M.zquit bean ... ... 884
	Millet, great ... ... 692
J.	ltalian ... ... 689
	spiked ... ... 690
Jack-tree ... ... 727,799	Mineral resources of Kumaon ... 259
Juniper, weeping blue $\quad .$. E4:	Mincrans, fisancial results of the settlements of the revemue
K	derived from ... ... 274
	Mines, causes of poor returns from 266
Kira-kurchins ... ... 37	\% druinage of 269, division of
Kíra-Tangutans ... 37, 38, 39	profits of 271 , ontturn from 273 ,
Khamtis... ... .. 29	experimental opening of in Garh-
Khasiyas $\quad . . .20,24,29$	wial . ... ... 261
Kirghiz ... ... ... 36	Mining, morle of ... ... 267
Kock . $\quad$ - $\quad .0 \quad 24,27,28$	, ${ }^{\text {a }}$ industry in Kumaon, the
Kohistínis :.. ... 3.5	futurc of ... ... 276
Krol group ... ... 139	Miris .. ... 20,21
Kúkis ... ... ... 22	Mishmis ... ... 20, 21
Kummon Iron Works Combany ... 262	Mountain formation, mode of ... 104
Kımets ... ... 30, 31	Moupas ... 23
	Mountain sculpture ... ... 106
L.	Nio soon currents in the Himúlaya, 238
	Mountain system l70, Jumna sys-
Lac $\quad .$.	temi70, principal affluents 171,
Lakes of Kumaon and Garhwal ... 199	Ganges system 171, principal
Lamas ... ... 23, 39	aflinents 172, Western límganga
Lead ... ... ... 290	syatem 171, 173, Nayár system ... 179
Lemon ... ... ... 710	Multerry, Indialu ... . 742
Lepchas ... ... 24, 25, 26, 48	Ma.ta:d ... ... ... 707




## INDEX II.

## SCILN'TIFIC NAMES OF PLANTS AND TREES.








## INDEXIII.

## VERNACULAR.









			Page.			Page.	
Mandín	**	...	... 691	Múnja ...	...	... 806	
Mandira	...	...	689	Muriya ...	...	779, 782	
Mandua	...	678, 686,	690, 691, 768	Murkula ...	...	... 794	
Mángle	...	...	... 714	Múbal ...	...	687, 688	
Manjit	$\cdots$	...	2], 7i3	Musali ...	...	$\because 799$	
Manyul	...	...	... 748	Músli-siyáh	...	727, 734	
Mari	...	...	$\cdots{ }^{\text {... }} 99$		N.		
Maror-pha		...	... 739				
Marusthal	li...		... 79				
Marawa	..*	...	... 690	Nagarmotha	$\ldots$	774	
Mish	...	...	693, 695	Naik	...	713	
Masha	...	...	277	Naka ...	...	. 687	
Masúr		...	685̆, 603, 694	Nakslatra...	...	... 257	
", ch	hana	...	. 694	Nal ...	...	. 806	
Masúri	...	...	... 6.4	Nala	$\cdots$	996	
Matta	.	...	... 793	Nali	...	687	
Mattar	$\cdots$	...	... 694	Nal-tura ...	...	... 806	
M unla	...	...	.. 730	Naluwa ...	.	691	
Mauli	.	...	... 714	Naphal ...	...	684	
Maulvi	$\cdots$	.	- 34	Náspati ...	..	... 713	
Mand	...	...	$\underline{2} 68$	Níshpphál ...	...	715, 748, 777	
M:ura	,	...	.. 745	Nat	...	... 691	
$M_{\text {cura-lik }}$		...	... 725	Naúabad	...	... 850	
M:úr-bikh	..a	...	... 745	Nauka	...	... 747	
M.ya		...	.. 684	Neja	...	... 807	
Meditlakr		...	... 751	Nepari ...	...	735	
Mehal	.	...	... 713	Nhare	...	... 843	
Mehali	...	...	... 714	Nianga ...	...	. 715	
Methi	.."	...	708, 752	Nibu ...	...	710	
Mijálu	...	...	... 737	Ním	...	741	
Mircha	...	...	... 730	Ningál ...	...	809	
Miriya	$\cdots$	...	... 809	Ningálu ...	...	809	
Mitha-dud	adjiya	...	... 745				
" ka	saddu	...	... 701		0.		
Mi' ni		.	-.. 710				
Mithan	...	...	... 21	Ogal		698	
$\begin{gathered} \text { Mitha-tel } \\ \therefore, \quad \mathrm{za} \end{gathered}$	zahar	...	$\begin{array}{lr}  & 771 \\ \ldots . & 725 \end{array}$		1.		
Möcharas	s ...	$\ldots$	$\cdots$				
Mock-kan		...	... 735	Padam ...	$\cdots$	712,782	
Mol	**	...	... 713	Padam-chhál	...	... 745	
Mora	$\cdots$	...	807, 809	Padbank ...	...	842	
Morinda	..'	...	... 834	Paddam ...	...	... 712	
Moriya	...	...	... 739	Pucleri	...	... 806	
Mor-pach	hhi..	...	... 725	Padma	...	... 842	
Morunda		....	… 725   $\cdots .$. 837   .	$\begin{array}{ll}\text { Padmak } \\ \text { Pahár } & . . \\ \end{array}$	...	$\begin{array}{ll}\text {... } & 843 \\ \cdots . & 843\end{array}$	
Morn	...	...	... 818	Palári-cha	...	... 743	
Moshta	-	-	$\ldots 686$	Pahári-indrúyan	...	701, 732	
Moth	...	...	688, 693, 694	Pahári-kághazi	...	... 710	
Motlia	...	...	734, 808	l'alíári-nímbu	...	$\ldots 710$	
Mubárnka	a ...	...	-.. 725	Palıári-pudína	...	703, 741	
Mukha-ja		-	... 735	Paijámas	...	27, 30	
Mukui	...	...	\#. 687	l'ain ...	...	... 271	
Múli		-	702, 748	Paiya	...	... 712	
Muláát	...	...	... 34	Pákhán-bed	...	746, 749	
Múng	.'.	...	693, 694	Pakura ...	...	-.. 778	
Mungari	...	...	© 687	Pála-khari	...	... 794	
Mungra	...	...	... 684	Pálak	...	... 707	
Munipa	...	...	$\cdots \quad 703$	Pálang ...		.. 703	
Múnj	..-	**	807, 808	Palás ...	729, 77	, 779, 784, 793	



			Page.			Page.
Rishu	..'	...	... 692	Satiyún ...	...	... 726
Rikonda	...	...	... 692	Satpúra ...	...	... 795
Ringál	...	...	809, 810	Satu	...	... 679
Rítha	...	$\cdots$	... 749	Sauj ...	.	... 817
Roini	...	...	.. 741	Sáwan	...	689
Roli	...	...	741, 776	Scb	...	.. 713
Ropa	...	...	... 686	Schund	...	... 736
Ropini	...	...	... 805	Seln	...	... 793
Roti	...	$\cdots$	... 708	Sem ...	. 0	702, 709
Rúina	...	...	... 776	Scmal ...	..	729, 784, 791
Ruindár	...	...	-.. 695	Sem-ki-gond	...	... 782
Rúsa	...	**	*-7 751	Sentha ...	...	... 806
				Seo ...	...	... 713
				Ser	...	270
				Serahi ...	...	... 745
Sabji	.."	$\cdots$	760, 763	Set-barúwa...	...	795
Sáda	...	...	... 70 ¢	Shakrhand.:	..	... 703
Sadaphal	$\cdots$	..1	... 710	Shalgam	...	$\cdots 702$
Safed-ák	$\ldots$	. $\cdot$	... 794	Shamáj -..	.	.. 730
" blia	ngra	...	-9. 739	Shambal ...	...	-. 743
" ind	...	...	... 740	Sharífuh ...	...	$\cdots \quad 727$
S ${ }^{\prime}$ sira		-**	$\ldots 782$	Shauriya ...	...	736, 783
Säg	...	...	693, 707	Shib-wala ...	...	118
Sahajna	$\cdots$	...	742, 784	Shimi ...	...	... 696
Saila	$\cdots$	$\cdots$	... 691	Shinc'rana...	$\ldots$	-. 695
Sain	$\cdots$	-	812, 815	Shira ...	..	756, 768
Saishu	.'.	..'	... 278	Sliro ...	...	... 308
Sáj	-	...	... 815	Slisham ...	.	... 814
Saji	$\cdots$	...	-7 756	Shiwáli	...	... 753
Sákho	.	...	... 813	Shúkria ...	c.a	... 843
Sál 7,28	83, 8	, 750	784, 785,	Shinkr-ul-ushr	...	... 788
	$\cdots$	...	[812, 813	Shiumeo	...	745, 753
Salajít	$\ldots$	...	... ${ }^{295}$	Shurbuta	...	843
Sálap mi		...	-1. 722	Shurgu	...	C.. 843
Salbia	$\cdots$	...	... 70,	Sillhi mo	'0'	... 763
Salcri	$\cdots$	...	... 703	Siga	...	33
Salhi	$\cdots$	...	$\cdots \quad 729$	Sihora	...	... 751
Salla	...	...	785, 829	Silajit . ...	.	... 295
Sallo	...	...	... 326	Sil-supári ...	...	748
San	...	$\cdots$	... 791	Sim	...	-.. 779
Sánan	...	**	... 815	Simáli	. 0	... 753
Sanaubar	saghar	"'	-.. 828	Sio hára	...	‥ 779
Sándan	$\ldots$	$\cdots$	784, 815	Sindan ...	...	782, 792
Saoni	$\cdots$	**	... 690	Sínk	..	... 808
Saraichu	$\cdots$	...	... 810	Sinkauri ...	...	... 776
Saral	...	- ${ }^{\prime}$	785, 824	Siráli	...	... 731
Sarár		$\cdots$	... 748	Siras	...	726, 782
Sár-baclıy		..'	... 277	", wiláyati	...	... 782
Sár-chaka	d	.	... 277	Sirgochi ...	...	... 714
Sarjao	$\ldots$	...	... 277	Sirki ...	...	806, 808
Sarbar	...	...	-.. 807	Sirki-munja	-	806
Sarkara	..'	...	... 807	Sisu ...	...	83, 734, 812
Sár-pan	$\cdots$	...	... 277	Sissu ...	.	814, 851
Sarpat	$\cdots$	...	... 800	Sitaphal	...	... 727
Sarphonk	a...	$\cdots$	$\cdots 751$	Sitráwal	$\cdots$	.. 727
Sarshaf	...		-.. 769	Siyah-tút	$\cdots$	742
Sarshu	...	...	$\cdots \quad 277$	Sija ...	...	684
Sarson	...	. ${ }^{\prime}$	707, 770	Son ...	...	271
Sarúr	$\cdots$	...	... 807	Sona-ke pathar	. ${ }^{\text {a }}$	290
Sarwála	$\cdots$	...	... 748	Sonchala ...	...	$\cdots 741$
Sarwali	"•	.."	... 731	Sonf ...	$\cdots$	705, 737




[^0]:    Bombay,
    17th December, 1881. \}

    E. T. ATKINSON.

[^1]:    ${ }^{1}$ The collection of materials for the 'Memeir on the Kummen Ximatayn' hats been in progress since 1872, but other and more pressing dutios have hitherto prevented their arrangement for publication. It was then intended to give as complete a description of the entire Himalaya as the menns at our clisposal would permit. 'Ihere is little hope, however, that the leisure necossary for such an undertaking will occur within any reasonalle time, and it thercfore seems better to work up the materials already existing in their present form than to wait until opportunity is found for completing the original design. There are many and great gaps in our inforvartion regarding Kummon, but the first step towards remedying this defect will be this attempt to take stock of our present knowlenge, which is far more complete than is supposecl. Without the aid of the materials entrusted to me by General R. Strachey, Sir John Strachey, Mr. J. H. Batten, Rudradatta Pant, and others, whose assistance will be found acknowledged in the preface, as well as the co-operation of Mr. II. B. Medlicott, Mr. S. A. Hill, Mr. Duthie, Dr. King, Dr. Watson, Captain G. Marshall, and others, my own work would be very meagre and unsatisfactory, as woll from the great range of subjects discussed as liom their frequent special and iechnical clanamerer.

[^2]:    ${ }^{1}$ For a brief summary of these theories sec Mr. C. T. Markham's 'Memoir on the Indian Survers,' p. 341.
    ${ }^{2}$.J. As. Soo, Bcn., XI., Pt. T., p, x.

[^3]:    ${ }^{1}$ J. R. G. S., XXI., p. 57: adopted in Somerville's Playsical Gcography, 7 th edition: London, 1877, p, ä6, $\quad{ }^{2}$ Travels, p, 156.

[^4]:    ${ }^{1}$ England and Russia in the East: London, 1875, p. 236, ${ }^{2}$ Sketch of the Mountains and River Basins of India: London, 1870.

[^5]:    Mr. Markham.

[^6]:    ${ }^{2}$ Tibet, p. xxiij., 1876,

[^7]:    ${ }^{3}$ Januar'y, 1877 , p. $145 . \quad{ }^{2}$ By Mr. C. R. Markham in May, 1877, and Mr. Saunders in Julp, 1877, Geo. Mag. IV, 113, 173, London. The other matters in controversy between the reviewer and $\mathrm{Mr}_{\mathrm{c}}$ Markham are omitted as forcign to the subject of this notice.

[^8]:    ${ }^{1}$ The use of this word in this sense is one of the subjects of controversy between the Calcutta reviewer and Mr. Markham. The former (p. 147, note) objects that the old word 'water-shed ' is sufficient.

[^9]:    ${ }^{2}$ Sce section B. of references attached to this chopter.

[^10]:    ${ }^{1}$ See section C. of references atitached to this chapter.

[^11]:    ${ }^{1}$ Detter known as IVodgson's belts.

[^12]:    ${ }^{1}$ See Hodgson's Aborigines of India, p. $1 \bar{u} 1$.

[^13]:    ${ }^{1}$ Sce section E . of references attached to this chapter.

[^14]:    ${ }^{1}$ Northern Barrier of India, p. 20.

[^15]:    ${ }^{1}$ See section F . of references attached to this chapter. $\quad 2$ Lately partially explored by Major 'Ianner, R,E.

[^16]:    ${ }^{1}$ Gordon : Roof of the World.

[^17]:    Tára-Tangutans.

[^18]:    ${ }^{1}$ From Kulja across the Tian-shán to Lob-nor' : London, 1879, pp. 44, 166. See, futher, section G. of references attached to this chapter,

[^19]:    ${ }^{1}$ Mongolia, by Prejevalsky: London, 1876, II., pp. 109, $301 . \quad{ }^{2}$ Travels of a Pioneer of Commerce in Pig-tail and Petticonts : London, 1871.

[^20]:    ${ }^{1}$ From Captain Henry Strachey's paper on the physical geography of Western Tibet, London, 1854 , still our best authority on the subject. A more detailed account will be given hercalter in the Gazetteer portion of this memoir : see also section H , of references atlached to this chapter.

[^21]:    River-basins.

[^22]:    ${ }^{1}$ From Prejevalsky's Mongolia (London, 1876) it would appear that his Burkhan Buddua range marks, in $96^{\circ}$ longitude, the north-eastern termination of the Tibetan plateau. This range forms the southern boundary of the Tsaidam plain, which, according to native report, extends thence to Lob-Nor. The Nomokhun-gol, which rises on the southem face of the Burkhan Buchla range and joins the Baiangol, does not appear to be a feeder of the Hoang-ho or Yellow River, which has its origin outside the Tibetan platean. To the south of the Burkhan Buddha range the elevation is from 13,000 to 15,000 as far as the Murui-ussu, the bed of which, where scen by Prejevalsky, was 13,000 feet above the level of sea with a chaunel 750 feet broad in January. 'The name 'Murui-ussu' signifies 'the tortuous river,' and, according to Yule, it is the Bri-chu of the Tibetans, the Brius of Mareo Polo, and the Yang-tse-kiang or Blue River of the Chinese. ${ }^{2}$ By the Satlaj, Karnali, and Arum. ${ }^{3}$ Examples of river-systems without an outlet to the ocearil are to be found in the basins of the Caspian, Aral, Balkhassh, Lob-Nor, \&c.

[^23]:    ${ }^{1}$ J. R. G. S., XXIII., p. 7,

[^24]:    ${ }^{1}$ G. T. S. tables. Cal. Rev., July, 1874.
    ${ }^{2}$ See Notes on the lost jiver of the Indian desert,
    ''Icc-mountain': a better name than Kárakoram (black-gravel), which should be restricted to the pass,

[^25]:    1 For interesting articles on the tract between the Arabinn sea and the Gilgit river, by Mr. C. R. Markham, see Proceedings R. G. S., 1879 : the mountain passes on the Afghán frontier of British India, p. 38 : the upper basin of the Eabul river p. 110 : the basin of the Helmund, p. 191.

[^26]:    ${ }^{1}$ Dr. Scully describes the appearance of the country between the top of one of the Shnyok gorges and the Kárakoram pass thus :-" At the top of the ascent strange sight met our cyes, for we found ourselves on an immense undulating plain, the Dipsang, which looked like the top of the world. * * Northwards, in front of us, we saw a few irregular flat-topped hillocks, they looked like scattered about * * I had occasion to look back in the direction of the ronte by which we had come. A fue snowy range of mountains met my view and looked quite continuous; but, of course, this was a deceptive appearance, as we had passed through this chain without crossing any pass." This was the Muztagh range, whilst the Karakoram pass, distant about 25 miles ahead and forming the water-parting, lay amongst the seeming hillocks, a fact which shows that though a range may form a water-parting, a waterparting does not always form a part of a range, Colonel Gordon gives views of the Kúakoram pass in his 'Hoof of the World,"'

[^27]:    'See his article on the Ganges basin, J. A. S., Ben., XVIII., $761 . \quad{ }^{2} 1$ bid, XVII., ii., 646.

[^28]:    ${ }^{1}$ G. T. S. Rep. 1873-75, p. 63. The Athenceum of the 17 th $\Delta$ pril, 1880, announces the arrival of Colonel Prejevalsky at Nálr-chu-kha, about twelve marches north of Lhasa, and we shall doubtless obtain some solution of the problem connected with this river from this great traveller.

[^29]:    ${ }^{1}$ Any further discussion of the systems of the Asam valley would be out of place here; they are sufticiently described in the Asam Gazettecr, to which the reader in search of further information on this subject is referred.

[^30]:    ${ }^{1}$ Klaproth suggested the Irawadi as the continuation of the Sanpo, and Colonel Godwin-Austen was the principal advocate for the Subansiri ; Progs. R. G. S., August, 1876 ; but the rcscarches of the Pandit employed by Lieutenant Harman perhaps show that the Dihong is the real representative of the Sanpo, and that the bend it takes beyond Chetang is quite sufficient to leave a large water-shed for the Subansiri. The most recent advocate of the Irawadi as the true continuation of the Sanpo is Mr. R. Gordon, in his elaborate "Report on the Irranaddy River:" The first rolume is illustrated with hydrographical hypsometrical and orographical maps of 'libet and the neighbouring comntries together with a hyetographical map of India. ${ }^{2}$ See Penl's observations on As6m nomenclature in J.A.S., Beu.

[^31]:    'Called Jung Pláfil Payil, meaning literally " the resert, comntry in which the father and son have wandered," from a tradition that two mea had entered it and died there from want of water. G. T. S. Rep., 1873-75, p. 55 . ${ }^{2}$ In alsout $85^{\circ} 8^{\circ}$ east longitude, and $32^{\circ} 7^{\prime}$ north latitude. ${ }^{3}$ Trotter suggests that Néri Tháru ocempies a position at the foot of the northern loundary ridge of the Tibetan plateau, similar to that held by Polu and Sorghak, and that the stream passing Natri Tháru may be the same that passes by Charchand. Prejevalsky (p. 76) says that Charchen is siluate about, 200 miles to the south-west of Chargalik on a river of the same mame. Hence it is a ten days' journcy to the oasis of Nai ( 900 houses), and three clays further to Kiria. The position and distance of Noi would suit the Pandit's description of Nari Tharu.

[^32]:    ${ }^{1}$ On approaching Ajan, a bare rocky range is passed and the town is occupied by Sokpas, who procure their corn and four from Kokod and Karka, a large monastery some ten or twelve days' journey beyond the borders of their country. Trotter suggests that Karka lies between Lob-Nor and Koko-Nor, and that Ajan is one with the Anj-si of Uspenski ; but both of these identifications require confirmation. ${ }^{3}$ From the Karakoram to Shahidullah ( 11,780 feet) on the verge of the plains of Yarkand is a distance by road of 78 miles, and from the same to Changlung on the south is 83 miles, and to Leh on the Indus, 163 miles. 3 ' Father of ice-mountains.'

[^33]:    ${ }^{1}$ all these heights are taken from the records of the Great Trigonometrical Sur-
    vey. ${ }^{2}$ Fleming on the salt range, J. As. Soc., Ben., XXII., 229.
    Rev., July, 1874, p. 3,

[^34]:    ${ }^{1}$ Said to have dried up in the thirteenth century. ${ }^{2}$ Iike that of 1762, when, according to General Cunningham, the river was dammed up by a landslip in the hills and rose some four hundred feet before the barrier gave way. A similar cataclysm occurred on the Indus.
    ${ }^{2}$ From G. T. S. tables.

[^35]:    ${ }^{1}$ First five from Webb and Sigauli from Kirkpatrick. $\quad{ }^{2}$ Hooker. ${ }^{3}$ Prinsep. $\quad{ }^{4}$ G. T. S., 52 : in sc. VIII., $1866 . \quad$ © Pp. 406, 412.

[^36]:    ${ }^{1}$ Gaz. IV., 478 . The old bed in Salińanpur is ealled the Budhi Jumna.-Tbid, II., 140. Remajns have been found in the Jumma alluvion near Allihabad.-J. A. S., Ben.: III., 302, $529:$ IV., 262, de. Wilford also notices the discovery of bones of men and animals in the Ganges alluvion near Benares about a furlong from its present bed at ninety-five feet from the surface and thirty leet below the level of the present bed. He says the human bones were entire, but those of quadrupeds were broken and bore evident marks of their having been cut with a shapp instrument Ile found no marine deposits at over 105 feet when the water-bearing strata, was reacherl.-As. Res., VIIJ., 29) He He has also noliced the facl that the point of junction of the Kosi with the Ganges had moved up from Nawabganj opposite diajmahal some twenty-five miles.

[^37]:    ${ }^{1}$ These figures are from the Grat 'Trigonometrical Survey records, which make Dibrugarh, 3.18 feel above the level of the sea; Sibsígar, 310 feet; and Baramak, near Tezpur: 256 feet.
    ${ }^{2}$ Irirst from Hooker, two last from Pemberton. ${ }^{3}$ These descriptions are chielly baserl on Herbert's report; and on an article entitled 'The IIimálaya in Kumaon and Garhwál' by Mr. (now Sir John) Strachey, Cal. Rev. No. 35. Stewart notes that he can find no definite statement as to the breadth of the tract known as Blálar and Tarai to the east of Sikkim, but Ilooker mentions expressly that there it ranges from 8 to 12 miles in width; Kirkpatrick and Hofmeister coincide in making its brearlth opposite Nepál about 10 or 12 miles, and belween the Súrda and Rámganga it ranges from 20 to 30 miles, fulling to 6 or 7 miles abrenst of Garhwal and disappearing to the west of the Juma.

[^38]:    ${ }^{3}$ 'Ihe sfl is the characteristic tree of the upper Bhábar wherever it is found. Fodgson notes that constant,observation has emabled the people of the Tarai to distinguisln the principal belts of the Bháhar from the trees that grow in cach. The lighest is the shl level, the next is the hhair level, and the lowest is the sisu (Dalbergin sisu) level.

[^39]:    ${ }^{1}$ Sivawáa, belonging to Siva; for use of the term 'Siwáliks' by Musalmán historians, see "History" posters.

[^40]:    ${ }^{1}$ Somerville's Physical Geoginphy corrected in 7th edition, $1878 . \quad{ }^{2}$ Physical Geography of the Himálaya.-J. A. S., Ben., XVIII., 778.

[^41]:    ${ }^{1}$ Report of the Mineralogical Survey of the Himálaya Monntains, 1bid, extra No., Vol. XI.
    ${ }^{2}$ Kohistín of the Jullundhur Doab, Mbid, XVII., p. 281: XVIII., p. 360.

[^42]:    ${ }^{1}$ The oldest advocate of the ocennic theory is Wilford (in As. Res., VIII., 292). who thus accounts for scveral statements made by the Pamánik geographers, and particulary the story of Sagara. He, however, acknowledges that the existing soil of the Gangetic plain, so far as is known, was due to fluviatile action. ${ }^{2}$ Mantal of Geology of Indial, p. lx., 393.

[^43]:    1 l.c., art. 73. $\quad$ ? $l . c$. , p. 788. ${ }^{\text {B Batten in Kumaun Reports, }}$
    p. 184,

[^44]:    ${ }^{1}$ Sce Proceedings, N.-W. P., P. W. Department, May 31, 1864 ; July, 1869 ; February, 1872 . ${ }^{2}$ From the Rohilkhand remodelled canals' contour map of a portion of the Tarai survcyed in 1865-67 by Captains Thomason and F. Brown and Lieutenant Bisset. An examination of the records of this survey shows that what is stated regarding the portion noticed luere is true also of the entire tract between the Phika and the Sárda.

[^45]:    ${ }^{1}$ See also Chapis. XXII.-IV. of the 'Manual of the Geology of India,' and Gaz., Il,, $\mathbf{1 0 .}$

[^46]:    result of borings made by him in various parts of the tract along the foot of the hills. At Káshijurr, in a spot some twenty feet below the surface of the red clay, he obtained the following results :-
    $\underline{2}^{\prime} 3^{\prime \prime}$ superficial red clay: $1^{\prime} 3^{\prime \prime}$ green sandy clay, water : $4^{\prime}\left(0^{\prime \prime}\right.$ black clay, extremely tenacious: $1^{\prime} 6^{\prime \prime}$ light lune sand and abunclant water. At Haldua, seven miles north, nearly similar results were obtained :- $\overline{0}^{\prime \prime} 0^{\prime \prime}$ a ferruginous sandy clay or loam, latterly becoming more stiff : $1^{\prime}\left(6^{\prime \prime}\right.$ a greenish clay, beconing blackish below : $2^{\prime}$ a bluish-grey clay, partially sandy, not so tenacions, and quite moist. At Jaespur, nine miles north-west of Káshipur, he found :- $5^{\prime \prime}$ surface sand, which grizdually changed to a stiff red clay: $2^{\prime}$ a red, loose sand, damp: $2^{\prime}$ variegated sand and clay, spotted: $3^{\prime}$ yellowish sand changiog to light grey: twigs and roeta wore fonnd at nine feet and water at twelve fect. At Afzalgarh $6^{\prime}$ superficial lonm with small nests of imperfectly formed lignite : $2^{\prime} 6^{\prime \prime}$ red sand and a quicksand : $4^{\prime}$, lackish stiff clay, and $3^{\prime} 6^{\prime \prime}$ stiff clay, latterly sandy. Two other borings are recorded without mentioning the locality.
    ${ }^{1}$ Herbert, l. c. art C3.
    ${ }^{2}$ G. T. S.

[^47]:    ${ }^{\prime}$ My acknowledgements are due to the works of Medlicott, Plandford, Tyndall, and Geikie, on which the following pages are based. ${ }^{2}$ Though known to every student, a re-statement of these principles seems necessary in a work intendedt for popular use in India.

[^48]:    ${ }^{1}$ Professor Geikic on 'Mountain architecture.' ${ }^{2}$ Manual of the Geology of India, lvi.

[^49]:    ${ }^{1}$ Acknowlengent is due here to Professor Tyulalls and Professor A. Geikie's mountain arelitecture.

[^50]:    ${ }^{1}$ Ladak, 101 : J. A. S. Ben, X. 617 : XII, 183 : XVII. $\mathbf{2}_{30}$.

[^51]:    ${ }^{1}$ 'Lhis chapter has been written liv Mr. H. B. Medlicott, Superintendent of the Geological Survey of India, for this volume.-W. I. A.

[^52]:    ${ }^{1}$ On the Geology of Part of the Eimálaya Mountains and Llibet: Quar. Jour, Geol. Soc., London, fur November, 1851; Vol, VII,-E. I. A.

[^53]:    Tibetan platean.

[^54]:    The Kumaon section.

[^55]:    ${ }^{1}$ Much detail with suggestive conjectures regarding this region is given in Memoirs of the Gcological survey of India. Vol. 111., l'ast 2.

[^56]:    Possible affinities.

[^57]:    1 The term crystalline schists is often used, as above, to include gneiss. General Strachey hardly uses this latter word, which is now so much applied to distinguislu the felspathic and often massive form of metamorphic rock. It is probable that some, at least, of the granite of General Strachey's description is really massive gneiss.

[^58]:    ${ }^{1}$ N. Ser., Vol. V.

[^59]:    1 No notice has been taken of these great detrital accumulations up to this, because they occur on the grancest scale in the regions described by General Strachey ; but every explorer in the Ladák country has noticed deposits of the same kind. In many cases they are very recent. The process of their formation has been very well described by Mr. Drew in the Quarterly Journal of the Geolagical Society for 1873. From the fossils enumerated above, it is, however, certain that some of them are very ancient The fact that Gencral Strachey did not observe the actual site of these bones leaves it open to conjecture whether they may not occur in some disturbed beds more or less covered by these horizontal gravels; for it is very difficull to conceive how any great dislocation or upheaval of the mountains can have occurred without disarranging such incoherent materials. On the other hand, the faet that such large animals as the Yak, the Kiang, the Ovis Ambmon, \&c., now flourish in the wild state in those bleak sterile regions suggests that a moderate change of climate, without any great change of clevation, might make them habitable for the fauna now found fossil there. No evidence for matine action later than the nummulitic period is known within the Hinááayan horder.

[^60]:    ${ }^{1}$ Notwithatanding the numerous recent claimants to this theory, the mechaninal clements of it are essentially those given by DeBeaumont in his Systemes de Montagnes, p. 1318 ; the other icleas in it being due to two other equally eminent philosophical physicists, Herschel and Bablage.

[^61]:    Western Rámganga.

[^62]:    ${ }^{1}$ From " A description of the glaciers of the Piudar and Knphini rivers in the Kumaon Himálaya," by Lieutenant R. Strachey, Ben, Rng., J., A. S B., XVI, 794, and "Note on the motion of the glacier of the Pinclar in Kumann" by the same. Ibid., XVII., ii., 203, and given as nearly as possible in the writer's words as the only scientific examination of these glaciers that we possess.

[^63]:    ${ }^{1}$ These olsservations on the snow-line are based on the article in J., A. S., Ben., XVIII., i. 287, entitled, "On the snow-line in the Fimálaya," by Licutenant R. Strachey, Fingineers, on notes placed at my clisposal by the same writer, and on the works of reeent travellers. ${ }^{2}$ Ifooker, Quar. J., Hort. Soc., VII,, 144; Grillith I'osl. P’apers, I, 236.
    ${ }_{-}^{3}$ Moorcruft, II., 107.

[^64]:    ${ }^{1}$ Bom, Geog. Jour., X., 39.
    ${ }^{2}$ Captain H. Strachey, J. R, G. S., XXIII, 69.

[^65]:    ${ }^{1}$ Himálayan Journals.
    ${ }^{2}$ Reports, 1871, p. I: the name appears to be derived from the Wallungsumgola to the south: the pass itself has an elevation of 15,618 feet. ${ }^{9}$ J., A. S., Ben., XVIII., i, 524.

[^66]:    ${ }^{1}$ Tours I., 289-347.

[^67]:    ${ }^{1}$ Ibid, II., 71.
    ${ }^{2}$ Travels, p. 487.
    ${ }^{3}$ Laulák, pp. 73-77.

[^68]:    ${ }^{1}$ J., A. S., Ben., XXV., 5(6),

[^69]:    ${ }^{1}$ This expedition is apparently referred to in J., A. S., Ben., XIX., 79.

[^70]:    ${ }^{1}$ Tours in the Himálaya, IJ. 73, 117, 133, 242 : Account of Koonawur, 167-9. ${ }^{2}$ Travels, p. 437.
    ${ }^{3}$ Report, p. 11 .

[^71]:    ${ }^{1}$ Written by Mr. S. A. Hill, Meteorological Reporter te the Government of the North-Western Provinces and Oudh, for this voluue.

[^72]:    Sketch of climate.

[^73]:    ${ }^{1}$ Theorie de la Chalew 1835 edition, page $473 . \quad{ }^{2}$ Smithsomian Contributions til Kumeledge, Vol. IX. ${ }^{3}$ Zeikehrift der Oesterveichischen Gesellsolujt fior Meteorolegic, biud XIV, page 133.

[^74]:    

[^75]:    ${ }^{1}$ Schlagintweit's Meteorology of India, pare ilis. $\quad$ Journal of the Asiatic Sociecly of Bengal, April, 1819.

[^76]:    ${ }^{1}$ Pionect, 17th Jamuary, 187.

[^77]:    ${ }^{1}$ Professor Loomis, in the American . Tounal of Serienee for 1879, finds that at the top of Mount Washington the daily maxima and minima set in three hours latce than at, the foot, thongh the difference of elevation between the two stations is only a little over 3,000 feet. This is quite unlike anything that oceurs in the Himilaya, and is donbtless due to other causes than those which produce the diumal tides. Hourly observations made in India show that up to a certain moderate elevation the daily barometric maxima and minima are slightly retarded ; but this is due to the mountain winds described below. At Leh, in the upper Indus valloy, the diurmal winds canse the moming maximum to occur nearly an hour earlicr than on the plains. I'his will be seen from the following table :-

[^78]:    ${ }^{1}$ Bantord, J. A. S. B., Vol. XLVI., lart TI., page to. ${ }^{2}$ From General Boilean's observations in $1813-4 h$. The daily prange given by these firures is nearly twice as great as that of the other stations at the same altitute. Jhe reason is probably some difference in the form of the barometer or in the mode of applying the correction for capillirity.

[^79]:    ${ }^{1}$ Rainfall of July，August and september， $18: 10$ ；the observations at Fiti taken by General Strachey．

[^80]:    ${ }^{1}$ The observations for the lower Mussoorec station being for a very short period only, the figures for the stations immediately above and below it in Table XVIIf. have leen included in striking the average.

[^81]:    ${ }^{1}$ T'o Commissioner, daterl loth January, $1826 . \quad 2$ J. A. S., Ben., VII., 934 ; and Stat. Kum., 1. 3üB. $\quad$ 'To Commissioner, dated 26 th November, 1838.

[^82]:    ${ }^{1}$ J. A. S., Ben., XII., 454, and Stat. Kum., p. $367 . \quad 2$ J. A. S., Ben., XIV., 471 ; and Stat. Kum., p. 385. ${ }^{3}$ In a pampihlet published in London in 1845, ancl Stat. Kum., p. 393.

[^83]:    ${ }^{1}$ Report on the Goverument iron works in Kumaon, with plans, specifications, and estimates for establishing iron works in Kumaon, and remarks on the iron deposits of the Himáayas ly W. Sowerby, C.E., printed as No. XXVI. of the Sel. Rec.. Government of Inclia (Public Works Department), Calcutto, 1R59. These papers give a review of the Linglish, Ulverstone, Continental, Belgian and French, IRhineland, Black Forest, Boheminn and Styrian Iron Works, and estimates and plans for adapting the approved processes of those iron countries to the Kumaon mines.

[^84]:    , ${ }^{1}$ For the materials for this note I am inclelted to the office of the Commissiouer of Kuman and a note drawn up hy Sir Henry Ramsay, than whom the Company and Kumaon has no more warm well-wisher.

[^85]:    ${ }^{1}$ Paras. 19, 20, Captain Herbert's report, already quoted.

[^86]:    ${ }^{1}$ Beckett, III., Sel. Rec., N.-W.P., 20.

[^87]:    Improvement needed in appliances.

[^88]:    ${ }^{1}$ These mint dues were collected for a few years under British rule at the mines of Dhanpur and Gangoli, and at onc-half per cent. gielded a revenue of Rs. 300 a year. To Board, dated 6th August, 1821.

[^89]:    ${ }^{1}$ Allahabad, 1866.

[^90]:     Herbert to Commissioner of Kumaon, 19th Janmary, 1826,

[^91]:    ${ }^{1}$ Rec.,G. I., HI. D., 36.

[^92]:    ${ }^{1}$ Lawder in Rec. Geol. Sur.

[^93]:    ${ }^{1}$ To Government, dated 14th June, 1815. From Government, dated 13th January, 1816. $\quad 2$ See further Stat. Kum., p. $359:$ J. A. S. Ben. VII., 935. ${ }^{8}$ To Board, dated 2nd January, $1829 . \quad$ From Government, dated l3th Jauuary, 1816.

[^94]:    ${ }^{1}$ To Board, dated 14 th February, I829. $\quad{ }^{2}$ Mr. Wilkin's report, J. A. S., Ben.. XII., tist: Reckeuklorf's report, ibid, XIV., 471 ; Captain Herbert to Commissioner, 10th January, 1826.

[^95]:    ${ }^{1}$ 'To Goverument, dated IAth February, 1829.

[^96]:    ${ }^{1}$ See Sel. Rec., N.-W. P., III., N.S. p. 34, and Glean. in Science, I., 230 ; As. Res. XVIII, (1), 227 (Herbert) ; Traill and Batten, Statistics of Kumaon, Agra, 8 J.

[^97]:    Giwar mines.

[^98]:    ${ }^{1}$ To Government, 24th December, 1833.

[^99]:    1 III., S'el. Rec., N.-W. P., 23.

[^100]:    ${ }^{1}$ See, further, Gleanings in Scieuce, IIT., 280 ; J. A. S, XXIV., 203; In. Rec. (H. D.), XV11., 58 : hec., N.-W. P., H1., N. S., 371.

[^101]:    ${ }^{1}$ Ure, I, $381 . \quad{ }^{2}$ As. Res., XVIII. (1),p $216 . \quad{ }^{3}$ J. A. S. Ben., J., 289. ${ }^{4}$ Ibid, 4a0, and Sherwill on Darjíling gypsum, ibid, XXI., 538.

[^102]:    ${ }^{1}$ Derived from 'sila,' a stone, and 'jit,' principle or essence. ${ }^{2}$ J. A.S., Ben., II. 321.
    ${ }^{3}$ J. A. S., Ben., II., 482.

[^103]:    ${ }^{1}$ This list has been kindly prepared by Mr. G. King. ML,B., F. L. S , Director of the Rogal Botanical Gariens, Calcutti, for this work.

[^104]:    Dchra Dún.

[^105]:    From Mussoorec northwards.

[^106]:    ${ }^{1}$ This notice and list has been prepared for this volume by Mr. W. Watson, M.D., Deputy Sunitary Commissioner, Almora.

[^107]:    ${ }^{1}$ The materials for this Chapter were placed at my disposal by Major-General R. Strachey, and have been elited and arranged by Mr. F. Duthic, Curator of the Botanical Garlens, Salnarampur.
    ${ }^{2}$ Puge 65.

[^108]:    $£$ Based on the rescarches of Professor Mayer,

[^109]:    ${ }^{1}$ A botanical description of each of these plants will be found in my 'Noter on the Economic Products of the Nort上-Western Provinces,' Part IV., Allahabad, 1881.

[^110]:    ${ }^{1}$ A botanical dercriptio: of each species and full notes on localities, uses. \&c., will be found in my 'Notes on the Economis I'roducts of the Norlh-Western Provinces,' Part IV.

[^111]:    ${ }^{1}$ Memoir, 22.

[^112]:    ${ }^{1}$ J. Agri.-Hort., XIII., вec. 50.

[^113]:    ${ }^{1}$ Sowing four annas; seed at twelve secra per bisi, eight to to a annas; cutting and winnowing, for the former cight and the latter four men, wo la cost from 24 to 3 s annas.

[^114]:    ${ }^{1}$ For a botanical description of each plant see my 'Notes on the Economic Products of the North-Western Provinces,' Part V.

[^115]:    ${ }^{1}$ For a botanical description of each plant see my 'Notes on the Economic Products of the North-Western Proviuces,' Part V.

[^116]:    ${ }^{1}$ A full description of each will be found in my ' Notes on the Fconomic Froducts of the North-Western Provinces,' Part V.

[^117]:    ${ }_{1}$ Full description of all these plants will be found in my 'Notes on the Economic Products of the North-W'cstem Provinces.' Part V., Allahidad, 1881.

[^118]:    ${ }^{1}$ Descriptions of all these plants will be found in Part V. of my ' Notes on the Economic Products of the North-Western Provinces,' Allahabad, 1881.

[^119]:    1 A full description of each plant or tree and a more detailed noticeof uses of each drug will be found in my "Notes on the liconomis Products of the NorthWestern Yrovinces," Part VII. ${ }^{2}$ Panj. Products.

[^120]:    ${ }^{1}$ The references are to Brandis' Forest Flora, Drury's Usefu! Plants, Шooker's Flora of British India, and the Ph.trmacopaia of India.

[^121]:    I I am indebted to several sources, official and private, for these notes on opium and hemp.

[^122]:    ${ }^{1}$ Bengal Dispensatory, 579-604; Wariug's Dispensatory ,Pl6.
    ${ }^{2}$ See Yule'b Marco l'olv, l., 132.

[^123]:    ${ }^{1}$ This nut is yellow, oval, the size of a small egg, enclosing an oily kernel like a motmer, conical, rommed, pointed and marked with white and reddish veins; inodorous, but of a very astringent taste. It contains a large protion of tannic and gallic acids.

[^124]:    ${ }^{1}$ For a full account of the 'Gums and Gum-resins' in these Provinces, see my "Notes on the Economic Products of the N.-W. Provinces," Part I., Allahabad, 1876.

[^125]:    ${ }^{1}$ For the intricate vernacular synonym see postea.

[^126]:    1 Sir W Jones quoted by Birdwood, 274, 322. Other insects of this genus furnish a colouring natter. The fenale of $C$. ilicis is the Kermes; that of $C$. Cacti, the nopal or cochineal and the female of C. poloncus produces the searlet grains of Yoland.

[^127]:    ${ }^{1}$ A botanical description of all the fibre-producing plants mentioned in the following list will be found in Yart VI. of my "Notes on the Eeonomic Products of the North-Western Provinces." The reference at the foot of each notice here is also to a botanical description of the plant.

[^128]:    'See 'Papers regarding the cultivation of hemp in India,' Agra, 1855: Royle's Fibrous l'lants of India, Londod, 1855, and Drury's Useful Plants of India, Madras, 1858.

[^129]:    ${ }^{1}$ The bâsi is 40 qquare yards less than an acre, and the seed used for it is $\mathbf{2 0 - 2 5}$ pathas, or $\overline{\text { one }} \mathbf{6 6} \mathrm{ll}$. avordupois.

[^130]:    ${ }^{1}$ Bamboo considered as a paper-making material, by T. Routledge: London,

[^131]:    ${ }^{1}$ Hooker gives the upper limit in Sikkim as 2,000-2,500 feet; Grifith fives the lower limit in Blután at $1,800-2,000$ feet. At Ramear bridge on the Sarju in Kumaun, 1,500 feet above the sea, it descends to within a few humdered yards of the river.

[^132]:    ${ }^{1}$ This name seems a misnomer, for though specimens occur up to 150 feet, it is not distinguished by its height from the other pines and is more of a silver-fir.

[^133]:    ${ }^{1}$ To Board, dated 16th Joly, 1822. These cesses were called ghthhar, gobar, and puchhiya in the hills and were farined out as jagat, and under the Ileris and Mewatis in the Blábar were called donio, from the dona or wooden bar to which the cattle were tied at night, and each of which paid one kuchcha ser of ghi and four pice a year.

[^134]:    ${ }^{4}$ To Boarl, dated 22nd Jnne, 1826. To Collector, Bareilly, dated 26tla Scptember, 1826. ${ }^{2}$ Stat. Kumaun, 125, 336.

[^135]:    ${ }^{2}$ This division axtends from the Garda on the east to the l'hikn river on the west and from the base of the outer hills on the nortlı to the boundary of the 'Tarai district on the south. I am indelted for the materials for the notice of this division to Major Campbell through the Conservator, Mr. G. Greig. i See Major Ramsay's report on the condition of the forests in 1661 in Nurthи estern i rovinces Guzette Supplencot, Ifll December, llai.

[^136]:    ${ }^{1}$ Receipts, Re 32,90,459 (Kumaun, Rs. 15,01,050; Garlawál, Re. 17, 89,369 ). Charges, Rs. 17,43,542 (Kumaun, Rs. 8,33,477; Garhwál, Rs. 9, 10,065). ${ }_{2}$ Sce G.Oi. No. 407 F.C., dated 5th September, 1877; and No. 173, dated 29 th February, 1879.

[^137]:    ${ }^{1}$ The Nawáh of Rámpur is allowed to export every year 200 trces, not less than $5 \frac{1}{2}$ fect in girth, free of duty.

[^138]:    ${ }^{1}$ Regerved by Nos. 149 and 150, dated 21st February, 1879.
    ${ }^{2}$ See G. Os. Nos. 176 and 177 , dated 26 th February, 1879.

[^139]:    1 12,000 grafted plants have been distributed to villagers and householders, besides some 32,000 forest and ornameutal plants, and about 400,000 forest trees have been planted in the reserve from the uursery.
    ${ }^{2} \mathrm{By} \mathrm{Mr}$. (now Sir John) Strachey, to Commissioner, 4th August, 1853; from Government, No. 3747, dated 17 th September, 1853 . ${ }^{3}$ The collections of the forest and pasturage dues from the Kotri Dún, including Udepur, was handed over to the Saperintendent of the Dún and the Collector of Bijnor in 1849. In 1853, the dues from the Kotri Dún and the Rnwásanwár part of Udepur amounted to Rs. , , 403, and from the Rawásun-pár portion to Rs. 1,011 a year ; total of Garhwál, Rs. $5_{2} 164$.

[^140]:    ${ }^{1}$ F. 162, dated 24th February, 1879.

[^141]:    ${ }^{1}$ To Commissioner, Kumaun, 15th September, $1826 . \quad{ }^{2}$ In appendix

[^142]:    1 The following references are to the notifications of Government demarcating and rescrving the forest lands :-73, dated 5 th March, 1877 (all the Dím): 74, of same date (closes 'Thíno and Balawíla): 44; chted $94 t h$ September, 1877 (reserves the eastern Dún): 190, dated 19 th July (reserves the Pablari foreats): 184, dated 27th February, 1879 (reserves all the forests).

[^143]:    ${ }^{1}$ Sec report by Mujor P'arson, Sel. l.ec., N. W. I'. (2nd Scr.), M., 117, and III.

[^144]:    Jaunár-Báwar.

[^145]:    ${ }^{1}$ G. O. No. 30A., Revenue Department, dated 4th Jauuary, 1873.

[^146]:    1 See Webber's forest survey of Kumaun and Garhwál, 1864-65, which gives colored maps on the scale of one mile to an inch in sheets of twelve inches square, accompaniel by tabular statements showing the acreage and number and class of trees in each block.

[^147]:    "The machine, as a piece of mechanism, is qrod: it is well-made and well-proportioned, the relative strength of the various parts having been well considered.

[^148]:    ${ }^{1}$ Sel. Rec., N.-W. P. (2nd Ser.), VI., 602, and Dick's Report, ibid., I., 79.

[^149]:    ${ }^{1}$ I am indebted to Mr J F Duthie, Superintendent of the Botanical Gardene, N.-W. P., for this notice of the tea industry in Kumaun $\quad{ }^{2}$ See nn intercsting paper rearl by Mr. A. Burrell Lefore the Society of Arta on February 2nd, 1877, and published in the Society's Journal, Vol. XXV., p. 199.

[^150]:    ${ }^{1}$ Regarding the same plant Dr. Royle in his "Illustration of the Botany of the Himalayan Mountain," p. 322, says:-"The leaves of this plant are in Kumaun employed as a substitute for tea: hence some travellers have been led into the error of stating that the true tea plant was to be found in this part of the mounta.ns."

[^151]:    "See also his "Ill. Him.," pp. 124-27, whore these views are worc fully stated.

[^152]:    ${ }^{1}$ "Notes an-l recollections of tea cultivation in Kumaun and Garhwál," by J. H Batten, b.c.s., retired, Journal, Agri-Hort. Society of India, Vul. V., Part IV., D. 53, $1878 . \quad 3$ Sae F. Ind., i., p. 292.

[^153]:    ${ }^{1}$ See Vol. II., p. 323; Vol. IV., p. 173 ; and Vol. VI., p. 81. For the first few years Dr. Jameson corresponded regularly with Dr. Roylc, and the substance of his letters is contained in a paper by the latter published in the Joural of the Agri.-Hort. Soc, Vol. VII.; part II., p. 11.

[^154]:    "So far as the commercial interests of these provinces are concerned, the most interesting point in the traffic they transact with 'Tibet is the opening it

[^155]:    1 Mr. Fortune was no doubt similarly influenced when criticising the condition of the plants at Kaulagir during lis inspection tour in 1850.

